## PUTNAM PRACTICE PROBLEMS 2

**Exercise 1.** Find the minimum value of the expression:

$$\frac{\left(x+\frac{1}{x}\right)^{6}-\left(x^{6}+\frac{1}{x^{6}}\right)-2}{\left(x+\frac{1}{x}\right)^{3}+\left(x^{3}+\frac{1}{x^{3}}\right)}$$

for x > 0.

**Exercise 2.** Show that all of the numbers  $2^1+1, 2^2+1, 2^{2^2}+1, \dots, 2^{2^n}+1, \dots$  are pairwise relatively prime.

For the next exercise, let us first recall the following notation. Given a real number x, let  $\lfloor x \rfloor$  equal the largest integer which is less than or equal to x. For instance,  $\lfloor 2.5 \rfloor = 2$ , and  $\lfloor -3.7 \rfloor = -4$ . The quantity  $\lfloor x \rfloor$  is called the **floor of** x. We also define the **fractional part of** x by  $\{x\} := x - \lfloor x \rfloor$ . We note that  $\{x\} \in [0,1)$ .

**Exercise 3.** Suppose that  $\alpha$  is a real number. a) If  $\alpha$  is rational, show that the set

$$X_{\alpha} := \left\{ \{ n\alpha \}, \, n \in \mathbb{Z} \right\}$$

is not dense in [0,1).

b) If  $\alpha$  is irrational, show that the set  $X_{\alpha}$ , defined as above, is dense in [0,1).

**Exercise 4.** a) We consider a forest in two dimensions such that there is a tree centered at each lattice point of  $\mathbb{Z}^2 = \{(m,n), m,n \in \mathbb{Z}\}$  and such that each tree has radius  $r \in (0,\frac{1}{2})$ . An observer stands at the origin. Does there exist a direction in which it is possible for the observer to see forever? If not, is there a bound as to how far the observer can see?

b) What happens if the observer is not situated at the origin?

**Exercise 5.** Does there exist an integer n such that the number  $2^n$  in the decimal system starts with the digits 2012...?

**Exercise 6.** We recall that the two-dimensional torus  $\mathbb{T}^2$  can be obtained by identifying the opposite sides of the square  $[0,1] \times [0,1]$ . We call a curve  $\gamma : \mathbb{R} \to \mathbb{T}^2$  a straight line on the torus if given  $t \in \mathbb{R}$ , there exists  $\epsilon > 0$  such that  $\gamma$  restricted to  $[t - \epsilon, t + \epsilon]$  can be identified with a straight line on  $[0,1] \times [0,1]$ . (In other words, we are just projecting straight lines on  $\mathbb{R}^2$  and taking the quotient by translation with  $\mathbb{Z}^2$ ). Can one give a sufficient and necessary condition when a straight line on the torus has a dense image in  $\mathbb{T}^2$ ?