MATH 425, PRACTICE MIDTERM EXAM 2, SOLUTIONS.

Exercise 1. Suppose that u solves the boundary value problem:

up(x,t) — Ugg(x,t) =1, for0 <z <1,t>0
(1) u(z,0) =0, for0 <z <1
u(0,t) = u(1,t) =0, fort > 0.

a) Find a function v = v(x) which solves:

{—vm(x) =1, foro<z <1
v(0) = v(1) = 0.

b) Show that:

for all x € 10,1],¢t > 0.

¢) Show that:

for all x € 10,1],¢t > 0.

d) Deduce that, for all x € [0,1]:
u(z,t) = v(zx)
ast — 0.

Solution:

a) We need to solve v”(x) = —1 with boundary conditions v(0) = v(1) = 0. The ODE implies
that v(z) = f%zZ + Az + B for some constants A, B. We get the system of linear equations:

B=0
—14+A+B=0
from where it follows that: )
A= 3 and B = 0.
Hence: .
v(z) = 3% (1—ux).
b) Let us now think of v as a function of v as a function of (z,t) which doesn’t depend on z. By
construction, we know that:
ve(2,t) — Ve (z,t) =1, for 0 <z < 1,t >0
v(z,0) >0, for 0 <z <1
v(0,t) = v(1,t) =0, for t > 0.

Here, we used the fact that %:r -(1—=2) >0 for 0 <z < 1. By using the Comparison principle for
the heat equation (Exercise 3 on Homework Assignment 4), it follows that:

u(z,t) <wv(z,t) =v(z)
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for all z € [0,1],¢ > 0.

c¢) Let us define:

w(x,t) =1 —ew@)==-1-e?) 2(1—-2)

DN | =

We compute:
we(x,t) =e 2 2(1 —x)
W (2,t) = —(1 —e72) = =142,
Hence:
wi(x,t) — Wee (2, ) =1 — 67%(1 —z(1- 1:))
We know that for « € [0, 1], one has: (1 —z) € [0, 1]. Hence, it follows that:
Wi (2, 1) — Wae(x,t) <1
for all 0 <z < 1,f > 0. In particular, we deduce that:
wi (T, 1) — wee(x,t) =1, for 0 <z <1,t >0
w(z,0) =0, for 0<z <1
w(0,t) = w(l,t) =0, for t > 0.

By using the comparison principle, it follows that, for all « € [0, 1],¢ > 0, the following holds:

u(z,t) > w(x,t) = % (1—e) z(l —x) = (1 — e H)u(z).

d) Combining the results of parts b) and c), it follows that, for all z € [0, 1],¢ > 0, it holds that:
(1 —e?"Yo(x) < u(z,t) < v(z).

Letting t — oo, it follows that:
u(z,t) = v(x)

ast — oo.

Exercise 2. a) Find the function u solving (1) of the previous exercise by using separation of
variables. Leave the Fourier coefficients in the form of an integral. [HINT: Consider the function
w:=u—v for u,v as in the previous exercise.]

b) Show that this is the unique solution of the problem (1).

¢) By using the formula from part a), give an alternative proof of the fact that u(xz,t) — v(x)
as t — oco. In this part, one is allowed to assume that the Fourier coefficients at time zero are
absolutely summable without proof.

Solution:

a) Let @(x,t) := u(x,t) — 32(1 — z). Then the function @ solves:

Up(x,t) — Ugg(x,t) =0, for 0 <z <1,£>0
a(x,0) = —3z(l—x), for 0<z <1
@(0,1) = a(1,t) = 0, for t > 0.

We look for @ in the form of a Fourier sine series with coefficients which depend on t.

i(x,t) =Y An(t)sin(nmz).
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We first set t = 0 to deduce that:

1 . 1
(z,0) = —fac (1—2x) Z )sin(nmwz) = —gac(l — ).

Hence, A,,(0) equals the n-th Fourier sine series coefficient of the function —3z(1 — z) on [0,1]. In
particular,

oo
A, (0) = 2/0 < - 590(1 - :1:)) sin(nmx) du.
In order for @ to solve the heat equation, we need:
Al () —n?m2 A, (t) =

Hence:

Consequently:

We then deduce that:

u(w,t) = %:c(l —z)+ Z A (0) - e sin(nmx).

b) Uniqueness of the problem (1) was shown in class by using the maximum principle and by using
the energy method.

¢) We note that:

lu(z, t) — v(z)| = \ 3" A (0) - e sin(na ] Z 4, 0)] - e ™ < e N [ 4,(0)].
n=1 n=1 n=1

As is noted in the problem, we are allowed to assume that !

Z|A )| < o0.

The claim now follows. [J
Exercise 3. Suppose that u : R?* — R is a harmonic function.
a) By using the Mean Value Property (in terms of averages over spheres), show that, for all x € R3,

and for all R > 0, one has:
3

u(z) = W’Lg(gg,mu(y) dy.

b) Suppose, moreover, that fRd |u(y)|dy < co. Show that then, one necessarily obtains:

u(z) =0

for all z € R3.

IWe can integrate by parts twice in the definition of A, (0) and use the fact that f%z(l — ) vanishes at £ = 0
and z = 1 in order to deduce that: |A,(0)] < % from where it indeed follows that > 0> ; |An(0)| < oo.
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Solution:

a) Let us fix # € R3. The Mean Value Property, proved in Exercise 1 of Homework Assignment 7,
implies that, for all » > O:

) W)= g [ )ast)

We note that:

R
47r31%3/3(w) u(y) dS(y) = ﬁ/o (/83(”“) u(y) dS(y)) dr.

By the Mean Value Property (2), it follows that this expression equals:

3 2 3 2
47 = : : 4 = .
R3 /0 T U(l‘) dr u(x) 4 RS /O r*dr u(x)

b) We note that, by part a), it follows that:

3 3
< — dy < —— dy.
) < g oy < s [l

Since [ps [u(y)| dy < oo, we can let R — oo to deduce that |u(z)| = 0. It follows that u is identically
equal to zero. [

Exercise 4. Suppose that u : B(0,2) — R is a harmonic function on the open ball B(0,2) C R?,
which is continuous on its closure B(0,2). Suppose that, in polar coordinates:

u(2,0) = 3sinb0 + 1

for all 6 € [0, 27].
a) Find the mazimum and minimum value of u in B(0,2) without explicitly solving the Laplace
equation.

b) Calculate u(0) without explicitly solving the Laplace equation.

Solution:

a) By using the weak maximum principle for solutions to the Laplace equation, we know that
the maximum of the function u on B(0,2) is achieved on dB(0,2). We observe that the function
u(2,0) = 3sin50 + 1 takes values in [-2,4]. It equals —2 when sin50 = —1, which happens at

6 = 3% (for example). Moreover u(2,0) = 4 when sin50 = 1, which happens at § = 7 (for exam-

ple). Hence, the maximum value of u on B(0,2) is 4 and the minimum value of v on B(0,2) is
—2.

b) We use the Mean Value Property to deduce that «(0) equals the average of u over the circle
0B(0,2). Since the average of the 3sin 50 term equals zero, it follows that «(0) = 1. O



