PRACTICE HOMEWORK FOR MATH 425, SOLUTIONS

Exercise 1. FEvaluate the integral:

27
/ ¥ sin 6 do
0

a) by using Integration by parts.
b) by using complex numbers.

Solution:
a) Method 1: using integration by parts

27 _ 6
/ fsinfdg ="
0 dv = sin 0 db,

0 0=2m
= —e” cos 0’

6=0
9 0 . 0=2m
=(—e"+1)+e sme‘
0=0
Hence,

0

27 27 u:ee
+/ eecosﬁdﬁz(—62”+l)+/ e? cos 0 df = ’
0 0

du = e?df

v = —cosf

dv = cos 6 db,

27
2/ e?sinfdf = (—e*™ +1)

from where we deduce that the value of the wanted integral is:

_627r + 1
2

b) Method 2: using Complex numbers
We note that:

2m 2 2m )
/ eesin9d9:lm</ 69(COS9+iSin9)d9) :Im(/ e‘ge’ade) =
0 0 0

2 . 1 o |0=27 1
= Im(/ 6(1“)9510) = Im—_e(lﬂ)e‘ = Im( (2™ — 1))
0 1+14 6=0 1+74
-1 27 _ _627( + 1
= Im( (T — 1)) =

Exercise 2. Using Fuler’s formula, rederive the identities:

a) sin(x + y) = sinx cosy + cos x sin y.
b) cos(z +y) = cosx cosy — sinzsiny.

Solution:

We recall that for x,y € R, one has:

ez(w-‘ry) — o . W,

We rewrite both sides by using Euler’s formula to obtain:

cos(x +y) +isin(z +y) = (cosz + isinz) - (cosy + isiny).

It follows that:

du = e?df

v =sinf

2 2
7/ e?sinfdh = (—e®™ + 1) 7/ e? sin 6 df
0 0

cos(z +y) + isin(x + y) = (coszcosy — sinxsiny) + i(sin x cosy + sin y cos z).
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Claims a) and b) now follow by taking real and imaginary parts of both sides O.

Exercise 3. Find all complex numbers z such that:

a) 2% =1.
b) 27 =i.
¢) Re(e?) > 0.
Solution:
a) The wanted complex numbers are zj, = ¢“6" = ¢'5* = cos(&%) + isin(Ar), for k =0,1,...,5.
i 2nki

b) Since i = e%r, we can deduce that the the solutions are given by z;, = et~ 7  fork=0,1,...,6.
c¢) We write z = re’?, where 7 > 0 and 6 € [0,27). In this way, » and @ are uniquely determined
from z. Since z = r cosd + isinf, we deduce that:

z r(cos 0+isin 0) _ ercosﬁ . ezrsm@ _ erc059 . (

e“=e cos(rsin @) + isin(rsin 9))

Since e"®% is a positive real number, the condition we need to satisfy is cos(rsinf) > 0. An

equivalent way to write this is to say that there exists k € Z such that:

rsinf € (,I + 2k, T4 2km). O
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Exercise 4. a) For what ¢ € R does there exist a non-zero function w : [0,27] — C such that:
w’ — Fw =0

and such that w(0) = w(2r) =07
b) What if w instead solves w" + c*w = 0 (again with the assumption that w(0) = w(27) =0)?

Solution:

Let us first suppose that ¢ # 0. From ODE theory, we know that w = a;e + ase™¢* for some
(complex numbers) ay, az. The condition w(0) = w(27) = 0 then implies that:

a1 +ay =0
aleQﬂ'c + a2€—27rc =0
From the above two equations, it follows that a; = as = 0 and so w is identically zero. If ¢ = 0,

then w = a; + ast. In this case, w(0) = 0 implies that a; = 0 and w(27) = 0 implies that ag = 0,
and so w is again identically zero. Hence, in a), it is not possible to find such a function w.

b) We now consider what happens when w” + c?w = 0. Based on part a), we need to assume
that ¢ # 0. In this case, we recall that w(t) = a; cos(ct) + ag sin(ct). Since w(0) = a1 = 0, it follows
that w(t) = agsin(ct). We then obtain that w(27) = agsin(27c). Since we want az # 0 (since
otherwise, w is identically zero), it follows that we need to have sin(2w¢) = 0, and hence 27¢ = k7
for some k € Z. Consequently, ¢ = % for some k € Z\ {0}. O

Exercise 5. Suppose that w : [0,+00) — R solves the ODE:
(1) aw” +bw' +cw =0
for some constants a, b, c. Furthermore, we assume that b > 0.

a) Let us define the Energy to be:

E(t) == =[a(w'(t)* + c(w(t))?].

Without solving the ODE (1), show that E'(t) < 0.

b) Under the additional assumption that a > 0 and ¢ > 0, show that w(0) = 0 and w’(0) = 0 implies
that w(t) =0 for all t > 0.

¢) Assume again that a > 0 and ¢ > 0. Show that if w1 and we solve the ODE (1) and if w1(0) =

DN | =
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wz(0), w} (0) = w5(0), then one can deduce that wy(t) = wa(t) for allt > 0. In this way, we obtain
uniqueness of solutions to (1).

Solution:

a) We use the product rule to calculate: E’(t) = aw'w” + cww’. We can now use the ODE to
deduce that w” = —bw’ — cw. Hence:

E'(t) = w'(=bw' — cw) + cww’ = —b(w')* <0
since b > 0. In other words, E(t) is a decreasing function of ¢ on [0, +00).
b) By assumption E(0) = 1[a(w'(0))? + c¢(w(0))?] = 0. Since a,c > 0, it follows that E(t) is
non-negative. Finally, from part a), it follows that E(t) is a decreasing function on [0, +00), hence

E(t) is identically zero on [0, +00). In particular, since both a and ¢ are positive, it follows that
w(t) =0 for all t > 0.

¢) If wy and wsy solve the ODE, then so does w := w; — wy. The function w then satisfies the
conditions of part b) and the claim follows. O



