MATH 425, HOMEWORK 8

Each problem is worth 10 points.

Exercise 1. (Green’s functions in two dimensions)

Let Q C R? be a bounded domain. Suppose that u : @ — R is a harmonic function which ez-
tends continuously to 2 = QU 0.

a) Prove that, for all zy € Q:

1 0 ou
u(zo) = o /89 [u(m) . %logkc — xg| — 6n(m) log |x — zo]| ds.

Here, ds denotes the arclength element on 02 (recall that each connected component of 082 is a
smooth curve).

b) Formulate a definition for the Green’s function for the Laplace equation on the two-dimensional
domain  as in part a).

¢) Show that, for fixred xo € 2, and for the right definition of the Green’s function G(x,xq), it
is true that:

u(xo) = /ag u(z) - W s

for all harmonic functions w as in part a).

Solution:

a) We can apply translation by z¢ and see that it suffices to consider only the special case when
Q contains the origin and zg = 0.

Let us first show that, on R? \ {0}, one has:

Alog|z| = 0.
We write log |z| as log \/2% + 3.
Hence, by the Chain Rule:
(105 ) s s o
o Vai+ a3 2y/z?+ a3 ot + 3

1 222

of+ oy (21 +23)%

(1Og |x‘)$1$1 =

By symmetry:
1 273
log |z = — 2 .
(log @)y, 9:% T :c% (x% T x%)g
Summing the previous two identities, we obtain:
Alog |z| = 0.
Alternatively, we can use the formula for Laplace’s operator in polar coordinates:

92 190 162

A= —+-——+—=—=
or? + r Or + 72 002
in order to deduce that:
2 10 1 1
Alogr:(ﬁ—i-;E)logr:—ﬁ—i—ﬁ:O.
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Let us now suppose that € > 0 is given and we consider the domain Q. := Q\ B(0,¢). We can apply
Green’s second identity to deduce that:

/m [u(x) : a%mg |z| — g—Z(x) log |1:|} ds = / [u(x) - Alog |z] — log |z] ~Au(a:)} dz = 0.

€

‘We note that:
00N = 00U IB(0,¢€).

Hence, it follows that:

0 ou 0 Ou
/aQ [u(m) " log x| — a—n(x) -log |33|} ds = _/83(0,5) [u(x) "B log || — %(m) -log \xﬂ ds

We need to show that the right-hand side converges to 271 (0) as e — 0. On 9B(0, €), we know that

% = —%. Hence, the first term equals:

1
7/ u(zx)ds
€ JoB(0,¢)

Since u is continuous, this quantity converges to 2wu(0) as € — 0. The second term equals:

0
log e/ o ds.
8B(0,¢) on

We can find M > 0, independent of € such that |g—fL| < M. Hence, we obtain:
0
‘1oge/ —uds’§27rMoe«|loge|.
9B(0,e) On
In order to prove the claim, we need to show that:

lim (e -log e) =0.
e—0

We note that this is not immediately obvious since, as € — 0, the quantity loge — —oo. Hence,

the goal is to show that e goes to zero faster than loge goes to —oo. We can look at an example
first to see why this should be true. Namely, if we take €, = %, then ¢, — 0 as n — oo and
log e, = —nlog2. Hence:
nlog?2
€, - loge, = — on —0
as n — o0o. In order to treat the general case, we can use the L’Hopital rule:

1 1 !
lim <z~logx): lim —2% _ (log z) =

7— = lim :
x—0+ z—0+ = x—0+ (l)
z x
1
= lim %5 = lim (—2) =0.
z—0+ == z—0+
Alternatively, we can look at the function f(z) = —z -logz. The function f is non-negative for

x € (0,1]. By the product rule:

f'(z)=—-1—1logz >0
for all z € (0,d) when 6 > 0 is sufficiently small. Hence, f is monotonically increasing on (0, 4).
From the earlier calculations, we know that f(5+) — 0 as n — oo, it follows that lim, o4 f(z) = 0.
The claim now follows.

b) We can now define the Green’s function for a two-dimensional domain  and zy € Q to be
a function G(-,z9) : 2\ {0} — R satisfying the following properties:
i) G(x,zo) is twice continuously differentiable on Q \ {z¢}. Moreover,
A,G(z,20) =0 o0n Q\ {x0}.
ii) G(x,x0) for all z € 0Q.
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iii) The function G(z,z¢) — 5= log |z — x| is finite at zy and it is harmonic on all of Q.

(The choice of the term — - log |z — | will become clear in part c)).

¢) Let us fix z¢ € Q. Suppose that G(x,z) is as in part b). We let
1
H(z,x0) = G(z,x0) — o log |z — xo].
Then AH =0 on 2. We recall that Au = 0 on €. Hence, we obtain, by Green’s second identity, :

0= /BQ (u(x)% - g—ZH(m,xo)) ds.

We recall from part a) that:

1 0 Oou
u(xo) = o /BQ [u(m) . %logkn — xg| — %(x) -log |z — m0|] ds.

We add the previous two identities to deduce that:
0G(x,x ou
u(zg) = /69 [u(m) . % . %(x) . G(m,xo)} ds.
Since G(z,x¢) = 0 for z € 99, we obtain that:
B OG(x, x0)
u(zo) = /asz u(x) - B — ds. O

Exercise 2. (An averaging property for smooth functions)
Suppose that ¢ : R? — R is a smooth function which equals zero outside of some ball centered at the
origin.

a) Prove that:
o0 =4 [ - Aola) de
R3

4w x|
b) Why is identity in part a) immediate if the function ¢ is assumed to be harmonic?

Solution:

a) Let us assume that ¢ = 0 outside of B(0, R) C R?® and let € > 0 be given. We let:
Q. :=B(0,2R) \ B(0,¢).

A(ﬁ) —0.

We now apply Green’s second identity, noting that ¢ and ﬁ are both smooth on 2. in order to
deduce that:

| [ ae@ -a(g) o) a= [ [ 52- 2() -ew)] as)

We note that 99, consists of two parts: dB(0,¢) and dB(0,2R). Since, by assumption, ¢ vanishes
near 0B(0,2R), it follows that the contribution to the right-hand side from the outer boundary

0B(0,2R) equals to zero. Moreover, we know that A(El‘) =0 on 2. Hence, it follows that:

[ s [, [ ) e

€

We note that A¢ = 0 for |x| > 2R and we deduce that:

L 99 09 /1
/|f|>6 ﬁ Aotr)de= /aBm,e) [m on 87(@) 'd)(x)} dS(z).

Let us recall that, on R, one has:




4 MATH 425, HOMEWORK 8

We now let € — 0. Arguing analogously as in class, we note that the the right-hand side converges
to —4m¢$(0). Hence:
/ €. A¢p(x) dr = —4mwp(0).
R® |2]
The claim now follows.
Remark: We can interpret this calculation as giving us a rigorous justification of the formula

that, on R3, one has:

1
A (7 = —47d
) = i
where §g is the Dirac delta function. We would formally define A (i) to be the object which, when

[]
integrated against ¢ over R? satisfies the following:

/RSA(|910|) cp(x)de = /}R3 %'Aqﬁ(m)dx,

(We are formally integrating by parts twice in the x variable.) From the earlier calculations, we
know that this expression equals:

_4m(0) = /R (- m0o()) - o) d

/R3 A(é) () de = /RB ( - 471-50(35)) - p(x) da.

This holds for all functions ¢ which equal zero outside of some ball centered at the origin. Hence,
we formally obtain:

Hence:

A(i) — _4nd,.

||
b) If ¢ is assumed to be harmonic, then the integral on the right-hand side vanishes. Hence, we
need to show that ¢(0) = 0.
Solution 1:
We can use the mean value property. Namely, we know that ¢(0) equals the average of the function
¢ on 0B(0,2R). However, the function ¢ vanishes on 0B(0,2R), so ¢(0) = 0.
Solution 2:
We note that ¢ is a smooth function which vanishes outside of B(0, R). It follows that ¢ is bounded.
By Liouville’s theorem, it follows that ¢ is constant. Since ¢ is equal to zero outside of B(0, R), it
follows that ¢ is equal to zero on all of R3. In particular ¢(0) = 0. .

Exercise 3. (Uniqueness of Green’s functions)

Suppose that Q C R? is a bounded domain. Suppose that, for given xg € Q, the functions G*(x, zq)
and G*(z, ), defined for x € Q\{xo}, satisfy the conditions of the Green’s function stated in class.

Prove that:
G (x,20) = G*(x, 20)
for all x € Q\ {zo}. In other words, the Green’s function is uniquely defined.

Solution:

It is not possible to directly apply the uniqueness result for the Laplace’s equation to the func-
tions G1(z,z¢) and G?(z,x¢) since they are not harmonic on all of Q. We can, however, modify
this approach to prove the claim. Let us consider the functions:

1

1 =1 - -
u (x) := G (z,20) + e p—
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and
1

2 — (2 S
u”(x) := G*(x,x0) + prp—

By construction, both u' and u? are harmonic on €.
Moreover, for x € 990, we know that:
G (w,x0) = G*(x,20) = 0

and hence: )

ul(z) = u?(z) = prp—

We can now apply the uniqueness result for Laplace’s equation to the functions u! and u? in order
to deduce that ' = u2. From this equality, it follows that:

G (z,20) = G?*(x, x0)
forall x € Q. O

Exercise 4. (Equipartition of energy for the wave equation) Suppose that g,h : R — R are smooth
functions which vanish outside of some interval of finite length and let u € C?*(R x [0, +00)) solve
the initial value problem for the wave equation in one dimension:

(1) Ugt — Uge = 0 on R x (0, 400)
u=g,ur =h on R x {t =0}.

Note that, in this case the constant c is assumed to equal 1.

The kinetic energy of the solution u is defined by:

+oo
k(t) := f/ u?(z,t)dx

— 00

+oo
p(t) :== %/ u?(x,t)dx.

a) Show that k(t) + p(t) is constant in time by using the formula from class:
u(z,t) = fox —t)+ gz +1).

Hence, the total energy is conserved in time. We recall that, in class, we proved this fact directly by
using the equation.

b) Moreover, show that k(t) = p(t) for sufficiently large t. In other words, the total energy gets
equally partitioned into the kinetic and potential part over a sufficiently long time.

Solution:

a) For u(z,t) = f(z —t) + g(x + t), we compute:

w(z,t) = —f'(z—t)+g'(x +1)
and

uz(z,t) = f'(x —t) + g'(x +1).
Let us denote the total energy by E(t). Then, we obtain that:

E(t)=k(t)+p(t) = ;/M (—f’(xft)Jrg’(ert))?der%/

—0o0 —0o0

+oo 2

(f’(x — )44z + t)) dz =
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+oo
— [ (- 0P et 0P a0 @) a1 g o+ ) do =

[ (=) ass [ (geo) oe

= /_;oo (f’(x))zda: + /_;OO (g’(x))Qdaz = E(0).

Hence, the energy is conserved in time.

b) We calculate as before:

+oo
b0 =5 [ (P07 + (@t 0 ~2 @ 1) (a+0)) du.

— 00
and:

“+oo
=5 [ ((Fe-0P+ @@+t + 20 @) g +) do

— 00
We note that the integrands are the same when:

flla—t)-gz+t)=0.
We recall that the functions f and g equal zero outside of the interval [—R, R] for some R > 0. In
particular ' = ¢’ = 0 outside of [—R, R].

We note that (x +t) — (x —t) = 2t. Hence, if ¢ > R, it is not possible for both x — ¢ and
x 4+t to be in [-R, R]. In particular, it follows that either f'(x —¢) = 0 or ¢'(x +¢t) = 0, and so
f(x—t)-¢g(x+1t) =0 for all x € R, whenever t > R.

Hence, we may conclude that:

for all t > R, where R is defined as above. [



