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1. Introduction

In these notes, the fundamental model we will be considering is the Nonlinear Schrödinger Equa-
tion (NLS):

(1)

{
iut + ∆u = ±|u|p−1u, onRdx × Rt
u|t=0 = Φ ∈ H1(Rd)

Here 1 < p <∞ is a real number. We assume that the equation is satisfied in the weak sense. We
are are also assuming that 1 for t ∈ R, the function u(·, t) ∈ H1(Rd), and that the mapping t 7→ u(t)
is continuous as a map from R to H1(Rd). In particular, for all t, u(t) ∈ S ′(Rd), so ∆u makes sense,
and lies in S ′(Rd). Since u ∈ L2(Rd), it follows that |u|p−1u ∈ S ′(Rd). The time derivative ut is
more subtle, and it makes sense if we recall that our equation is satisfied in the weak sense.

The equation (1) occurs naturally in geometric optics and Bose-Einstein condensates. A good
reference for the origins of the NLS is Terence Tao’s textbook [7]. Its primary importance for us
will be the fact that we can use rigorous Mathematical tools from the class to study solutions of (1).
We observe that there are two possible signs for the nonlinearity. The nonlinearity with the +-sign
is called the defocusing nonlinearity and the one with the −-sign is called the focusing nonlinearity.
In the lecture notes, we will primarily consider the focusing nonlinearity I will try to explain this
heuristic in Exercise 5.

The equation (1) has the following conserved quantities:

(2) M(u(t)) =

∫
Rd

|u(x, t)|2dx, (Mass)

(3) E(u(t)) =
1

2

∫
Rd

|∇u(x, t)|2dx± 1

p+ 1

∫
Rd

|u(x, t)|p+1dx, (Energy)

In other words, M(u(t)) = M(u(0)) and E(u(t)) = E(u(0)). See Exercise 1.
The term 1

2

∫
Rd |∇u(x, t)|2dx is called the kinetic energy, whereas the term ± 1

p+1

∫
Rd |u(x, t)|p+1dx

is called the potential energy.

Remark 1.1. We immediately observe a fundamental difference between the defocusing and focusing
nonlinearity; for the defocusing nonlinearity, the energy is always non-negative and it gives us a
uniform bound on ‖u(t)‖H1 , whereas for the focusing nonlinearity, this is no longer the case. For
the significance of solutions whose energy is negative, see Exercise 10.

Heuristically, the ∆ part of the equation gives us dispersion, i.e. it tends to make the solution
more regular. To make this heuristic precise, we observe that if v solves:

(4)

{
ivt + ∆v = 0, onRdx × Rt
u|t=0 = Ψ ∈ L1(Rd)

1We won’t go into the details of the rigorous derivation of this statement in the notes.
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then, one has:

(5) ‖v(t)‖L∞x ≤ C
1

|t| d2
‖Ψ‖L1

x

This estimate is left as Exercise 2.
On the other hand, we see from Remark 1.1 that the focusing nonlinearity can cause behavior

that can lead to potential blow-up. We will be interested in solutions to the focusing NLS in which
the dispersive Laplacian term and the focusing nonlinearity balance out. The balanced solution
should not exhibit any decay or any blow-up. These solutions are the solitons.

Definition 1.2. We say that u is a soliton solution to the focusing NLS if u is of the form:

u(x, t) = Q(x)eitτ

for some Q ∈ H1 and for some τ > 02.

We can easily check that Q then has to satisfy:

(6) ∆Q+ |Q|p−1Q− τQ = 0

We note that Q,∆Q, |Q|p−1Q ∈ S ′(Rd), so we can just view this as an equality in S ′(Rd).

The main goal of these notes is to give a variational characterization of Q as a ground state,
i.e. as an energy minimizer in a class of functions having fixed mass. In addition to this, we notice
the interesting fact that Q gives us the optimal constant in an appropriate Gagliardo-Nirenberg
Inequality. From this fact, we will note that, for certain NLS equations, the soliton solutions really
give us the threshold between globally defined solutions and blow-up solutions, thus justifying the
notion of an balanced solution introduced earlier. The variational characterization is given in Section
2. The key is to use the method of Concentration Compactness, which we explain in detail. The
Sharp Gagliardo-Nirenberg Inequality and a global existence criterion are given in Section 3. Some
tools from Littlewood-Paley Theory are introduced in Section 4. Exercises are given in Section 5.
We note that some of the exercises coming from Section 3 require use of Littlew! ood-Paley Theory.
Exercises from Sections 1 and 2 don’t require any tools from Littlewood-Paley Theory.

2. A variational problem

Let us fix p ∈ (1, 1 + 4
d ). Let λ > 0 be arbitrary. We consider the minimization of the energy

functional:

E(u) :=
1

2

∫
Rd

|∇u|2dx− 1

p+ 1

∫
Rd

|u|p+1dx

subject to the constraint ‖u‖2L2 = λ. To fix notation, let us set:

(7) Iλ := inf{E(u), u ∈ H1, ‖u‖2L2 = λ}

Let us first observe the following:

Proposition 2.1. For p ∈ (1, 1 + 4
d ), Iλ is finite. Moreover, Iλ < 0.

We leave the proof of this Proposition as Exercise 3.
Throughout the notes, we will frequently refer to the following result, which Michael proved in

the last lecture. (An alternative derivation can be found in Exercise 12)

2For physical reasons which won’t discuss further, we only consider positive τ . The main reason is that, for positive

τ , after applying an appropriate symmetry of the NLS, we can obtain traveling wave solutions which have positive
speed. For an alternative justification, see Section 3.
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Theorem 2.2. (Gagliardo-Nirenberg Inequality) Let 2 ≤ q ≤ ∞, and let s > 0 be such that:

1

q
=

1

2
− θs

d

for some θ ∈ [0, 1). Then, for any u ∈ Hs(Rd), we have:

‖u‖Lq(Rd) ≤ C(d, q, s)‖u‖1−θ
L2(Rd)

‖u‖θ
Ḣs(Rd)

Here, the space Ḣs is defined by:

‖f‖Ḣs :=
( ∫

Rd

|ξ|2s|f̂(ξ)|2dξ
) 1

2

where (|∇|sf )̂ (ξ) := |ξ|sf̂(ξ).
Formally, we can use Lagrange multipliers [2] to find that the minimizer f ∈ H1(Rd) has to

satisfy, for some κ ∈ R:

(8) ∆f + |f |p−1f = κf

The details of this calculation are the content of Exercise 4. (If there is time, we will present this in
class). One can show that, for the wanted minimizer, κ > 0. The details are outlined in Exercise 5.

The main result of this section is:

Theorem 2.3. Let p ∈ (1, 1 + 4
d ), and let λ > 0. Then, for any minimizing sequence (un), there

exists a sequence (yn) in Rd such that the sequence (un(·+ yn)) is relatively compact in H1, and its
limit point solves the minimization problem (7).

The first key ingredient of the proof of Theorem 2.3 is the following useful result, whose proof is
adapted from the exposition in [9].

Proposition 2.4. (Concentration Compactness) Let (un) be a sequence bounded in H1(Rd) with
‖un‖2L2 = λ > 0. Then, there exists a subsequence (unk

) satisfying one of the following three

properties 3:

i) (Compactness) There exists a sequence (yk) in Rd with the property that for all ε > 0, there
exists R > 0 such that, for all k, one has:∫

yk+BR(0)

|unk
|2dx ≥ λ− ε

ii) (Vanishing) For all R > 0, one has:

lim
k→∞

sup
y∈Rd

∫
y+BR(0)

|unk
|2dx = 0

iii) (Dichotomy) There exists α ∈ (0, λ) and sequences (u1k), (u2k), bounded in H1(Rd), such that:

• ‖unk
− (u1k + u2k)‖Lq → 0 as k →∞ whenever 2 ≤ q < 2d

d−2 if d ≥ 3, and 2 ≤ q <∞ if
d = 1, 2.

• limk→∞
∫
Rd |u1k|2dx− α = limk→∞

∫
Rd |u2k|2 − (λ− α) = 0

• dist(supp u1k, supp u2k)→∞ as k →∞
• lim infk→∞

∫
Rd

(
|∇unk

|2 − |∇u1k|2 − |∇u2k|2
)
dx ≥ 0.

Remark 2.5. We view Concentration Compactness as a way of compensating for the failure of
precompactness of bounded sets in infinite-dimensional Banach spaces. In essence, we are examining
what is the difference between weak and strong convergence in H1(Rd).

Remark 2.6.

3In practice, we will be interested in the cases when these regimes are mutually exclusive.
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The case of Dichotomy says that we can split the subsequence in two subsequences which are sup-
ported far apart essentially without loss of energy. This observation will become more clear from
the proof of Theorem 2.3. For details, see (34).

Remark 2.7. The Concentration Compactness technique is due to Pierre-Louis Lions [6].

Let us now prove Proposition 2.4.

Proof. Step 1: Definition of the concentration functional
Given n ∈ N, and t ≥ 0, we define the concentration functional Fn(t) by:

(9) Fn(t) := sup
y∈Rd

∫
y+Bt(0)

|un|2dx

One can show that, in fact:

(10) Fn(t) := max
y∈Rd

∫
y+Bt(0)

|un|2dx

We note that (Fn(t)) is a sequence of non-decreasing, non-negative uniformly bounded functions on
[0,∞). Furthermore, one can show that, it has a subsequence (Fnk

(t)) which converges pointwise.
For this subsequence, we define for all t ≥ 0:

(11) F (t) := lim
k→∞

Fnk
(t)

We leave the last two statements as Exercise 6. The function F that we obtain is non-negative
and non-decreasing.

Let α := limt→∞ F (t). By construction, one then has α ∈ [0, λ].

Step 2: Determination of the regime
We will now see that the regimes i), ii), and iii) correspond to the cases when α = λ, α = 0, and
0 < α < λ, respectively. We examine each case separately.

Case 1: α = λ. In this case, limt→∞ F (t) = λ. Let us first note that we can find R0 > 0 such
that, for all k ∈ N, one has:

(12) Fnk
(R0) >

λ

2

By (10), we can find a sequence (yk) in Rd such that:

(13) Fnk
(R0) =

∫
yk+BR0

(0)

|unk
|2dx

We will show that this sequence (yk) satisfies the condition of Compactness.
On the other hand, we can also find εk ↘ 0, Rk ↗ ∞, and a strictly increasing sequence (mk)

such that, for all k ∈ N:

(14) Fnm
(Rk) > λ− εk, for m ≥ mk.

Finally, let ε > 0 be given. We find k0 ∈ N such that εk0 < ε. In particular, it follows that, for all
k ≥ k0:

(15) Fnk
(Rk0) > λ− ε, for k ≥ mk0 .

We now fix k ≥ k0. By (10), we can find ỹk ∈ Rd such that:

(16)

∫
ỹk+BRk0

|unk
|2dx = Fnk

(Rk0) > λ− ε

Combining (13), (16), and the fact that
∫
Rd |unk

|2dx = λ, it follows that ỹk+BRk(0) and yk+BR0
(0)

intersect (assuming that ε < λ
2 . Hence, we can take

(17) R := R0 + 2Rk0
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Hence, we will then have:

(18)

∫
yk+BR(0)

|unk
|2dx > λ− ε

We then take R possibly larger for (18) to be satisfied when k < k0. We can do this since∫
Rd |unk

|2dx = λ, and there are finitely many k < k0. It follows that Compactness indeed oc-
curs.

Case 2: α = 0. In this case, we know that F identically vanishes. Hence, given R, ε > 0, we can
find k sufficiently large such that:

Fnk
(R) ≤ ε

By construction, it follows that for such k:

sup
y∈Rd

∫
y+BR(0)

|unk
|2dx ≤ ε.

So, Vanishing occurs in this case.
The third case is slightly more involved.

Case 3: α ∈ (0, λ).
Let us note that from the convergence properties of Fnk

and from the definition of α, it follows
that there exists Rk → +∞, and εk ↘ 0, such that:

(19) |Fnk
(Rnk

)− α| ≤ εk, |Fnk
(4Rnk

)− α| ≤ εk
We now choose θ, φ ∈ C∞c (Rd) with 0 ≤ θ, φ ≤ 1 and:

(20)

{
θ(x) = 1, φ(x) = 0; |x| ≤ 1

θ(x) = 0, φ(x) = 1; |x| ≥ 2

We define the rescaling : θµ(·) := θ( ·µ ), φµ(·) := φ( ·µ ). Let us recall that by assumption, we have:

M := supn ‖un‖H1 <∞. We now observe that for all y ∈ Rd:∣∣∣ ∫
Rd

[
|∇(θR(x+ y)unk

(x))|2 − θ2R(x+ y)|∇unk
(x)|2

]
dx
∣∣∣ =

=
∣∣∣ ∫

Rd

[
|∇(θR(x+ y))|2|unk

(x)|2 + 2ReθR(x+ y)unk
(x)∇(θ(x+ y))∇unk

(x)
]
dx
∣∣∣

≤ C 1

R2
‖unk

‖2L2 + C
1

R
‖unk

‖L2‖∇unk
‖L2

(21) ≤ C

R

An analogous argument gives us:

(22)
∣∣∣ ∫

Rd

[
|∇(φR(x+ y)unk

(x))|2 − φ2R(x+ y)|∇unk
(x)|2

]
dx
∣∣∣ ≤ C

R
.

We take yk to be such that:

(23) Fnk
(Rk) :=

∫
yk+BRk

(0)

|unk
|2dx.

Let us now define:

(24) u1k := θRk
(·+ yk)unk

, u2k := φ4Rk
(·+ yk)unk

.
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We note that: ∫
Rd

|unk
− (u1k + u2k)|2dx ≤

∫
x∈Rd;|x−yk|∈[Rk,4Rk]

|unk
|2dx = 4

(25) =

∫
yk+B4Rk

(0)

|unk
|2dx− Fnk

(Rk) ≤ Fnk
(4Rk)− Fnk

(Rk)→ 0, as k →∞.

We observe that, by Sobolev Embedding, for q as in the assumptions:

(26) ‖f‖Lq ≤ C‖f‖1+
d
q−

d
2

L2 ‖∇f‖
d
2−

d
q

L2

By using the fact that ‖unk
− (u1k + u2k)‖H1 is uniformly bounded, (25) and (26), it follows that:

(27) ‖unk
− (u1k + u2k)‖Lq → 0, as k →∞.

By construction, we have:

(28) dist(supp u1k, supp u
2
k) ∼ Rk →∞, as k →∞

Let us note that:

(29)

{∫
Rd |u1k|2dx− α ≥

∫
yk+BRk

(0)
|unk
|2dx− α = Fnk

(Rk)− α→ 0, as k →∞,∫
Rd |u1k|2dx− α ≤

∫
yk+B4Rk

(0)
|unk
|2dx− α ≤ Fnk

(4Rk)− α→ 0, as k →∞.

Consequently:

(30) lim
k→∞

∫
Rd

|u1k|2dx = α

Since ‖unk
− (u1k + u2k)‖L2 → 0 as k →∞, it follows that ‖u1k + u2k‖2L2 → λ as k →∞. By using the

support properties of u1k, u
2
k (28), it follows that:

(31) lim
k→∞

∫
Rd

|u2k|2dx = λ− α

Since |θ|, |φ| ≤ 1, it follows that:∫
Rd

|∇unk
|2dx ≥

∫
Rd

(
θRk

(x+ yk))2|∇unk
(x)|2 + φ4Rk

(x+ yk))2|∇unk
(x)|2

)
dx

We now use (21) and (22) to deduce that this quantity is:

≥
∫
Rd

(
|∇u1k(x)|2 + |∇u2k(x)|2

)
dx+O(

1

Rk
)

Finally, we take lim infk→∞ to deduce that:

(32) lim inf
k→∞

∫
Rd

(
|∇unk

|2 − |∇u1k|2 − |∇u2k|2
)
dx ≥ 0

¿From (27), (28), (30), (31), and (32), it follows that Dichotomy holds in this case. �

The second key ingredient to prove Theorem 2.3 is the following:

Proposition 2.8. (Subadditivity) For all α ∈ (0, λ), one has:

Iλ < Iα + Iλ−α.

4We note that we are using the precise choice of yk here!
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Proof. Suppose, without loss of generality that α ∈ (0, λ2 ] (otherwise, we just replace α by λ − α.)

For θ ∈ (1, λα ], one has:

Iθα = inf
‖u‖2

L2=θα
{1

2

∫
Rd

|∇u|2dx− 1

p+ 1

∫
Rd

|u|p+1dx} =

= θ inf
‖u‖2

L2=α
{1

2

∫
Rd

|∇u|2dx− θ
p−1
2

p+ 1

∫
Rd

|u|p+1dx}

(33) < θ inf
‖u‖2

L2=α
{1

2

∫
Rd

|∇u|2dx− 1

p+ 1

∫
Rd

|u|p+1dx} = θIα

Hence, we can take θ = λ
α ,and θ = λ−α

α and deduce that:

Iλ <
λ

α
Iα = Iα +

λ− α
α

Iα ≤ Iα + Iλ−α

�

We now turn to the proof of Theorem 2.3.

Proof. (of Theorem 2.3)
Suppose that (un) is a minimizing sequence for the problem (7).
Step 1: Verify the conditions of Proposition 2.4.
By construction, ‖un‖2L2 = λ, for all n. One can also check that ‖∇un‖L2 ≤ C for all n. This is

the content of Exercise 7.
Step 2: We show that Compactness occurs.
By Proposition 2.4, it suffices to rule out Dichotomy and Vanishing.

• Let us first observe that Dichotomy can’t occur. In order to do this, we argue by contradic-
tion. Let us suppose that (u1k) and (u2k) are as in the assumptions of Dichotomy. We can
find sequences of positive real numbers (αk) and (βk) such that, for all k, one has:

‖αku1k‖2L2 = α, ‖βku2k‖2L2 = λ− α.
One then has:

lim
k
αk = lim

k
βk = 1

By construction, it follows that 5:

(34) E(unk
) ≥ E(u1k) + E(u2k) + γk ≥ E(αku

1
k) + E(βku

2
k) + γ′k

where γk, γ
′
k → 0, as k → ∞. One the other hand, we know that E(unk

) → Iλ as k → ∞,
and:

E(αku
1
k) ≥ Iα, E(βku

2
k) ≥ Iλ−α.

We then take lim infk→∞ in (34) to obtain:

Iλ ≥ Iα + Iλ−α.

This contradicts Proposition 2.8. Hence, Dichotomy can’t occur.
• We now show that Vanishing can’t occur. The key is to observe that Vanishing implies

(35) ‖unk
‖p+1
Lp+1(Rd)

→ 0, as k →∞.

This gives a contradiction, since from (35), we could deduce that lim infk→∞E(unk
) ≥ 0,

and hence Iλ ≥ 0, which contradicts the fact that Iλ < 0.
We now assume that we are in the Vanishing regime, and we derive (35). Let R > 0 be

given. Then, for all y ∈ Rd, one has 6:

5In this step, we see how the Dichotomy regime corresponds to splitting of the energy essentially without any loss.
6Here, we are using Gagliardo Nirenberg Inequality on the ball.
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(36) ‖unk
‖p+1
Lp+1(y+BR(0)) ≤ C(R)

(
‖unk

‖(p+1)+d− d(p+1)
2

L2(y+B2R(0)) ‖∇unk
‖

d(p+1)
2 −d

L2(y+B2R(0)) + ‖unk
‖p+1
L2(y+B2R(0))

)
Now, we find a sequence (zm) in Rd such that (zm + BR(0)) covers Rd and such that each
point of Rd lies in at most l = l(d) of the balls zm +B2R(0). It follows that:

‖unk
‖p+1
Lp+1(Rd)

≤
∑
m

‖unk
‖p+1
Lp+1(zm+BR(0))

≤ C(R)
∑
m

(
‖unk

‖(p+1)+d− d(p+1)
2

L2(zm+B2R(0)) ‖∇unk
‖

d(p+1)
2 −d

L2(zm+B2R(0)) + ‖unk
‖p+1
L2(zm+B2R(0))

)
Let us now take:

εk := sup
y∈Rd

∫
y+B2R(0)

|unk
|2dx

Then εk → 0 as k →∞ by Vanishing. It follows that:

‖unk
‖p+1
Lp+1(Rd)

≤ C(R)ε
p−1
2

k

∑
m

(
‖unk

‖2+d−
d(p+1)

2

L2(zm+B2R(0))‖∇unk
‖

d(p+1)
2 −d

L2(zm+B2R(0)) + ‖unk
‖2L2(zm+B2R(0)

)
which is:

≤ C(R)ε
p−1
2

k

∑
m

(
‖unk

‖2L2(zm+B2R(0)) + ‖∇unk
‖2L2(zm+B2R(0))

)
= C(R)lε

p−1
2

k ‖unk
‖2H1(Rd) → 0, as k →∞.

We note that here, we are using the fact that ‖unk
‖H1(Rd) is uniformly bounded from Step

1.

Step 3: Conclusion of the proof. It follows from the previous arguments that Compactness
occurs. In other words, there exist yk ∈ Rd such that, for all ε > 0, there exists R > 0 such that:

(37)

∫
yk+BR(0)

|unk
|2dx ≥ λ− ε

Consequently:

(38)

∫
|x−yk|>R

|unk
|2dx ≤ ε

Let us consider vk := unk
(· + yk). Then, (vk) is bounded in H1(Rd), and hence by the Banach-

Alaoglu Theorem, it has a weakly convergent subsequence in H1(Rd), which we again label by (vk).
We recall that Rellich’s Compactness Theorem gives us that the inclusion

H1(BR(0)) ↪→ L2(BR(0))

is compact. We then use (38) with εn = 1
n , the compactness of the above inclusion, and an

appropriate diagonal argument to deduce that (vk) has a subsequence, which we again call (vk)

such that vk
L2

−→ v. Since (vk) is also weakly convergent in H1(Rd), we deduce that vk
H1(Rd)
⇀ v. In

particular, ‖vn − v‖H1(Rd) is uniformly bounded. We now use (26) to deduce that

(39) vk
Lp+1(Rd)−→ v.

On the other hand, from the weak convergence in H1(Rd), it follows that:

(40)

∫
Rd

|∇v|2dx ≤ lim inf
k

∫
Rd

|∇vk|2dx

Combining (39) and (40), it follows that:

E(v) ≤ lim inf
k
E(vk)

Consequently, v is a minimizer and E(v) = Iλ.
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It remains to check that vk
H1

−→ v. ¿From the fact that E(vk)→ E(v), it follows that:
∫
|∇vk|2 →∫

|∇v|2dx. Consequently, we obtain ‖vk‖H1(Rd) → ‖v‖H1(Rd). Since we also know that vk
H1(Rd)
⇀ v,

it follows from a problem on Homework 5 that vk
H1(Rd)−→ v. �

3. The sharp constant in the Gagliardo-Nirenberg inequality and a global
existence criterion

There is an alternative approach to studying the function Q 7. We consider p ∈ (1, 1+ 4
d−2 ) when

d ≥ 3 and 1 < p <∞ otherwise. For simplicity, let us just consider the case when d ≥ 3. The idea,
initiated by Michael Weinstein in the 1980s [8] is to study the functional:

(41) W (u) :=
(
∫
Rd |u|2)1−

(d−2)(p−1)
4 (

∫
Rd |∇u|2)

d(p−1)
4∫

Rd |u|p+1

By using the Gagliardo-Nirenberg Inequality, we observe that W is bounded from below (this is,
in fact the motivation for the precise choice of W ). We are interested in minimizing W , which is
equivalent to finding the optimal constant in the Gagliardo-Nirenberg Inequality.

Proposition 3.1. a) The functional W is invariant under dilations u 7→ λ1u and dilations u 7→
u(λ2·), for λ1, λ2 > 0.
b) The quantity d

dt |t=0W (f + tφ) exists for all f ∈ H1(Rd), φ ∈ C∞c (Rd).
c) Suppose that Q∗ ∈ H1(Rd) is such that ‖Q∗‖L2(Rd) = ‖∇Q∗‖L2(Rd) = 1, and that Q∗ is a critical

point of W . Let α := ‖Q∗‖p+1
Lp+1(Rd)

. Then, Q∗ satisfies:

d(p− 1)

4
∆Q∗ − (1− (d− 2)(p− 1)

4
)Q∗ + α

p+ 1

2
|Q∗|p−1Q∗ = 0.

The proof of Proposition 3.1 is left as Exercise 14.

Remark 3.2. Let us give a vague heuristic explanation why this is not so unexpected: It might
seem surprising at first that the ground state for the NLS is linked to the sharp constant in the
Gagliardo-Nirenberg Inequailty! One way to explain why one would expect this type of result would
be the fact that solitons (which are linked to the ground state) correspond to the situation when the
kinetic and potential energy balance out. This is linked to the control of the Lp+1(Rd) norm in terms

of the Ḣ1 norm of a function while keeping the L2(Rd) norm fixed. The latter problem has a natural
connection to the Gagliardo-Nirenberg Inequality.

Proposition 3.3. We can find Q∗, as before, which is a minimizer for the functional W .

Remark 3.4. By replacing Q∗ with |Q∗|, we can assume WLOG that Q∗ ≥ 0. Here, we are using
the fact that taking absolute values doesn’t change the Lp(Rd) norm of a function and that it doesn’t

increase the Ḣ1(Rd) norm. The latter fact was shown on the previous homework.

The proof of Proposition 3.3 is left as a combination of Exercises 15 and 16. The approach
outlined in these exercises was based on Appendix B of [7].

Throughout the continuation of the discussion, we fix p = 1 + 4
d . This is the endpoint which

was not covered in approach we considered earlier. The corresponding nonlinearity is called mass
critical. For the significance of this exact nonlinearity, see Exercise 17. In this case, we will be able
to prove a precise coercivity result. We take Q∗ to be the minimizer from Proposition 3.3, and we
let α := ‖Q∗‖p+1

Lp+1(Rd)
. By construction, one then has that W (u) ≤ α for all u ∈ H1(Rd). We recall

the definition of Energy from (3).
It follows that:

7It is not immediately obvious that the two functions are indeed the same, up to symmetries. We will not mention
details of any of the uniqueness results. The interested reader can consult [5, 3].
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E(u(t)) ≥ 1

2
(1− 2α

p+ 1
)‖u(t)‖

4
d

L2‖∇u(t)‖2L2

which by conservation of Mass (2) equals:

(42)
1

2
(1− 2α

p+ 1
‖Φ‖

4
d

L2)‖∇u(t)‖2L2

Let us now take Q := ( 2
α(p+1) )

1
p−1Q∗. Then, from Proposition 3.1, Q solves the equation:

∆Q− κQ+ |Q|p−1Q = 0

Hence, we can associate to Q a soliton solution u(x, t) = Q(x)eitκ.
¿From (42), we can deduce that:

(43) E(u(t)) ≥ 1

2

(
1−
‖Φ‖

4
d

L2

‖Q‖
4
d

L2

)
‖∇u(t)‖2L2

Our work then implies the following 8:

Proposition 3.5. If ‖Φ‖L2(Rd) < ‖Q‖L2(Rd), one has that E(u(t)) ≥ 0 for all times t. In particular,
one obtains that ‖∇u(t)‖L2(Rd) is uniformly bounded, and hence ‖u(t)‖H1(Rd) is uniformly bounded.

Remark 3.6. ¿From Proposition 3.5, one can obtain that there exists a global solution in H1(Rd)
if the initial data satisfies the appropriate smallness assumption ‖Φ‖L2(Rd) < ‖Q‖L2(Rd).

Remark 3.7. Combining the previous result and Exercise 9, it makes sense to call ‖Q‖L2(Rd) the
“critical mass”.

4. A brief excursion into Littlewood-Paley Theory

We present a quick overview of Littlewood-Paley Theory. The exposition mostly follows Appendix
A of [7]. A more detailed discussion can be found in Professor Schlag’s lecture notes, which are
posted on the course webpage.

Definition 4.1. (Littlewood-Paley Projection) Let N ∈ 2Z be a dyadic integer, i.e. N = 2j for
some j ∈ Z Let φ ∈ C∞c (Rd) be a radial function such that φ = 1 for |x| ≤ 1, and φ = 0 for |x| ≥ 2.
We define the projection operator PN on L2(Rd) by:

(PNf )̂ (ξ) =
(
φ(

ξ

N
)− φ(

ξ

2N
)
)
f̂(ξ).

Remark 4.2. We note that PNf has frequency support in the dyadic annulus {ξ ∈ Rd; |ξ| ∼ 2j}.

Remark 4.3. By construction, we have:

(44) f =
∑
N∈2Z

PNf.

Given N ∈ 2Z, we also define the quantities:

(45) P≤Nf :=
∑

M∈2Z;M≤N

PMf, PNf :=
∑

M∈2Z;M>N

PMf.

The Main Theorem about Littlewood-Paley Projections is the following:

8One might be a bit suspicious here, since we can take a ground state Q and rescale it as in Exercise 17, so the

quantity ‖Q‖L2 might not be uniquely defined. This doesn’t happen though, since by Exercise 17, the L2 norm is

invariant under the natural scaling for the equation when p = 1 + 4
d

.
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Theorem 4.4. (Littlewood-Paley Inequality) Suppose that 1 < p <∞. Then, one has:

‖f‖Lp(Rd) ∼ ‖
( ∑
N∈2Z

|PNf |2
) 1

2 ‖Lp(Rd)

We will not present the proof here. One way to prove Theorem 4.4 is to use the more gen-
eral Calderon-Zygmund Theory [1]. A probabilistic approach based on Khintchine’s Inequality is
explained in Professor Schlag’s notes.

Remark 4.5. The case p = 2 follows from Plancherel’s Theorem. It is quite an interesting fact
that we can obtain an estimate in other Lp spaces.

Remark 4.6. By using properties of the Fourier Transform, we can show that:

(46) PNf = ΦN ∗ f,where ΦN (x) =
1

Nd
Φ
( x
N

)
, for some fixed Φ ∈ S(Rd).

By using Young’s inequality and the fact that ‖ΦN‖L1 is independent of N , it follows that for all
1 ≤ q ≤ ∞:

‖PNf‖Lq(Rd) ≤ C‖f‖Lq(Rd)

for come C > 0 independent of N . This is a special instance of Bernstein’s Inequality. For the
general inequality, see Exercise 11.

5. Exercises

For the Exercises, you are allowed to refer to previous results without proof.

Exercise 1. (Conservation laws for NLS)(1 point) Formally differentiate under the integral sign to
check that the mass, and energy, defined in (2), and (3) are conserved in time. (Differentiate under
the integral sign and integrate by parts fearlessly!)

Exercise 2. (Dispersive estimates for Linear Schrödinger equation)(1 point) Prove estimate (5).
(Hint: Use the Fourier Transform and Young’s Inequality.) Explain why such an estimate couldn’t
hold if we were to consider the NLS on the d-dimensional torus Td. (From this fact, we can see that
the NLS is more difficult to study on periodic domains. Heuristically, there is not enough space for
the solution to disperse).

Exercise 3. (Finiteness of Iλ)(2 points)
a) Prove Proposition 2.1 (Hint: Use Sobolev Embedding. In order to show that Iλ < 0, take u to be
of the form g( xσ ), where g is an appropriate Gaussian.)

b) Prove that Iλ = −∞ if p > 1 + 4
d .

Exercise 4. (Equation for Q)(1 point) Formally use Lagrange multipliers to prove (8).

Exercise 5. (Pohozaev Identities)(2 points) Suppose that Q ∈ H1(Rd) solves:

∆Q+ b|Q|p−1Q = aQ

for some a, b ∈ R. Show that the following identities hold:
a)
∫
Rd |∇Q|2dx+ a

∫
Rd |Q|2dx = b

∫
Rd |Q|p+1dx

b) (d−2)
∫
Rd |∇Q|2dx+da

∫
Rd |Q|2dx = 2db

p+1

∫
Rd |Q|p+1dx (Hint: multiply the equation with x ·∇Q̄).

c) Suppose that Q is the minimizer we constructed in Theorem 2.3. Show that the Lagrange multiplier
κ, which appears in the equation (8) satisfies:

κ :=
(d+ 2)− p(d− 2)

2λ(d(p−1)4 − 1)
Iλ

and hence, deduce that κ > 0.
Observe that part a) also tells us that we don’t expect to have solitons (keeping in mind our convention
on the sign of τ), unless the NLS equation is focusing.
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Exercise 6. (Properties of Fn)(2 points) Prove (10) and show that (Fn) has a subsequence which
converges pointwise. (Hint: Show that (Fn) is equicontinuous. In order to show this fact, it is good
to use the Gagliardo-Nirenberg Inequality.)

Exercise 7. (Uniform H1-boundedness of minimizing sequence)(1 point) Let (un) be a minimizing
sequence for the problem (7). Show that ‖un‖H1(Rd) is uniformly bounded.

Exercise 8. (Sobolev embedding on a ball)(1 point) Give a brief explanation why (36) holds.

Exercise 9. (An explicit blow-up solution)(2 points) a) Let us consider now the case p = 1 + 4
d .

Suppose u solves the corresponding (focusing or defocusing) NLS . We then let v be defined by:

v(x, t) :=
1

(it)
d
2

u(
1

t
,
x

t
)e

i|x|2
4t

whenever t 6= 0. v is called the Pseudoconformal Transform of u. Show that v is also a solution to
the same NLS.
b) Let us now restrict our attention to the focusing case. Consider u(t, x) = Q(x)eitτ , and apply
the Pseudoconformal Transform to obtain a solution that blows up in H1-norm as t→ 0. Construct
now a translate of the solution to obtain a solution whose H1-norm blows up as t → T0 > 0. At
what rate does this solution blow up? What is the L2 norm of the blow up solution? (This justifies
the term “critical mass” for ‖Q‖L2(Rd)).

Exercise 10. (An alternative blow-up result)(2 points) Let us consider the focusing NLS with p =
1 + 4

d , as in the previous exercise.

a) Show that d
dt

∫
Rd |x|2|u(x, t)|2dx is a positive multiple of E(u), i.e. the energy of u. (This type of

result is called a virial identity.)
b) Suppose that the initial data Φ satisfies E(Φ) < 0. Explain why

∫
Rd |x|2|u(x, t)|2dx becomes

arbitrarily close to zero in finite time.
c) Show that the following inequality holds on Rd:

‖f‖2L2(Rd) ≤ C‖|x|f‖L2(Rd)‖∇f‖L2(Rd)

d) Deduce that ‖u(t)‖H1 blows up in finite time.
This is called Glassey’s Blow-up Argument and is due to Robert Glassey [4].

Exercise 11. (Bernstein’s Inequality)(2 points) a) (1 point) Prove the following generalization of
Young’s Inequality: Suppose that 1 ≤ p, q, r ≤ ∞ are such that 1

p = 1
q + 1

r − 1. Show that:

‖f ∗ g‖Lp ≤ ‖f‖Lq‖g‖Lr

(Hint: Use the standard Young Inequality and an Interpolation argument. It is useful to recall
Schur’s Test.)
b) (Bernstein’s Inequality) (1 point for b) and c)) Suppose that 1 ≤ p ≤ q ≤ ∞. Show that:

‖PNf‖Lq(Rd) ≤ CN
d
p−

d
q ‖PNf‖Lp(Rd)

for some constant C > 0 independent of N .
c) Deduce that, if u is dyadically localized in frequency to a dyadic annulus, i.e. u = PNu for some
N ∈ 2Z, then one has the following improvement of Sobolev Embedding:

‖u‖L∞(Rd) ≤ C‖u‖H d
2 (Rd)

,

for some constant C > 0 independent of the frequency localization. (We note that the loss in
regularity in the general Sobolev Embedding comes from the sum in N .)

Exercise 12. (Frequency proof of Gagliardo-Nirenberg Inequality)(3 points) In this exercise, we
outline how one can use Littlewood-Paley projections to prove the Gagliardo-Nirenberg Inequality.
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The version of the Gagliardo-Nirenberg Inequality we want to prove is: Let 2 ≤ q ≤ ∞, and let
θ ∈ (0, 1) be such that 1

q = 1
2 −

θs
d . Then, for all u ∈ Hs(Rd), one has:

(47) ‖u‖Lq(Rd) ≤ C(d, q, s)‖u‖1−θ
L2(Rd)

‖u‖θ
Ḣs(Rd)

a) Use homogeneity and scaling to reduce to the case ‖u‖L2(Rd) = ‖u‖Ḣs(Rd) = 1.

b) Use the Littlewood-Paley Decomposition to deduce that: ‖u‖Lq(Rd) ≤
∑
N∈2Z ‖PNu‖Lq(Rd). How

can we pass from an Lq-norm to an L2-norm in each summand?
c) Consider the sum N ≥ 1 and N < 1 separately. It is useful to recall that, by the Littlewood Paley
Inequality, one has: ‖PNu‖L2(Rd) ≤ CN−s‖u‖Ḣs(Rd).

Exercise 13. (Algebra properties of Hs)(3 points) In this exercise, we study under which assump-
tions the product of two elements in Hs(Rd) lies in Hs(Rd).
We will outline the proof of the fact that for s > d

2 , Hs(Rd) is an algebra, i.e. for f, g ∈ Hs(Rd),

one obtains fg ∈ Hs(Rd).
a) Explain why it is sufficient to prove the estimate:

‖fg‖Hs(Rd) ≤ C(s, d)
(
‖f‖Hs(Rd)‖g‖L∞(Rd) + ‖f‖L∞(Rd)‖g‖Hs(Rd)

)
b) Decompose fg as P≤1(fg) +

∑
N∈2Z,N>1 PN (fg). Observe that it suffices to estimate the second

term, i.e. the high-frequency part of fg.
c) Fix N ∈ 2Z, N > 1. Write PN (fg) = PN ((P<N

8
f)g) +

∑
M∈2Z,M>N

8
PN ((PMf)g). Note that in

the first term, we know that g has to also be supported on frequencies ∼ N . For the second term,
recall that ‖PMf‖L2(Rd) ≤ C

Ms ‖PMf‖Hs(Rd). At some point, one should estimate an expression of

the form
∑
N∈2Z

(
N2s

(∑
M∈2Z,M>N

8
M−s‖PMf‖Hs‖g‖L∞

)2)
. The best way to deal with the two

sums is to use the Cauchy-Schwarz Inequality in M and then sum an appropriate geometric series.

Exercise 14. (Properties of the functional W )(1 point) Prove Proposition 3.1.

Exercise 15. (Spatial localization of minimizers (Lemma B.4 in [7])(3 points) For any R0 ≥ 1, η >
0, there exists ε > 0, R1 > R0 such that whenever Q is normalized in the following way:∫

Rd

|Q|2 =

∫
Rd

|∇Q|2 = 1

and it is concentrated near the origin in the sense that:∫
|x|≤R0

|Q|p+1 ≥ η

and is a near minimizer meaning that:

W (Q) ≤Wmin + ε.

Then, there exists R1 = R1(η1) such that:∫
|x|≥R1

|Q|p+1 ≤ η.

Let us give a series of hints:
i) Assume that R1 > R0 is large enough, we want to see that for large enough R1, the inequality∫
|x|≥R1

|Q|p+1 > η cannot hold. Observe that we can take R1 large enough, depending on R0 and ε

such that we can guarantee that there exists 10R0 < R < R1

10 such that:∫
R
10≤|x|≤10R

|Q|p+1 + |Q|2 + |∇Q|2 ≤ ε
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ii) Split Q into two pieces, Q1, Q2, approximately localized near B(0, R) and away from B(0, R).
Show that:

1

W (Q)
=

∫
Rd

|Q|p+1 ≤ 1

Wmin

2∑
j=1

( ∫
Rd

|Qj |2
)1− (d−2)(p−1)

4 (

∫
Rd

|∇Qj |2
) d(p−1)

4 +O(ε)

iii) Observe that
∑2
j=1

∫
Rd |Qj |2,

∑2
j=1

∫
Rd |∇Qj |2 ≤ 1+O(ε). Argue also that c(η) ≤

∫
Rd |Qj |2,

∫
Rd |∇Qj |2 ≤

1− c′(η), where c(η), c′(η) > 0.

iv) Use Hölder’s inequality, and the fact that 1− (d−2)(p−1)
4 and d(p−1)

4 are positive and sum up to
greater than 1 to deduce that:

2∑
j=1

( ∫
Rd

|Qj |2
)1− (d−2)(p−1)

4
( ∫

Rd

|∇Qj |2
) d(p−1

4 ≤ 1− c′′(η)

for some c′′(η) > 0 if we take η to be sufficiently small. Conclude from the construction, one obtains:

1

Wmin + ε
≤ 1

W (Q)
≤ 1

Wmin
(1− c′′(η)) +O(ε),

which is a contradiction.

Exercise 16. (Existence of minimizer; originally from [8]; we follow the exposition from Theorem
B5 in [7]) (3 points) Prove Proposition 3.3, using Exercise 15. We give several hints:

i) Let Wmax := 1
Wmin

. Take a minimizing sequence (Qn) normalized in L2andḢ1. Deduce that:

0 < W
1

p+1
max = lim supn→∞ ‖Qn‖Lp+1(Rd), which, by using a Littlewood-Paley Decomposition is ≤

lim supn→∞
∑
N∈2Z ‖PNQn‖Lp+1(Rd). Recall that from the Littlewood-Paley Theory proof of the

Gagliardo-Nirenberg inequality in Exercise 12 that one has:

sup
n→∞

‖PNQn‖Lp+1(Rd) . N
d
2−

d
p+1min(1, N−1).

Deduce that there exists N0 ∈ 2Z such that:

lim sup
n→∞

‖PN0Qn‖Lp+1(Rd) > 0

Why can we immediately deduce that the same holds if we replace Lp+1 by L∞? Why can we, in
particular, assume that |PN0Qn(0)| > 0 for all n (possibly after passing to a subsequence)?
ii) Use (46) to deduce that for some R0 > 0 sufficiently large and η > 0 sufficiently small, one has
that for all n: ∫

|x|≤R0

|Qn|p+1 ≥ η.

The key is to observe that for R0 > 0 large enough, one has:
∫
|x|≥R0

|ψN0(x)Qn(x)| ≥ c1 and to use

Hölder’s inequality.
iii) Use the previous exercise to deduce that, given η′ > 0 sufficiently small, there exists R1 =
R1(η′) > 0 sufficiently large such that:

lim sup
n→∞

∫
|x|≥R1

|Qn|p+1 ≤ η′.

iv) Finish the argument by using Rellich’s Theorem and a diagonal argument as in the proof of
Theorem 2.3.

Exercise 17. (Mass criticality of NLS) (1 point) Suppose that u solves

(48)

{
iut + ∆u = ±|u| 4du, onRdx × Rt
u|t=0 = Φ ∈ H1(Rd)



CONCENTRATION COMPACTNESS AND SOLITONS 15

For λ > 0, we let uλ(x, t) := 1

λ
d
2
u
(
x
λ ,

t
λ2

)
. Show that uλ then solves:

(49)

{
i(uλ)t + ∆uλ = ±|uλ|

4
duλ, onRdx × Rt

(uλ)|t=0 = Φλ ∈ H1(Rd)

where Φλ(x) := 1

λ
d
2

Φ
(
x
λ

)
. Verify that ‖Φλ‖L2 = ‖Φ‖L2 . This sort of equation is called mass-critical,

since the mass is left invariant under the natural scaling of the equation 9.
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