Math 114, Section 003 Fall 2011 Practice Exam 1 with Solutions

Contents

1 Problems 2
2 Solution key 8
3 Solutions 9

1 Problems

Question 1: Let L be the line tangent to the curve

$$
\vec{r}(t)=\left\langle t^{2}+3 t+2, e^{t} \cos t, \ln (t+1)\right\rangle
$$

at $t=0$. Find the coordinates of the point of intersection of L and the plane $x+y+z=8$.
(A) $(2,1,0)$
(B) $\left(6, e^{2} \cos 2, \ln (2)\right)$
(C) $(2,0,1)$
(D) $(5,2,1)$
(E) $(8,3,2)$
(F) $(0,4,4)$

Solution Key: $2 \prod$ Solution: 3

Question 2: Which vector is perpendicular to the plane containing the three points $P(2,1,5), Q(-1,3,4)$, and $R(3,0,6)$?
(A) $2 \widehat{\boldsymbol{\imath}}-\widehat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$
(B) $\widehat{\boldsymbol{\imath}}+2 \widehat{\boldsymbol{\jmath}}+2 \widehat{\boldsymbol{k}}$
(C) $2 \widehat{\boldsymbol{\imath}}+2 \widehat{\boldsymbol{\jmath}}-\widehat{\boldsymbol{k}}$
(D) $2 \widehat{\boldsymbol{\imath}}+3 \widehat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$
(E) $\widehat{\boldsymbol{\imath}}+2 \widehat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$
(F) $2 \widehat{\boldsymbol{\imath}}+2 \widehat{\boldsymbol{j}}+3 \widehat{\boldsymbol{k}}$

Solution Key: 22 Solution: 32

Question 3: A force $\vec{F}=2 \widehat{\boldsymbol{\imath}}+\widehat{\boldsymbol{\jmath}}-3 \widehat{\boldsymbol{k}}$ is applied to a spacecraft with velocity vector $\vec{v}=3 \widehat{\boldsymbol{\imath}}-\widehat{\boldsymbol{\jmath}}$. If you express $\vec{F}=\vec{a}+\vec{b}$ as a sum of a vector \vec{a} parallel to \vec{v} and a vector \vec{b} orthogonal to \vec{v}, then \vec{b} is:
(A) $3 \widehat{\boldsymbol{\imath}}+6 \widehat{\boldsymbol{\jmath}}-\widehat{\boldsymbol{k}}$
(B) $\frac{1}{2} \widehat{\boldsymbol{\imath}}+\frac{3}{2} \widehat{\boldsymbol{\jmath}}-3 \widehat{\boldsymbol{k}}$
(C) $\frac{3}{2} \widehat{\boldsymbol{\imath}}-\frac{3}{2} \widehat{\boldsymbol{\jmath}}$
(D) $8 \widehat{\boldsymbol{\imath}}+4 \widehat{\boldsymbol{\jmath}}-\widehat{\boldsymbol{k}}$
(E) $12 \widehat{\boldsymbol{\imath}}-\widehat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$
(F) $\widehat{\boldsymbol{\imath}}+3 \widehat{\boldsymbol{\jmath}}-\widehat{\boldsymbol{k}}$

Solution Key: 2 [3 Solution: 3]

Question 4: Which of the following points lies on the same plane with $(1,2,0),(2,2,1),(0,1,1) ?$
(A) $(1,1,1)$
(B) $(4,-1,1)$
(C) $(4,1,1)$
(D) $(1,1,-1)$
(E) $(2,-1,3)$
(F) $(2,1,3)$

Solution Key: 2[4 Solution: 3 4

Question 5: The curvature of the curve

$$
\vec{r}(t)=2 t \widehat{\boldsymbol{\imath}}+t^{2} \widehat{\boldsymbol{\jmath}}-\frac{1}{3} \widehat{\boldsymbol{k}}
$$

at the point $t=0$ is
(A) 0
(B) 2
(C) $-\frac{1}{4}$
(D) $\frac{1}{2}$
(E) -1
(F) none of the above

Solution Key: 2 S 5 Solution: 3 回

Question 6: Which of the following surfaces intersect the plane $x=2$ at a parabola?
(A) $-\frac{z^{2}}{2}=\frac{x^{2}}{9}+\frac{y^{2}}{4}$
(B) $\frac{z^{2}}{4}=\frac{x^{2}}{9}+\frac{y^{2}}{4}-1$
(C) $\frac{z^{2}}{4}=\frac{x^{2}}{9}+\frac{y^{2}}{4}$
(D) $\frac{z}{2}=\frac{x^{2}}{9}-\frac{y^{2}}{4}$
(E) $\frac{z^{2}}{4}=\frac{x^{2}}{9}+\frac{y^{2}}{4}+1$
(F) $-\frac{z^{2}}{25}=\frac{x^{2}}{9}+\frac{y^{2}}{4}$

Solution Key: 2 6
Solution: 36

Question 7: The set of points P such that $\overrightarrow{Q P} \cdot \vec{B}=2$ is
(A) a line though Q parallel to \vec{B}
(B) a plane through Q parallel to \vec{B}
(C) a plane through Q perpendicular to \vec{B}
(D) a line parallel to \vec{B} but not passing through Q
(E) a plane perpendicular to \vec{B} but not passing through Q
(F) a line through Q and perpendicular to \vec{B}

Solution Key: 27 Solution: 3

Question 8: The trout in a pond is harvested at a constant rate of H trout per day. It is known taht the growth of the trout population is governed by the logistic equation with harvesting:

$$
\frac{d P}{d t}=12 P-P^{2}-H
$$

(a) For what harvesting rates will this growth model have two equilibrium populations? Will these equilibria be stable or unstable?
(b) Determine the special value of H for which the population growth has a single equilibrium. What will happen if we start harvesting at a rate higher than this special value?

Solution Key: 2[8
Solution: 3 ,

Question 9: True or false. Explain your reasoning.
(a) The line $\vec{r}(t)=(1+2 t) \widehat{\boldsymbol{\imath}}+(1+3 t) \widehat{\boldsymbol{\jmath}}+(1+4 t) \widehat{\boldsymbol{k}}$ is perpendicular to the plane $2 x+3 y-4 z=9$.
(b) The equation $x^{2}=z^{2}$ in three dimensons, describes an ellipsoid.
(c) $|\vec{a} \times \vec{b}|=0$ implies that either $\vec{a}=0$ or $\vec{b}=0$.

Solution Key: 2 Solution: 3 回

Question 10: A bug is crawling along a helix and his position at ttime t is given by $\vec{r}(t)=\langle\sin (2 t), \cos (2 t), t\rangle$. Which of the following statements are true and which are false? Explain and justify your reasoning.
(a) The unit normal vector always points toward the z-axis.
(b) The bug travels upward at a constant rate, i.e. the unit tangent vector has a constant z-component at any moment of time.
(c) The unit binormal vector always points straight up or straight down.

2 Solution key

(1) (D)
(2) (E)
(3) (B)
(4) (F)
(5) (D)
(6) (D)
(7) (E)
(8) (a) $H<36$, one unstable and one stable equilibrium; (b) to have one equilibrium we must harvest at a rate $H=36$. If $H>36$, then the trout population will go extinct.
(9) (a), (b), and (c) are false
(10) (a) is true, (b) is true, and (c) is false.

3 Solutions

Solution of problem 1: The point P on the curve corresponding to the value of the parameter $t=0$ has position vector $\vec{r}(0)=\langle 2,1,0\rangle$. In other words P has coordinates $P(2,1,0)$. The tangent vector to the curve at P is the vector

$$
\begin{aligned}
\frac{d \vec{r}}{d t}(0) & =\left(\frac{d}{d t}\left\langle t^{2}+3 t+2, e^{t} \cos t, \ln (t+1)\right\rangle\right)_{\mid t=0} \\
& =\left(\left\langle 2 t+3, e^{t} \cos t-e^{t} \sin t, \frac{1}{t+1}\right\rangle\right)_{\mid t=0} \\
& =\langle 3,1,1\rangle
\end{aligned}
$$

The tangent line L at $t=0$ is the line passing through P and having the tangent vector $d \vec{r} / d t(0)$ as a direction vector. Thus L is given by the parametric equations

$$
\begin{aligned}
& x=2+3 s, \\
& y=1+s, \\
& z=s .
\end{aligned}
$$

To intersect the line L with the plane $x+y+z=8$ we substitute the parametric expressions for x, y, and z in the equation of the plane and solve for s. We get $(2+3 s)+(1+s)+s=8$, i.e. $s=1$. Thus the point of intersection is the point on the line which corresponds to the value of the parameter $s=1$, i.e. the point $(5,2,1)$. The correct answer is (D).

Solution of problem 2: A vector is perpendicular to a plane if and only if it is parallel to a normal vector for the plane.
To find a vector \vec{n} which is normal to the plane containing $P(2,1,5)$, $Q(-1,3,4)$, and $R(3,0,6)$ we need to find two non-parallel vectors in the plane and compute their cross products. The vectors

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle-1-2,3-1,4-5\rangle=\langle-3,2,-1\rangle \\
& \overrightarrow{P R}=\langle 3-2,0-1,6-5\rangle=\langle 1,-1,1\rangle
\end{aligned}
$$

are not parallel and belong to the plane, so we have

$$
\begin{aligned}
\vec{n} & =\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\widehat{\boldsymbol{\imath}} & \widehat{\boldsymbol{\jmath}} & \widehat{\boldsymbol{k}} \\
-3 & 2 & -1 \\
1 & -1 & 1
\end{array}\right|=(2-1) \widehat{\boldsymbol{\imath}}+(3-1) \widehat{\boldsymbol{\jmath}}+(3-2) \widehat{\boldsymbol{k}} \\
& =\widehat{\boldsymbol{\imath}}+2 \widehat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}
\end{aligned}
$$

The correct answer is (E).

Solution of problem 3: If $\vec{F}=\vec{a}+\vec{b}$ with $\vec{a} \| \vec{v}$ and $\vec{b} \perp \vec{v}$, then \vec{a} is the orthogonal projection of \vec{F} onto \vec{v}. From the formula for an orthogonal projection we compute

$$
\begin{aligned}
\vec{a} & =\operatorname{proj}_{\vec{v}} \vec{F} \\
& =\frac{\vec{F} \cdot \vec{v}}{|\vec{v}|} \vec{v} \\
& =\frac{\langle 2,1,-3\rangle \cdot\langle 3,-1,0\rangle}{3^{2}+(-1)^{2}}\langle 3,-1,0\rangle \\
& =\frac{5}{10}\langle 3,-1,0\rangle \\
& =\left\langle\frac{3}{2},-\frac{1}{2}, 0\right\rangle .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\vec{b} & =\vec{F}-\vec{a} \\
& =\langle 2,1,-3\rangle-\left\langle\frac{3}{2},-\frac{1}{2}, 0\right\rangle \\
& =\left\langle\frac{1}{2}, \frac{3}{2},-3\right\rangle .
\end{aligned}
$$

The correct answer is (B).

Solution of problem 4: If we label the points on the plane as $P_{0}=$ $(1,2,0), Q_{0}=(2,2,1)$, and $R_{0}=(0,1,1)$, then we can easily write two vectors parallel to the plane, e.g.

$$
\begin{aligned}
& \vec{u}=\overrightarrow{P_{0} Q_{0}}=(2-1) \widehat{\boldsymbol{\imath}}+(2-2) \widehat{\boldsymbol{\jmath}}+(1-0) \widehat{\boldsymbol{k}}=\widehat{\boldsymbol{\imath}}+\widehat{\boldsymbol{k}} \\
& \vec{v}=\overrightarrow{P_{0} R_{0}}=(0-1) \widehat{\boldsymbol{\imath}}+(1-2) \widehat{\boldsymbol{\jmath}}+(1-0) \widehat{\boldsymbol{k}}=-\widehat{\boldsymbol{\imath}}-\widehat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}} .
\end{aligned}
$$

The normal vector to the plane is given by the cross-product $\overrightarrow{\boldsymbol{n}}=\vec{u} \times \vec{v}$. We compute

$$
\overrightarrow{\boldsymbol{n}}=\left|\begin{array}{ccc}
\widehat{\boldsymbol{\imath}} & \widehat{\boldsymbol{\jmath}} & \widehat{\boldsymbol{k}} \\
1 & 0 & 1 \\
-1 & -1 & 1
\end{array}\right|=\widehat{\boldsymbol{\imath}}-2 \widehat{\boldsymbol{\jmath}}-\widehat{\boldsymbol{k}}
$$

Thus a point $P=(x, y, z)$ on the plane must satisfy the equation $\overrightarrow{\boldsymbol{n}} \cdot \overrightarrow{P_{0} P}=0$, which is

$$
(x-1)-2(y-2)-(z-0)=0
$$

or simply

$$
x-2 y-z=-3
$$

Substituting the various choices in this equation we see that the only solution is the point $(2,1,3)$ corresponding to answer (F).

Solution of problem 5: The curvature of $\vec{r}(t)$ is given by

$$
\kappa(t)=\frac{\left|\frac{d \vec{T}}{d t}\right|}{|\vec{r}|}
$$

where \vec{T} is the unit tangent vector. We compute

$$
\vec{r}^{\prime}(t)=\langle 2,2 t, 0\rangle
$$

and so $\left|\vec{r}^{\prime}\right|=\sqrt{4+4 t^{2}}$. In particular we have

$$
\vec{T}=\left\langle 2\left(4+4 t^{2}\right)^{-\frac{1}{2}}, 2 t\left(4+4 t^{2}\right)^{-\frac{1}{2}}, 0\right\rangle
$$

Substituting in the formula for the curvature we get

$$
\begin{aligned}
\kappa(t) & =\frac{\left|\frac{d \vec{T}}{d t}\right|}{\left|\vec{r}^{\prime}\right|} \\
& =\frac{\left|\frac{d}{d t}\left\langle 2\left(4+4 t^{2}\right)^{-\frac{1}{2}}, 2 t\left(4+4 t^{2}\right)^{-\frac{1}{2}}, 0\right\rangle\right|}{\left(4+4 t^{2}\right)^{\frac{1}{2}}} \\
& =\frac{\left|\left\langle-8 t\left(4+4^{2}\right)^{-\frac{3}{2}}, 2\left(4+4 t^{2}\right)^{-\frac{1}{2}}-8 t^{2}\left(4+4^{2}\right)^{-\frac{3}{2}}, 0\right\rangle\right|}{\left(4+4 t^{2}\right)^{\frac{1}{2}}}
\end{aligned}
$$

Evaluating at $t=0$ we get

$$
\kappa(0)=\frac{|\langle 0,1,0\rangle|}{2}=\frac{1}{2} .
$$

The correct answer is (D).

Solution of problem 6: The curve of intersection of each surface with the plane $x=2$ will be given by the equation in the variables y and z that is obtained from the equation of the surface after the substitution $x=2$.

Substituting $x=2$ in the equation of each surface we get the following equations in y and z :
(A) Setting $x=2$ in $-\frac{z^{2}}{2}=\frac{x^{2}}{9}+\frac{y^{2}}{4}$ gives

$$
-\frac{z^{2}}{2}=\frac{4}{9}+\frac{y^{2}}{4}
$$

or equivalently

$$
\frac{y^{2}}{4}+\frac{z^{2}}{2}=-\frac{4}{9} .
$$

This equation has no solution so it describes the empty set. In other words the surface (A) and the plane $x=2$ do not intersect.
(B) Setting $x=2$ in $\frac{z^{2}}{4}=\frac{x^{2}}{9}+\frac{y^{2}}{4}-1$ gives

$$
\frac{z^{2}}{4}=\frac{4}{9}+\frac{y^{2}}{4}-1
$$

or equivalently

$$
\frac{y^{2}}{4}-\frac{z^{2}}{4}=\frac{5}{9}
$$

which is a scaling of a standard equation of a hyperbola.
(C) Setting $x=2$ in $\frac{z^{2}}{4}=\frac{x^{2}}{9}+\frac{y^{2}}{4}$ gives

$$
\frac{z^{2}}{4}=\frac{4}{9}+\frac{y^{2}}{4}
$$

or

$$
\frac{y^{2}}{4}-\frac{z^{2}}{4}=\frac{4}{9}
$$

which is again a scaling of a standard equation of a hyperbola.
(D) Setting $x=2$ in $\frac{z}{2}=\frac{x^{2}}{9}-\frac{y^{2}}{4}$ gives

$$
\frac{z}{2}=\frac{4}{9}-\frac{y^{2}}{4}
$$

or

$$
z=\frac{8}{9}-\frac{y^{2}}{2}
$$

which is the equation of a parabola.
(E) Setting $x=2$ in $\frac{z^{2}}{4}=\frac{x^{2}}{9}+\frac{y^{2}}{4}+1$ gives

$$
\frac{z^{2}}{4}=\frac{4}{9}+\frac{y^{2}}{4}+1
$$

or

$$
\frac{z^{2}}{4}-\frac{y^{2}}{4}=\frac{13}{9}
$$

which is again a scaling of a standard equation of a hyperbola.

The correct answer is (D).

Solution of problem 7: Given a point Q and a vector \vec{B} the vector equation

$$
\overrightarrow{Q P} \cdot \vec{B}=0
$$

is the standard equation of the plane α that passes through Q and is perpendicular to \vec{Q}. The equation $\overrightarrow{Q P} \cdot \vec{B}=2$ will describe a plane β which is parallel to α and thus perpendicular to \vec{B}. Since the right hand side in this equation is $2 \neq 0$ we conclude that β does not pass through Q.
More explicitly, if $Q=\left(x_{0}, y_{0}, z_{0}\right)$ is a fixed point and $\vec{B}=a \widehat{\boldsymbol{\imath}}+b \widehat{\boldsymbol{\jmath}}+c \widehat{\boldsymbol{k}}$ is a given vector, then a point $P=(x, y, z)$ satisfies the vector equation $\overrightarrow{Q P} \cdot \vec{B}=2$ if and only if the variables x, y and z satisfy the equation

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=2 .
$$

Since the coefficients of x, y and z in this equation are a, b and c, this is an equation of a plane with normal vector equal to \vec{B}. Moreover, since the right hand side of the equation is not zero, the point Q can not lie on this plane. Therefore the correct choice is (E).

Solution of problem 1 8: (a) The equilibria for this model are solutions of the quadratic equation $12 P-P^{2}-H=0$ or equivalently $P^{2}-12 P+H=$ 0 . The discriminant of this equation is

$$
(-12)^{2}-4 H=144-4 H=4(36-H)
$$

Therefore the quadratic equation will have two solutions only when $H<36$.

Suppose $H<36$. From the quadratic formula we see that the equilibria are given by

$$
P_{1}=6-\sqrt{36-H} \quad \text { and } \quad P_{2}=6+\sqrt{36-H}
$$

and so

$$
\frac{d P}{d t}=-\left(P-P_{1}\right)\left(P-P_{2}\right) .
$$

This implies that $d P / d t<0$ for $P<P_{1}$ and $P>P_{2}$ and $d P / d t>0$ for $P_{1}<P<P_{2}$. In particular P is decreasing when $P<P_{1}, P$ increases when $P_{1}<P<P_{2}$, and P decreases again when $P>P_{2}$. This shows that both $P=P_{1}$ is an unstable equilibrium and $P=P_{2}$ is a stable equilibrium.
(b) In order to have a single equilibrium, we must choose H so that the quadratic equation $-P^{2}+12 P-H=0$ has a unique solution. This means that the discriminant of this equation ought to be equal to zero, i.e. we ought have $4(36-H)=0$. Thus the special value of H is $H=36$. In this case, the differential equation becomes

$$
\frac{d P}{d t}=12 P-P^{2}-36=-(P-6)^{2}
$$

The unique equilibrium is at $P=6$.
If $H>36$ the equation has no equilibria, and moreover we have that

$$
\frac{d P}{d t}=12 P-P^{2}-H=-(P-6)^{2}+(36-H)
$$

is always negative. This shows that if we harvest the trout at rate higher than the critical harvesting rate $H=36$, then the population will steadily decrease and we will eventually empty the pond completely. In contrast, if we harvest at a rate smaller than the critical harvesting rate $H=36$ and if we start with enough trout in the pond, then we will always have enough fish to harvest .

Solution of problem 19: (a) From the parametric equation $\vec{r}(t)=(1+$ $2 t) \widehat{\boldsymbol{\imath}}+(1+3 t) \widehat{\boldsymbol{\jmath}}+(1+4 t) \widehat{\boldsymbol{k}}$ we can extract a direction vector for the line. It is the vector \vec{v} whose components are given by the coefficients of the parameter t in the parametric equation. Thus $\vec{v}=2 \widehat{\boldsymbol{\imath}}+3 \widehat{\boldsymbol{\jmath}}+4 \widehat{\boldsymbol{k}}$. Also, from the equation $2 x+3 y-4 z=9$ of the plane we can extract a normal vector \vec{n} to the plane. It is the vector whose components are the coefficients of the equation of the plane. Thus $\vec{n}=2 \widehat{\boldsymbol{\imath}}+3 \widehat{\boldsymbol{\jmath}}-4 \widehat{\boldsymbol{k}}$.

The line and the plane will be perpendicular when \vec{v} is parallel to \vec{n}, that is when \vec{v} is proportional to \vec{n}. But if $\vec{v}=c \cdot \vec{n}$ for some constant c, then we will have $2=2 c, 3=3 c$, and $4=-4 c$. From he first equation we get $c=1$ but from the last equation we have $c=-1$. This is a contradiction. Therefore the line and the plane are not perpendicular, and so (a) is False.
(b) The equation $x^{2}=z^{2}$ depends only on two variables so it describes a cylinder with a base in the $x z$-plane. Hence $x^{2}=z^{2}$ can not be an ellipsoid and (b) is False.
(c) If the length of $\vec{a} \times \vec{b}$ is zero, then the vector $\vec{a} \times \vec{b}$ must be the zero vector. This can happen either when one of \vec{a} or \vec{b} is the zero vector, or when \vec{a} is parallel to \vec{b}. For instance if \vec{a} is any vector and $\vec{b}=\vec{a}$ we will have $\vec{a} \times \vec{b}=\vec{a} \times \vec{a}=\overrightarrow{0}$. Hence (c) is False.

Solution of problem 10: (a) The unit normal vector is given by

$$
\vec{N}=\frac{\frac{d \vec{T}}{d t}}{\left|\frac{d \vec{T}}{d t}\right|}
$$

where \vec{T} is the unit tangent vector. To compute \vec{T} we compute the velocity vector $d \vec{r} / d t=\langle 2 \cos (2 t),-2 \sin (2 t), 1\rangle$ and normalize

$$
\begin{aligned}
\vec{T} & =\frac{1}{|d \vec{r} / d t|} d \vec{r} / d t \\
& =\frac{1}{\sqrt{4 \cos ^{2}(2 t)+4 \sin ^{2}(2 t)+1}}\langle 2 \cos (2 t),-2 \sin (2 t), 1\rangle \\
& =\left\langle\frac{2}{3} \cos (2 t),-\frac{2}{3} \sin (2 t), \frac{1}{3}\right\rangle .
\end{aligned}
$$

Hence

$$
\frac{d \vec{T}}{d t}=\left\langle-\frac{4}{3} \sin (2 t),-\frac{4}{3} \cos (2 t), 0\right\rangle
$$

and so

$$
\vec{N}=\frac{\frac{d \vec{T}}{d t}}{\left|\frac{d \vec{T}}{d t}\right|}=\frac{3}{4}\left\langle-\frac{4}{3} \sin (2 t),-\frac{4}{3} \cos (2 t), 0\right\rangle=\langle-\sin (2 t),-\cos (2 t), 0\rangle .
$$

This is a horizontal vector pointing radially towards the z-axis. So (a) is true.
(b) From the formula for \vec{T} above we see that the z component of \vec{T} is constant and equal to $1 / 3$. So (b) is true.
(c) The unit binormal vector is given by

$$
\begin{aligned}
\vec{B} & =\vec{T} \times \vec{N} \\
& =\operatorname{det}\left(\begin{array}{ccc}
\widehat{\boldsymbol{\imath}} & \widehat{\boldsymbol{\jmath}} & \widehat{\boldsymbol{k}} \\
\frac{2}{3} \cos (2 t) & -\frac{2}{3} \sin (2 t) & \frac{1}{3} \\
-\sin (2 t) & -\cos (2 t) & 0
\end{array}\right) \\
& =\left\langle\frac{1}{3} \cos (2 t),-\frac{1}{3} \sin (2 t),-\frac{2}{3}\right\rangle
\end{aligned}
$$

This vector has non-trivial x and y components so (c) is false.

