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Differential Privacy [DMNS]

I Outcome of algorithm
A : X n → O should
roughly stay the same if
one person’s data changes.

For all neighboring x, x ′ and outcomes O ⊆ O,

P [A(x) ∈ O] ≤ eεP [A(x ′) ∈ O] + δ

I Parameter ε > 0 measures the privacy loss.
I Parameter δ > 0 is the failure probability where the

privacy loss can be much larger than ε.

Composition Theorems - Prior Work

I Run algorithm Ai which is εi-DP on the data x as a
function of the outcomes of previous algorithms
A1, · · · ,Ai−1. Then A is (εg, δg)-DP where
f (ε1, · · · , εk) ≤ εg and

A(x) = Ak ◦ · · · ◦ A1(x).

I Basic Composition [DMNS]:
f (ε1, · · · , εk) =

∑
εi.

I Advanced Composition [DRV]: quadratic
improvement for δg > 0,

f (ε1, · · · , εk) = Õ
(√∑

ε2
i

)
.

I Optimal Composition [KOV, MV]: complex form.

Application: Adaptive Data Analysis

Proposed Solution [DFH+]:
I Limit information learned from x through A(x)

=⇒ A(x) and x are “close” to independent.
I One way to limit info is to have analysis be DP

Our Focus: Adaptive Privacy Parameters

I As the analyst determines what (and how many)
analyses to run he will want to allocate his privacy
budget adaptively.

I These composition theorems crucially rely on the
choice of parameters εi and the number of algorithms
k to be fixed up front.

I Which composition theorems still
apply when we can select the
parameters adaptively?

I How can we even define
differential privacy in this
adaptively parameter setting?

Privacy Loss and the Analyst

I The privacy loss for algorithm
A : X n → O on neighboring
x, x ′ for outcome o ∈ O

L(o) = log

P [A(x) = o]

P [A(x ′) = o]


I Privacy loss random variable

L(o) where o ∼ A(x).
I The analyst A fixes a prob of failure δg beforehand.
I A selects εi ≥ 0 and Ai , which is εi-DP, as a

function of previous outcomes in an adversarial way to
try to make the privacy loss large.

Privacy Odometer

I Privacy odometer provides a running
upper bound on privacy loss.

I A valid privacy odometer is a function
COMPδg : R∗→ R where for any analyst A who
selects ε1, · · · , εk adaptively, then w.p. ≥ 1− δg ,

L(o1, · · · , ok) < COMPδg (ε1, · · · , εk)

Privacy Filter

I Privacy filter is a stopping rule, so w.h.p. a
given privacy budget εg will not be exceeded.

I A valid privacy filter COMPεg ,δg : Rk → {HALT, CONT}
where for any analyst A who selects ε1, · · · , εk
adaptively, then w.p. > 1− δg , we have L < εg and

COMPεg ,δg (ε1, · · · , εk) = HALT

I The mechanism that stops before HALT is (εg, δg)-DP

Main Results

I Basic composition still applies in adaptive setting.
I A valid privacy filter is the following

COMPεg ,δg (ε1, · · · , εk) = CONT if

Õ

(√(
ε2
g +

∑
ε2
i

))
< εg

and otherwise COMPεg ,δg (ε1, · · · , εk) = HALT.
I A valid privacy odometer is

COMPδg (ε1, · · · , εk) = Õ
(√∑

ε2
i log log(n)

)
as long as

∑
ε2
i > 1/n2.

I There is a provable gap between privacy filters and
odometers – there is no valid privacy odometer where

COMPδg (ε1, · · · , εk) is õ
(√∑

ε2
i log log(n)

)
.

Key to Proofs

I The advanced composition theorem used martingale
concentration inequalities, like Azuma’s inequality, but
they no longer apply when the bounds are random.

I We then apply concentration bounds from self
normalizing processes [PnKLL].
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