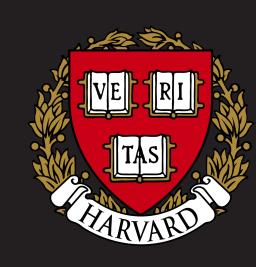
Privacy Odometers and Filters: Pay-as-you-Go Composition



Ryan Rogers, Aaron Roth, Jonathan Ullman, and Salil Vadhan

Differential Privacy [DMNS]

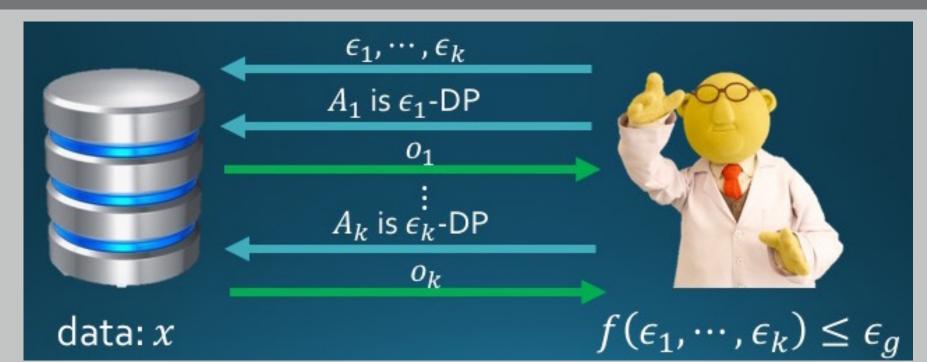
Note that $A: \mathcal{X}^n \to \mathcal{O}$ should a roughly stay the same if one person's data changes.

For all neighboring x, x' and outcomes $O \subseteq \mathcal{O}$,

$$\mathbb{P}\left[A(x) \in O\right] \leq e^{\epsilon} \mathbb{P}\left[A(x') \in O\right] + \delta$$

- ightharpoonup Parameter $\epsilon > 0$ measures the *privacy loss*.
- Parameter $\delta > 0$ is the *failure probability* where the privacy loss can be much larger than ϵ .

Composition Theorems - Prior Work



PRun algorithm A_i which is ϵ_i -DP on the data \mathbf{x} as a function of the outcomes of previous algorithms A_1, \cdots, A_{i-1} . Then A is (ϵ_g, δ_g) -DP where $f(\epsilon_1, \cdots, \epsilon_k) \leq \epsilon_g$ and

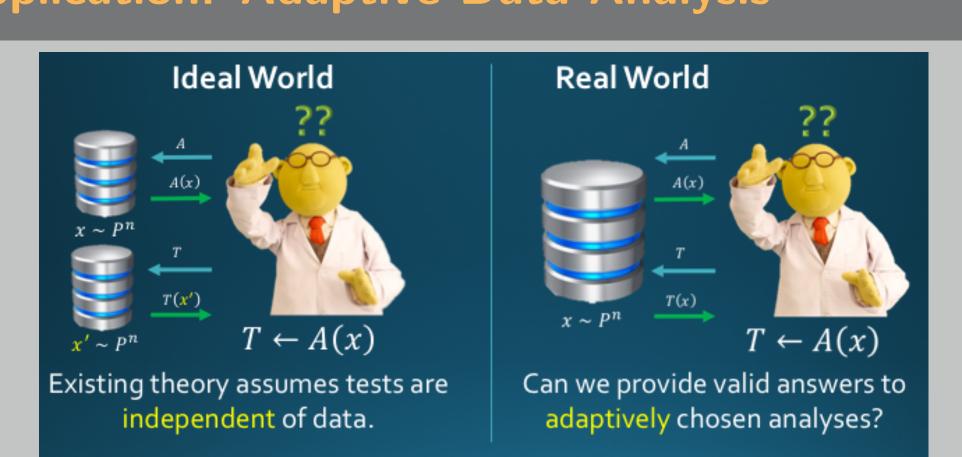
$$A(x) = A_k \circ \cdots \circ A_1(x).$$

- ▶ Basic Composition [DMNS]: $f(\epsilon_1, \dots, \epsilon_k) = \sum \epsilon_i$.
- Advanced Composition [DRV]: quadratic improvement for $\delta_g > 0$,

 $f(\epsilon_1,\cdots,\epsilon_k) = \tilde{O}\left(\sqrt{\sum \epsilon_i^2}\right).$

► Optimal Composition [KOV, MV]: complex form.

Application: Adaptive Data Analysis



Proposed Solution [DFH⁺]:

- Limit information learned from x through A(x) $\implies A(x)$ and x are "close" to independent.
- ► One way to limit info is to have analysis be *DP*

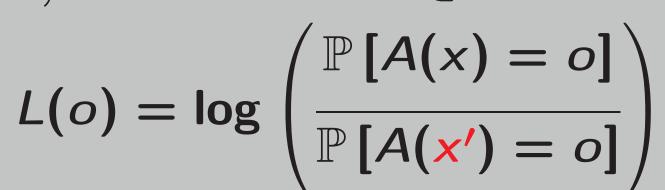
Our Focus: Adaptive Privacy Parameters

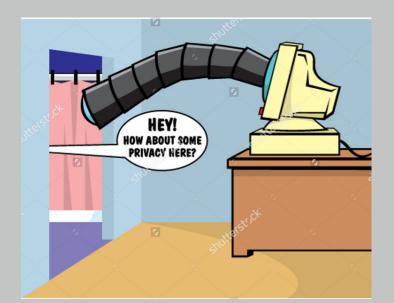
- As the analyst determines what (and how many) analyses to run he will want to allocate his privacy budget adaptively.
- These composition theorems crucially rely on the choice of parameters ϵ_i and the number of algorithms k to be fixed up front.

- ► Which composition theorems still apply when we can select the parameters *adaptively*?
- How can we even define differential privacy in this adaptively parameter setting?

Privacy Loss and the Analyst

The privacy loss for algorithm $A: \mathcal{X}^n \to \mathcal{O}$ on neighboring x, x' for outcome $o \in \mathcal{O}$





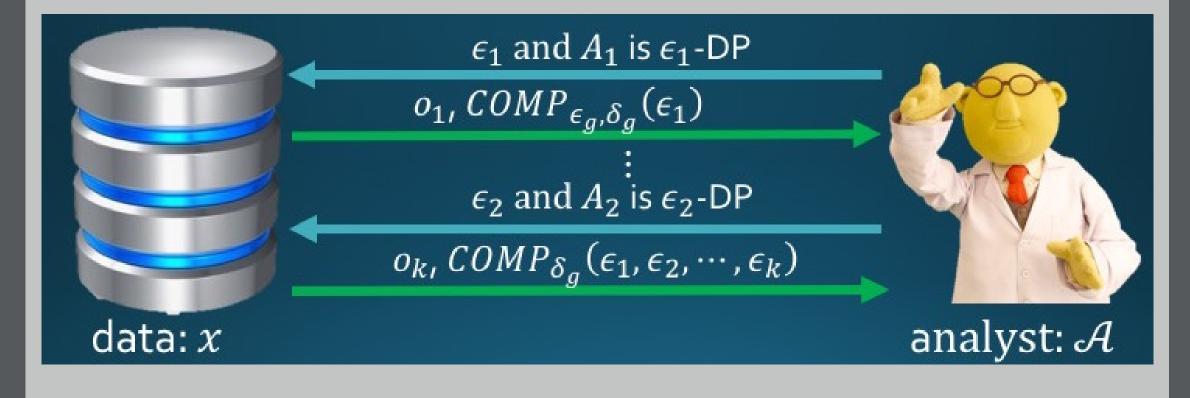
- Privacy loss random variable L(o) where $o \sim A(x)$.
- ightharpoonup The analyst ${\cal A}$ fixes a prob of failure δ_g beforehand.
- ▶ \mathcal{A} selects $\epsilon_i \geq 0$ and A_i , which is ϵ_i -DP, as a function of previous outcomes in an adversarial way to try to make the privacy loss large.

Privacy Odometer

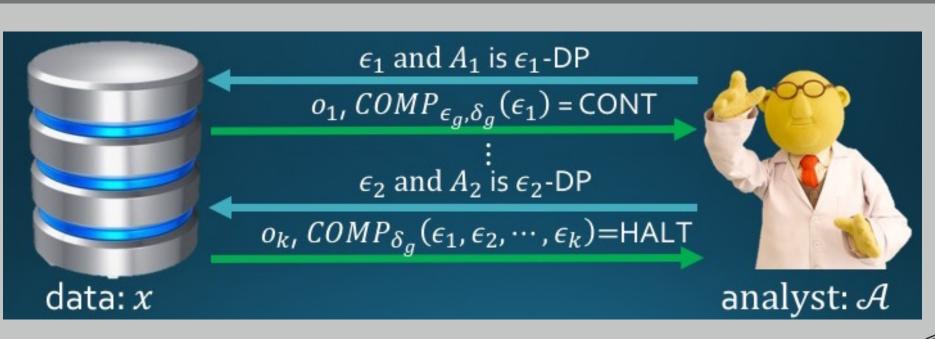
Privacy odometer provides a running upper bound on privacy loss.

A valid privacy odometer is a function $\mathrm{COMP}_{\delta_g}: \mathbb{R}^* \to \mathbb{R}$ where for any analyst \mathcal{A} who selects $\epsilon_1, \cdots, \epsilon_k$ adaptively, then w.p. $\geq 1 - \delta_g$,

$$L(o_1, \cdots, o_k) < \text{COMP}_{\delta_{\sigma}}(\epsilon_1, \cdots, \epsilon_k)$$



Privacy Filter



Privacy filter is a stopping rule, so w.h.p. a given privacy budget ϵ_g will not be exceeded.

- ► A valid privacy filter $COMP_{\epsilon_g,\delta_g}: \mathbb{R}^k \to \{HALT,CONT\}$ where for any analyst \mathcal{A} who selects $\epsilon_1,\cdots,\epsilon_k$ adaptively, then w.p. $> \mathbf{1} \delta_g$, we have $L < \epsilon_g$ and $COMP_{\epsilon_g,\delta_g}(\epsilon_1,\cdots,\epsilon_k) = HALT$
- lacktriangle The mechanism that stops before HALT is (ϵ_g, δ_g) -DP

Main Results

- ► Basic composition still applies in adaptive setting.
- A valid privacy filter is the following $COMP_{\epsilon_g,\delta_g}$ ($\epsilon_1,\cdots,\epsilon_k$) = CONT if

$$\tilde{O}\left(\sqrt{\left(\epsilon_g^2 + \sum \epsilon_i^2\right)}\right) < \epsilon_g$$

and otherwise $\widehat{\text{COMP}}_{\epsilon_g,\delta_g}(\epsilon_1,\cdots,\epsilon_k) = \text{HALT}$.

► A valid privacy odometer is

$$\text{COMP}_{\delta_g}\left(\epsilon_1,\cdots,\epsilon_k\right) = \tilde{O}\left(\sqrt{\sum \epsilon_i^2 \log \log(n)}\right)$$

as long as $\sum \epsilon_i^2 > 1/n^2$.

There is a provable gap between privacy filters and odometers – there is *no* valid privacy odometer where

$$ext{COMP}_{\delta_g}\left(\epsilon_1,\cdots,\epsilon_k
ight)$$
 is $ilde{o}\left(\sqrt{\sum\epsilon_i^2\log\log(n)}
ight)$.

Key to Proofs

- The advanced composition theorem used *martingale* concentration inequalities, like Azuma's inequality, but they no longer apply when the bounds are random.
- ► We then apply concentration bounds from *self* normalizing processes [PnKLL].

References

[DFH⁺] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. In *NIPS'15*.

[DMNS] C. Dwork, F. McSherry, K. Nissim, and A. Smith. In TCC '06.

[DRV] C. Dwork, G. Rothblum, and S. Vadhan. In FOCS '10.

[KOV] P. Kairouz, S. Oh, and P. Viswanath. In *ICML '15*.

[MV] J. Murtagh and S. Vadhan. In *TCC '16*.

[PnKLL] V. Peña, M. Klass, and T. Leung Lai. The Annals of Probability '04.