Privacy Odometers and Filters: Pay-as-you-Go Composition
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Differential Privacy [DMNS]

» Outcome of algorithm
A: X" — O should
roughly stay the same if
one person’s data changes.

D: ----E-

P(A(D) = o)
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For all neighboring x, x” and outcomes O C O,
P[A(x) € O] < eP[A(X') € O] + 6

» Parameter € > 0 measures the privacy loss.

» Parameter 0 > 0 is the failure probability where the
privacy loss can be much larger than €.

Composition Theorems - Prior Work
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» Run algorithm A; which is €;-DP on the data x as a
function of the outcomes of previous algorithms

Ai,+-+ ,Ai_1. Then Ais (€4, 05)-DP where
f(€1,: -+ ,€ex) < €5 and
A(x) = Axo---
» Basic Composition [DMNS]:
f(e1,:++ ,€k) = ) €.
» Advanced Composition [DRV]: quadratic
improvement for 0, > 0,

fler, - ,e) = O <\/§je,?> .

» Optimal Composition [KOV, MV]: complex form.

o Ai(x).

Application: Adaptive Data Analysis

Ideal World
272

Real World

T « A(x)

Existing theory assumes tests are
independent of data.

Proposed Solution [DFHT]:

» Limit information learned from x through A(x)
—> A(x) and x are “close” to independent.

T « A(x)

Can we provide valid answers to
adaptively chosen analyses?

» One way to limit info is to have analysis be DP
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Our Focus: Adaptive Privacy Parameters

» As the analyst determines what (and how many)
analyses to run he will want to allocate his privacy
budget adaptively.

» T hese composition theorems crucially rely on the
choice of parameters €; and the number of algorithms
k to be fixed up front.

» Which composition theorems still
apply when we can select the
parameters adaptively?

» How can we even define
differential privacy in this
adaptively parameter setting?

Privacy Loss and the Analyst

» The privacy loss for algorithm
A: X" — O on neighboring
x, x" for outcome o € O

P[A(x) = o}

L(O) — Iog IP)[A(X’) _ O]

» Privacy loss random variable

L(o) where o ~ A(x).
» The analyst A fixes a prob of failure d, beforehand.
» A selects €; > 0 and A;, which is €;-DP, as a

function of previous outcomes in an adversarial way to
try to make the privacy loss large.

Privacy Odometer

» Privacy odometer provides a running
upper bound on privacy loss.

» A valid privacy odometer is a function
COMP;s, : R* — R where for any analyst .A who
selects €1, -+ + , €, adaptively, then w.p. > 1 — 0,

L(o1,- -+ ,0k) < COMPs, (€15 , €k)
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Privacy Filter
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» Privacy filter is a stopping rule, so w.h.p. a
given privacy budget €, will not be exceeded.

» A valid privacy filter COMP, s, : Rk — {HALT, CONT}
where for any analyst A who selects €1, - -+ , €k
adaptively, then w.p. > 1 — 04, we have L < €, and

CDMPeg,(sg (61, JEILI Ek) — HALT
» The mechanism that stops before HALT is (€4, 5)-DP

Main Results

» Basic composition still applies in adaptive setting.

» A valid privacy filter is the following
COMPe, 5, (€1, -+ ,€x) = CONT if

o, (\/(eg,+ze,?)) < €g

, €) = HALT.

and otherwise COMP,, 5, (€1 -+

» A valid privacy odometer is

COMPs, (€1, - -+ » €k) = <\/Z 2Iog|og(n)>

as long as >_€? > 1/n?.
» There is a provable gap between privacy filters and
odometers — there is no valid privacy odometer where

COMPs, (€1, -+ ,€k) is O (\/Z e? log Iog(n)) :

Key to Proofs

» The advanced composition theorem used martingale
concentration inequalities, like Azuma's inequality, but
they no longer apply when the bounds are random.

» We then apply concentration bounds from self
normalizing processes [PnKLL].
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