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Hg True Hy False USF, YFSU] Add noise to statistic to preserve privacy — leads to unbounded noise in worst case. » Test: Hy: p° = (1/d,--- ,1/d).
Reject Hy|False Discovery Power JS] Add noise to histogram, use classical test — leads to [P [False Discovery] > « for small datasets. » Data is generated from Hy : pt = p®+n-(1,—-1,--. ,—1,1).
Not Significance | Type |l Error GLRV, WLK] Add noise to histogram, use classical statistic but modify distribution to take into account the noise.

KR]: Add noise to histogram, modify statistic to account for the noise so that it is a chi-square random variable as
in the classical tests. NonPrivate

Empirical Power Curves for Local DP GOF Empirical Power Curves for Local DP GOF

» Given dataset and proposed model of Hyg, should it be rejected or not based on data.
» Goal: Bound PP [False Discovery] < «, while obtaining good power.
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The Need for Privacy Local Private Test Statistics

Test statistics for various private mechanisms
» LocalNoiseGOF: Add noise to data M(X;) = X; + Z; , s.t. V[Z]] = o7
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» Releasing the result may leak information n

» Homer et al. '08 showed that with only aggregate statistics on » LocalGenRRGOF: Use generalized randomized response, i.e. M(X;) = X; with probability
enomic-wide association studies we can determine whether someone in ~ 0 c€_1 0 1
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the study has a disease or not. ' | | | |
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n n Comparison of empirical power among the classical non-private test and the local private tests: LocalNoiseGOF
» LocalBitF1ipGOF: Using a mechanism from [BS| we use M(X;) = (M1(Xi[1]), - , Ma(Xi[d])) where with Laplace noise (solid line), LocalGenRRGOF (dashed line), and LocalBitF1ipGOF (dotted line); in the left
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Local Differential Privacy [DMNS], [RSL*] Mi(b) = b w.p 57 and M(b) =1 — b otherwise. Set k = jiﬁ;} and p° = k- p° + ee/zl»H plot d = 4 and n = 0.01, in the right plot d = 40 and n = 0.005.
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» Data may contain sensitive information.
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Modified Goal: Obtain statistically valid hypothesis tests which preserve the privacy of those in the study.

. 2 Power Comparison for Independence Testin
trusted curator and the output of a statistic on the data KRS\ n e€/2 — n P P 8

s privatized.

A" StatiStiCS Converge in diStribUtion tO X(Zj—], undel‘ HO. [ Test HO - Y(I)J_ Y(z) Wlth Contingency table data {X_],e :j E [r],e 6 [C]}
» Local Model: No trusted curator - data is privatized and

» Data generated with 7r(1) (ﬂ(z))T +n-(1,-1,--.,—1,1)7(1, —-1,--. , —1,1) with symmetric ().

for all inputs, x, x” and outcome sets S C O:
P[M(x) € S] < eP[M(x") € S].

» Local model of differential privacy is used in practice. » Under Hy, we have

» Each test is designed to achieve P[False Discovery] at most av asymptotically, as in classical test. i NonPrivate

>T€St: Ho:poz(l/d,'°° ,l/d) Hl:plzpo _ epsilon

then collected. _
Noncentral Parameters Comparison
> An algOrithm M . X — O iS E—differentia”y private |f Empirical Power Curves for Local DP IND Empirical Power Curves for Local DP IND

Focus of this work: Chi-Square Tests

» Categorical data entries histogram: X; ~ Multinomial(1,p = (p1,++- , pd))
» General class of tests use the chi-square statistic based on histogram H = ) . X;:

> (Observed[j] — Expected[j])*
@ = Z Expected|/] .

» Goodness of Fit: Hy : p = pO. » We plot the noncentral parameter for the various test statistics,
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Comparison of empirical power among classical non-private test versus local private tests: adding Laplace noise
o o (solid line), LocalGenRRIND (dashed line), and LocalBitF1ipIND (dotted line) where the left plot
LocalBitFlipGOF LocalBitFlipGOF (r, C) — (2, 2) and 7N — 0.01, the right plOt (r, C) — (10, 4) and 7N — 0.005

» Independence Testing: Hp : Y1) ~ Multinomial(1, 7w(1)) and Y ~ Multinomial(1, 7v(?)) are independent. Noncentral Parameter with eps = 1 Noncentral Parameter with eps = 4
Form the contingency table of counts based on n trials:

LocalNoiseGOF LocalNoiseGOF

» Tests based on a critical value T, so that if @? > T then reject Hy. References
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