

Local Private Hypothesis Tests: Chi-Square Tests

Marco Gaboardi, Ryan Rogers

Hypothesis Testing

	H ₀ True	$ m H_0$ False
Reject $\mathbf{H_0}$	False Discovery	Power
Not	Significance	Type II Error

- \triangleright Given dataset and proposed model of ${
 m H_0}$, should it be rejected or not based on data.
- ▶ Goal: Bound \mathbb{P} [False Discovery] $\leq \alpha$, while obtaining good power.

The Need for Privacy

- ► Data may contain sensitive information.
- Releasing the result may leak information
- ► Homer et al. '08 showed that with only aggregate statistics on genomic-wide association studies we can determine whether someone in the study has a disease or not.

Modified Goal: Obtain statistically valid hypothesis tests which preserve the privacy of those in the study.

Local Differential Privacy [DMNS], [RSL⁺]

- Central Model: Data is submitted in the clear to a trusted curator and the output of a statistic on the data is privatized.
- Local Model: No trusted curator data is privatized and then collected.
- ▶ An algorithm $M: \mathcal{X} \to \mathcal{O}$ is ϵ -differentially private if for all inputs, x, x' and outcome sets $S \subseteq \mathcal{O}$:

$$\mathbb{P}\left[M(x)\in S\right]\leq e^{\epsilon}\mathbb{P}\left[M(x')\in S\right].$$

Local model of differential privacy is used in practice.

Focus of this work: Chi-Square Tests

- ightharpoonup Categorical data entries histogram: $X_i \sim$ Multinomial $(1, p = (p_1, \cdots, p_d))$
- ightharpoonup General class of tests use the chi-square statistic based on histogram $H=\sum_i X_i$:

$$Q^{2} = \sum_{j} \frac{(\text{Observed}[j] - \text{Expected}[j])^{2}}{\text{Expected}[j]}.$$

- ▶ Goodness of Fit: H_0 : $p = p^0$.
- ▶ Independence Testing: $H_0: Y^{(1)} \sim \text{Multinomial}(1, \pi^{(1)})$ and $Y^{(2)} \sim \text{Multinomial}(1, \pi^{(2)})$ are independent. Form the contingency table of counts based on n trials:

	$Y^{(2)}=0$	$Y^{(2)}=1$
$Y^{(1)}=0$	X_{00}	X_{01}
$Y^{(1)}=1$	X_{10}	X_{11}

- lacktriangle Tests based on a *critical value* au, so that if $Q^2 > au$ then reject H_0 .
- Nown that $Q^2 \stackrel{D}{\to} \chi^2_{df}$, so we set $\tau = \chi^2_{df,1-\alpha}$ in order for Type I error to be nearly α . Works well even for moderately sized datasets.

Preliminaries

- lacksquare Test $\mathrm{H}_0: oldsymbol{p} = oldsymbol{p}^0$ with data $X_1, \cdots X_n \sim \mathrm{Multinomial}(1, oldsymbol{p})$
- For various private mechanisms M, let $H = \sum_{i=1}^{n} M(X_i)$
- ➤ We use the technique from [KR] to reduce the number of degrees of freedom for the asymptotic distribution of the test statistic.
- ▶ Define the projection $\Pi = (I_d \frac{1}{d} \cdot \mathbf{1}\mathbf{1}^{\mathsf{T}})$ and covariance matrix $\mathbf{\Sigma}^0 = \mathrm{Diag}(\mathbf{p}^0) \mathbf{p}^0 (\mathbf{p}^0)^{\mathsf{T}}$.

Prior Work for DP Hypothesis Tests — All in Central Model

- \triangleright [USF, YFSU] Add noise to statistic to preserve privacy \rightarrow leads to unbounded noise in worst case.
- lacktriangle [JS] Add noise to histogram, use classical test lacktriangle leads to $\mathbb P$ [False Discovery] > lpha for small datasets.
- ► [GLRV, WLK] Add noise to histogram, use classical statistic but modify distribution to take into account the noise.
- ► [KR]: Add noise to histogram, modify statistic to account for the noise so that it is a chi-square random variable as in the classical tests.

Local Private Test Statistics

Test statistics for various private mechanisms

lacksquare LocalNoiseGOF: Add noise to data $M(X_i) = X_i + Z_i$, s.t. $\mathbb{V}\left[Z_i
ight] = \sigma^2$

$$\mathbf{T}_{\text{Noise}} = n \left(\frac{H}{n} - \boldsymbol{p}^0 \right)^{\mathsf{T}} \boldsymbol{\Pi} \left(\boldsymbol{\Sigma}^0 + \sigma^2 \cdot \boldsymbol{I}_d \right)^{-1} \boldsymbol{\Pi} \left(\frac{H}{n} - \boldsymbol{p}^0 \right)$$

► LocalGenRRGOF: Use generalized randomized response, i.e. $M(X_i) = X_i$ with probability $\frac{e^{\epsilon}}{e^{\epsilon} + d - 1}$, otherwise $M(X_i) \neq X_i$. Set $\tilde{\boldsymbol{p}}^0 = \left(\frac{e^{\epsilon} - 1}{e^{\epsilon} + d - 1}\right) \cdot \boldsymbol{p}^0 + \frac{1}{e^{\epsilon} + d - 1}$

$$\mathbf{T}_{\mathsf{RR}} = n \left(\frac{H}{n} - \tilde{\boldsymbol{p}}^0 \right)^{\mathsf{T}} \mathrm{Diag} \left(\tilde{\boldsymbol{p}}^0 \right)^{-1} \left(\frac{H}{n} - \tilde{\boldsymbol{p}}^0 \right)$$

LocalBitFlipGOF: Using a mechanism from [BS] we use $M(X_i) = (M_1(X_i[1]), \cdots, M_d(X_i[d]))$ where $M_i(b) = b$ w.p $\frac{e^{\epsilon/2}}{e^{\epsilon/2}+1}$ and M(b) = 1-b otherwise. Set $\kappa = \frac{e^{\epsilon/2}-1}{e^{\epsilon/2}+1}$ and $\check{p}^0 = \kappa \cdot p^0 + \frac{1}{e^{\epsilon/2}+1}$

$$\mathbf{T}_{\mathsf{BF}} = \frac{n}{\kappa^2} \left(\frac{H}{n} - \check{\boldsymbol{p}}^0 \right)^{\mathsf{T}} \boldsymbol{\Pi} \left(\boldsymbol{\Sigma}^0 + \frac{e^{\epsilon/2}}{\left(e^{\epsilon/2} - 1 \right)^2} \cdot I_d \right)^{-1} \left(\frac{H}{n} - \check{\boldsymbol{p}}^0 \right)$$

All statistics converge in distribution to χ^2_{d-1} under H_0 .

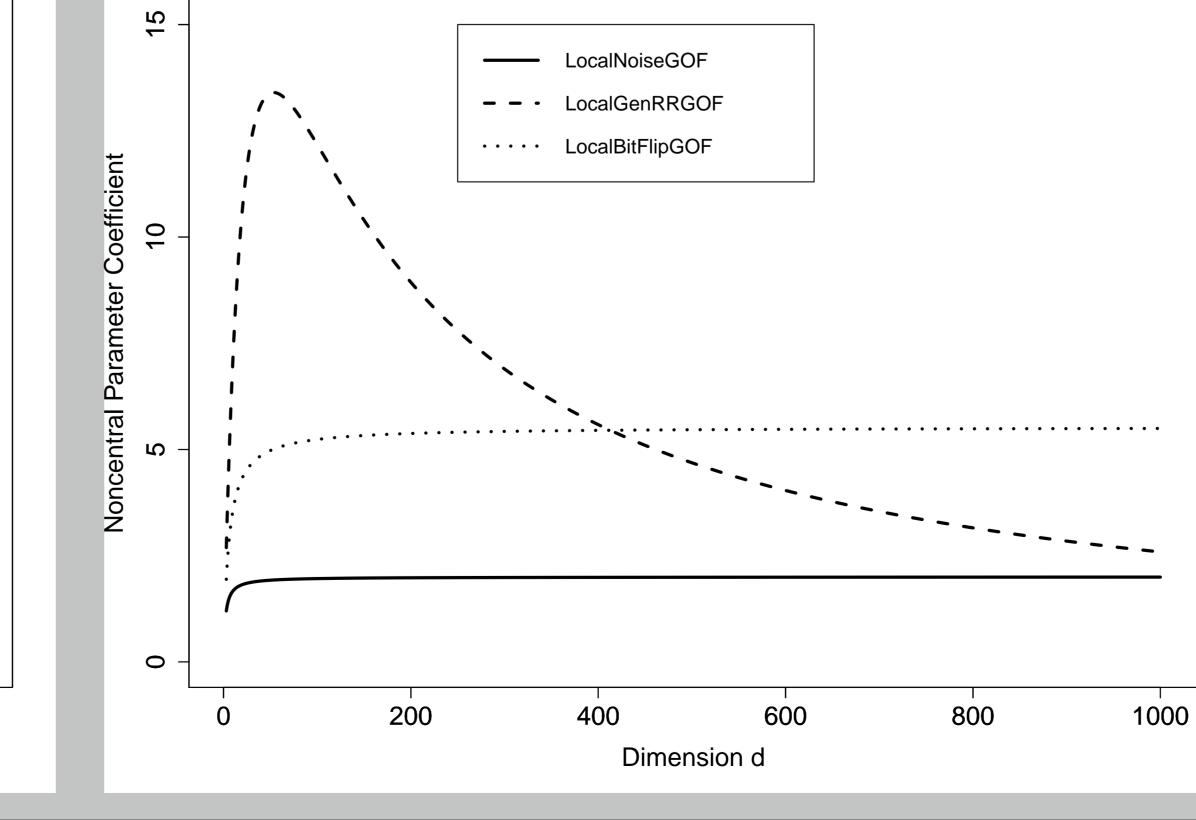
Noncentral Parameters Comparison

- lacktriangle Each test is designed to achieve $\mathbb P$ [False Discovery] at most lpha asymptotically, as in classical test.
- ► Test: $H_0: p^0 = (1/d, \dots, 1/d)$. $H_1: p^1 = p^0 + \frac{1}{\sqrt{p}} \Delta$.
- \blacktriangleright Under $\mathbf{H_1}$, we have

$$egin{aligned} & ext{T}_{ ext{Noise}} \stackrel{D}{
ightarrow} \chi_{d-1}^2 \left(\left(rac{d}{1+d\sigma^2}
ight) \cdot ||oldsymbol{\Delta}||_2^2
ight), \qquad \sigma pprox 1/\epsilon \ & ext{T}_{ ext{RR}} \stackrel{D}{
ightarrow} \chi_{d-1}^2 \left(d \cdot \left(rac{e^\epsilon - 1}{e^\epsilon + d - 1}
ight)^2 \cdot ||oldsymbol{\Delta}||_2^2
ight) \ & ext{T}_{ ext{BF}} \stackrel{D}{
ightarrow} \chi_{d-1}^2 \left(d \cdot \left(rac{(e^{\epsilon/2} - 1)^2}{d \cdot e^{\epsilon/2} + (e^{\epsilon/2} - 1)^2}
ight) \cdot ||oldsymbol{\Delta}||_2^2
ight) \end{aligned}$$

► We plot the noncentral parameter for the various test statistics,

Noncentral Parameter with eps = 1 LocalNoiseGOF --- LocalGenRRGOF LocalBitFlipGOF

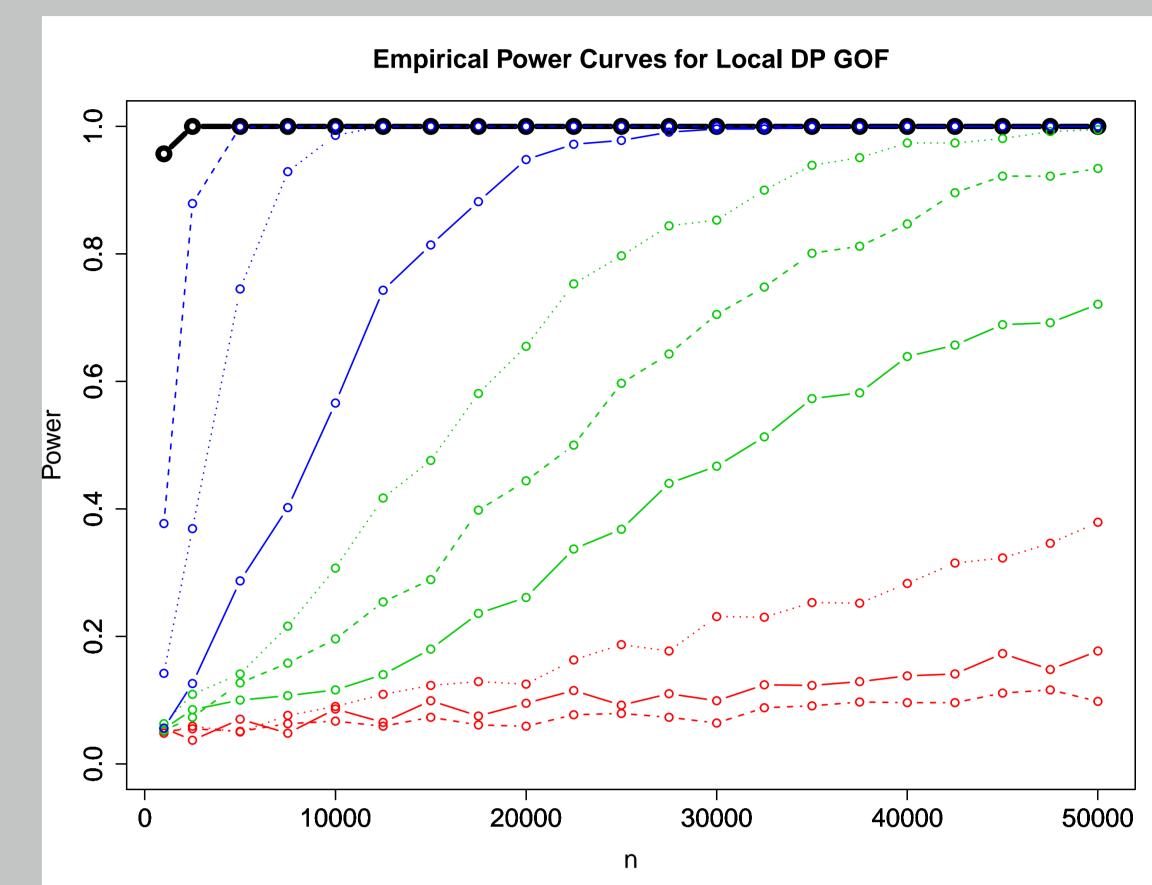


Noncentral Parameter with eps = 4

Power Comparison for Goodness of Fit Testing

- ► Test: $H_0: p^0 = (1/d, \cdots, 1/d)$.
- ightharpoonup Data is generated from $H_1: \boldsymbol{p}^1 = \boldsymbol{p}^0 + \eta \cdot (1, -1, \cdots, -1, 1)$.

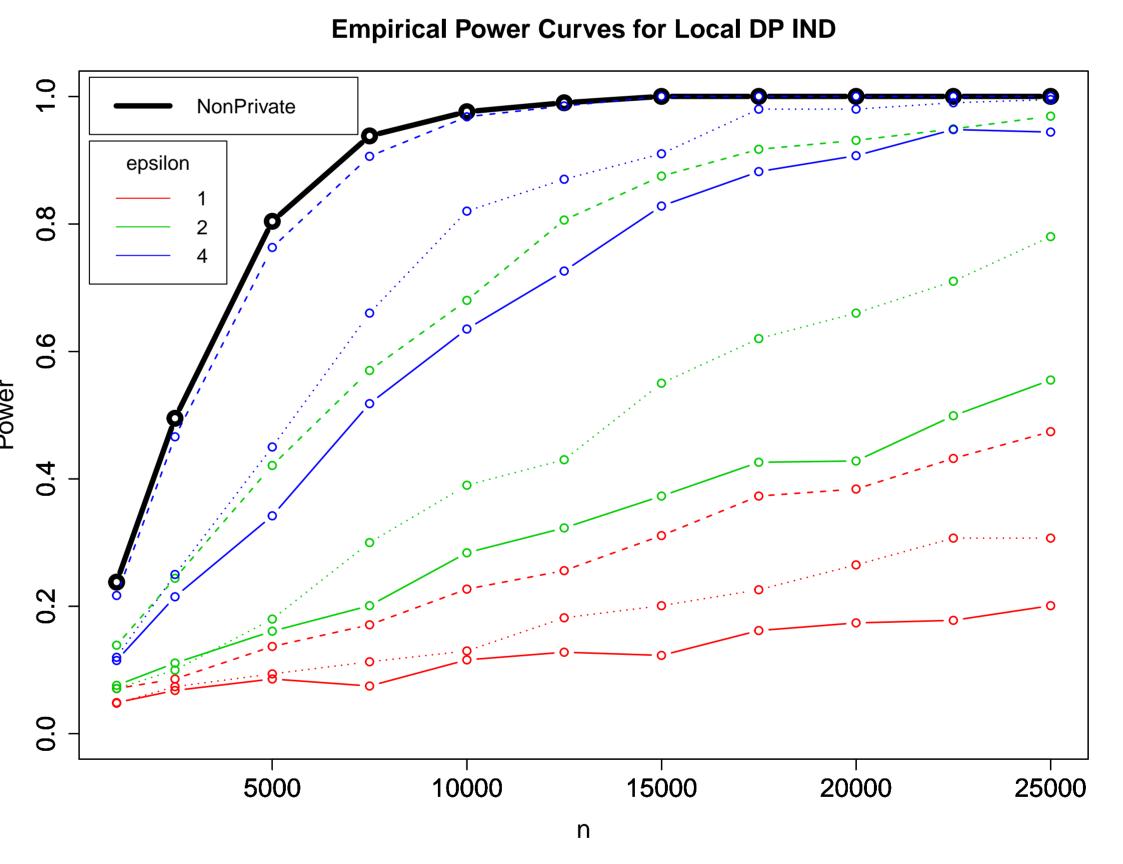


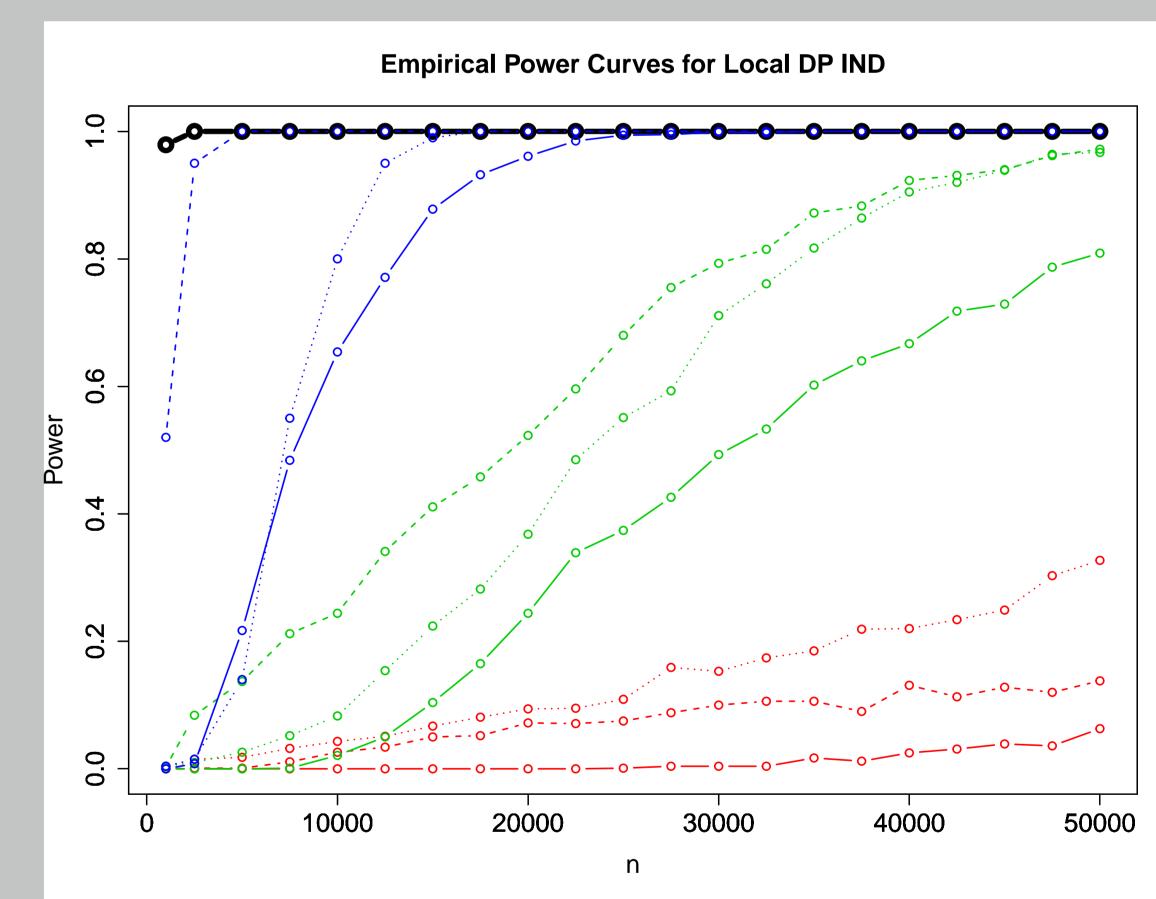


Comparison of empirical power among the classical non-private test and the local private tests: LocalNoiseGOF with Laplace noise (solid line), LocalGenRRGOF (dashed line), and LocalBitFlipGOF (dotted line); in the left plot d=4 and $\eta=0.01$, in the right plot d=40 and $\eta=0.005$.

Power Comparison for Independence Testing

- ► Test $H_0: Y^{(1)} \perp Y^{(2)}$ with contingency table data $\{X_{j,\ell}: j \in [r], \ell \in [c]\}$.
- ▶ Data generated with $\boldsymbol{\pi}^{(1)} (\boldsymbol{\pi}^{(2)})^{\intercal} + \eta \cdot (1, -1, \cdots, -1, 1)^{\intercal} (1, -1, \cdots, -1, 1)$ with symmetric $\boldsymbol{\pi}^{(i)}$.





Comparison of empirical power among classical non-private test versus local private tests: adding Laplace noise (solid line), LocalGenRRIND (dashed line), and LocalBitFlipIND (dotted line) where the left plot (r,c)=(2,2) and $\eta=0.01$, the right plot (r,c)=(10,4) and $\eta=0.005$

References

- [BS] Bassily and Smith. Local, private, efficient protocols for succinct histograms. In STOC'15.
- [DMNS] Dwork, McSherry, Nissim, and Smith. Calibrating noise to sensitivity in private data analysis. In TCC '06.
- [GLRV] Gaboardi, Lim, Rogers, and Vadhan. Differentially private chi-squared hypothesis testing. In ICML'16.
- [JS] Johnson and Shmatikov. Privacy-preserving data exploration in genome-wide association studies. In KDD'13.
- [KR] Kifer and Rogers. A New Class of Private Chi-Square Hypothesis Tests. In *AISTATS'17*.

 [RSL⁺] Raskhodnikova, Smith, H. K. Lee, Nissim, and Kasiviswanathan. What can we learn privately? *IEEE'08*.
- [USF] Uhler, Slavkovic, and Fienberg. Privacy-preserving data sharing for gwas. *J. of Privacy and Confidentiality'13*.
- [WLK] Wang, J. Lee, and Kifer. Differentially private hypothesis testing, revisited. arXiv:1511.03376, '15.
- [YFSU] Yu, Fienberg, Slavković, and Uhler. Scalable privacy-preserving data sharing methodology for gwas. *J. of Biomed Informatics* '14, 50.

ICML 2018 Stockholm, Sweden