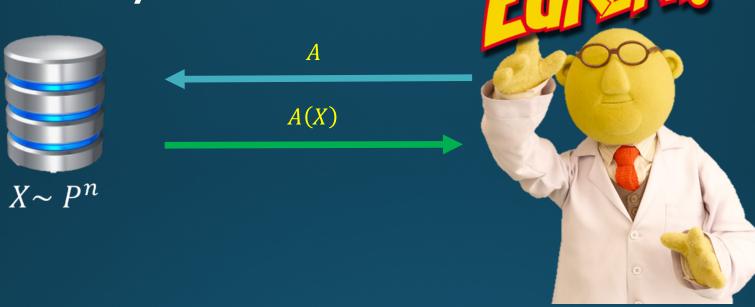
Max-Information, Differential Privacy, and Post-Selection Hypothesis Testing

Ryan Rogers, Aaron Roth, Adam Smith, and Om Thakkar

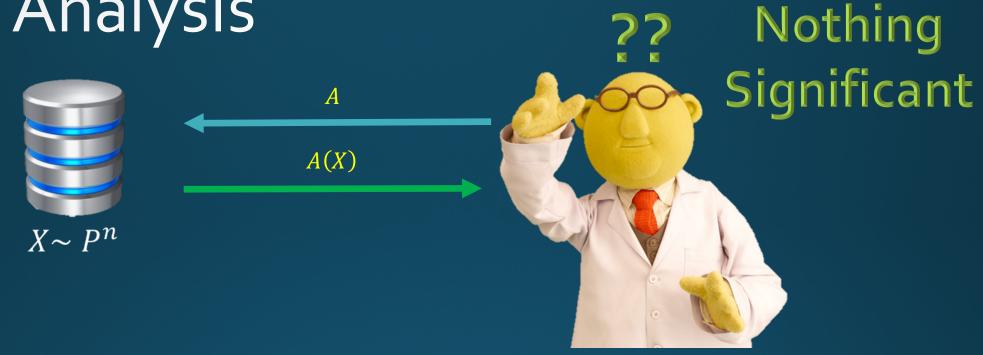
Supported by grants from the Sloan Foundation and NSF: CNS-1253345, CNS-1513694, IIS-1447700.

Data Analysis

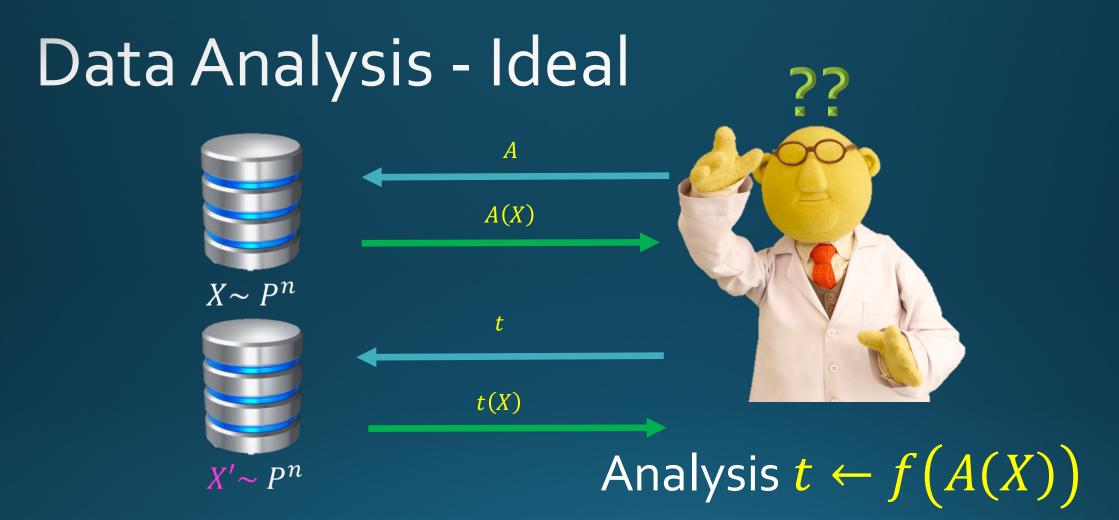


Analysis A

Data Analysis

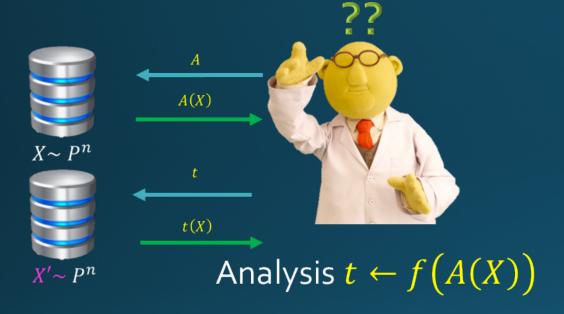


Analysis $t \leftarrow f(A(X))$

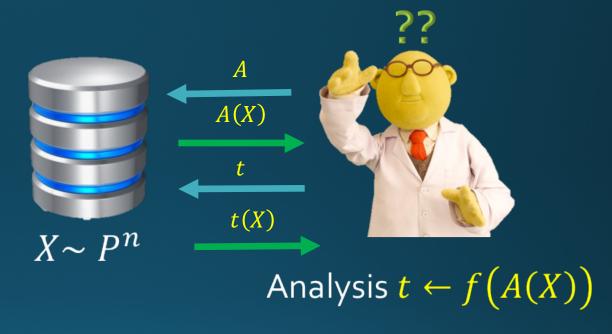


A lot of existing theory assumes tests are selected independently of the data.

Ideal World



Real World



How can we provide statistically valid answers to adaptively chosen analyses?

The Statistical Crisis in Science

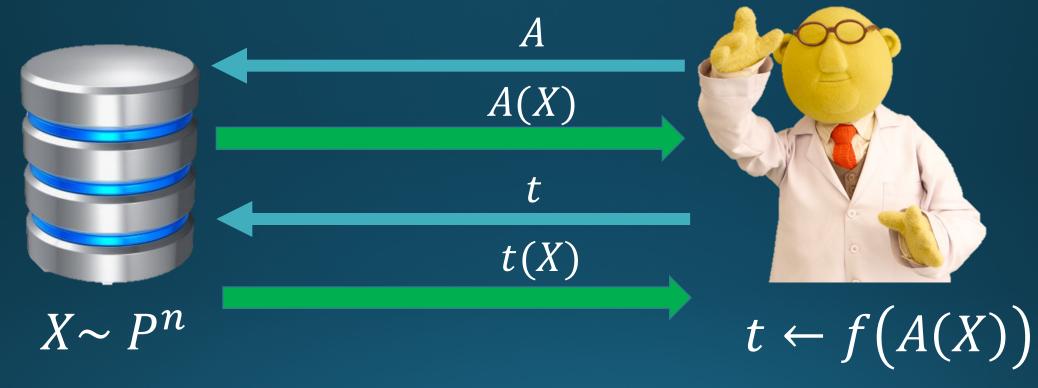
Data-dependent analysis—a "garden of forking paths"— explains why many statistically significant comparisons don't hold up.

Andrew Gelman and Eric Loken

here is a growing realization a short mathematics test when it is that reported "statistically sig- expressed in two different contexts, nificant" claims in scientific involving either healthcare or the

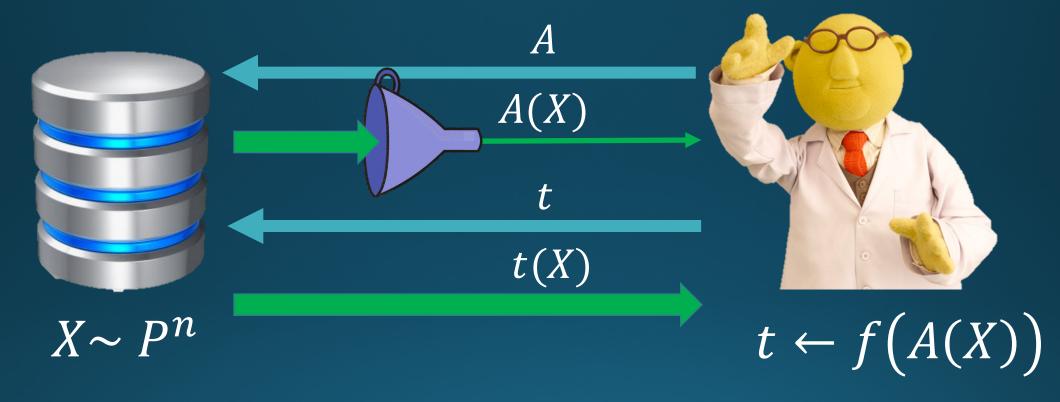
This multiple comparisons issue is well known in statistics and has been called "p-hacking" in an influential military The question may be framedle 2011 research finding is analytical modes. When the psychology remains the p

Adaptive Data Analysis



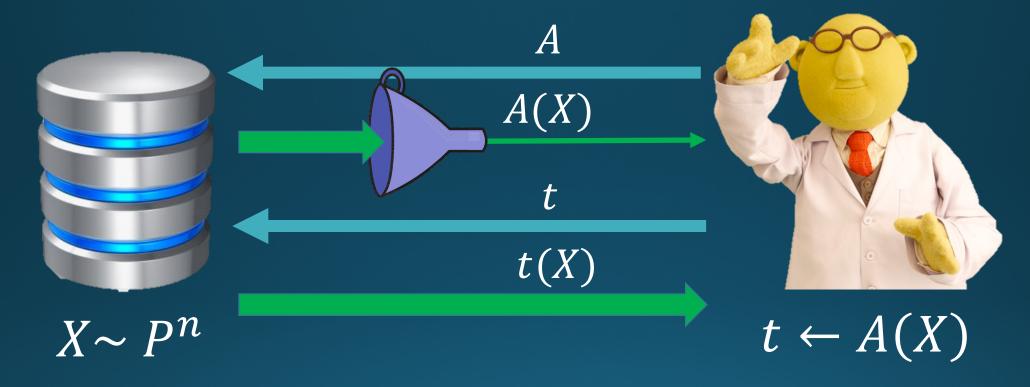
How can we provide statistically valid answers to adaptively chosen analyses?

Adaptive Data Analysis



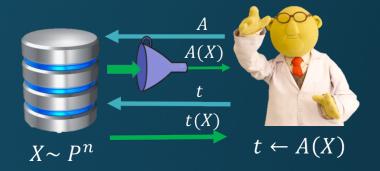
Answer: Limit the info learned about the dataset [Dwork, Feldman, Hardt, Pitassi, Reingold, Roth'15].

Adaptive Data Analysis



Answer: Limit the info learned about the dataset [Dwork, Feldman, Hardt, Pitassi, Reingold, Roth'15].

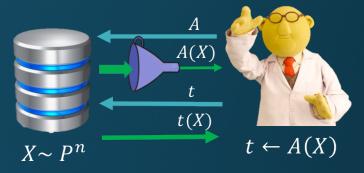
Contributions



- Post-selection Hypothesis Testing
 - Bounded Max-Info ⇒ Valid Tests
 - Tighter connection than previous results.
- Approximate Differential Privacy ⇒ Bounded Max-Info
 - k rounds of adaptivity: max-info $\sim k$ rather than k^2 .

Generalizes and unifies previous work

Related Work



- Lots of work in statistics community on post-selection inference [Freedman'83],[Leeb,Potscher'06],[Berk,Brown,Buja,Zhang,Zhao'13], ...
 - Specific to type of analyses performed
- [DFHPRR](STOC'15,NIPS'15,Science'15)
 - Initial connections between information, privacy and adaptive analysis
- Accuracy for specific queries
 - [DFHPRR] (STOC'15, Science'15)
 - [Bassily, Nissim, Smith, Steinke, Stemmer, Ullman'16]
 - [Cummings,Ligett,Nissim,Roth,Wu'16]
 - [Russo,Zou'16]
 - [Wang,Lei,Fienberg'16]
- Impossibility results
 - [Hardt,Ullman'14], [Steinke,Ullman'15]

Hypothesis Testing

- Hypothesis test is defined by
 - null hypothesis $H_0 \subseteq \Delta(D)$ and
 - statistic:

```
t: D^n \to \{Inconclusive, Reject\}
```

- A False Discovery is when $X \sim P^n$ and $P \in H_0$ but t(X) = Reject
- Classical results apply when t is independent of X.
- Want to bound $\Pr[False\ Discovery]$ when $t \leftarrow A(X)$.

Max-Information [DFHPRR'15]

• Algorithm A has small max-info $\Rightarrow A(X)$ and X are "close" to independent.

• The β -approximate max-info between A(X) and X in Real World Real World

$$I_{\infty}^{\beta}(A(X);X)$$

$$= \log \left(\sup_{O} \frac{\Pr[(A(X),X) \in O] - \beta}{\Pr[(A(X'),X) \in O]} \right)$$

$$|A(X)| = \log \left(\sup_{O} \frac{\Pr[(A(X'),X) \in O] - \beta}{\Pr[(A(X'),X) \in O]} \right)$$

Max-Information of Algorithms [DFHPRR'15]

$$I_{\infty}^{\beta}(A(X);X) = \log\left(\sup_{O} \frac{\Pr[(A(X),X) \in O] - \beta}{\Pr[(A(X'),X) \in O]}\right)$$

An algorithm A has β -approximate max-info for data sets of size n if

any data distribution

$$I_{\infty}^{\beta}(A;n) = \sup_{\mathcal{S}:X\sim\mathcal{S}} \left\{ I_{\infty}^{\beta}(A(X);X) \right\}$$

restrict to product distribution

$$I_{\infty,\Pi}^{\beta}(A;n) = \sup_{P:X\sim P^n} \left\{ I_{\infty}^{\beta}(A(X);X) \right\}$$

Post-selection Hypothesis Testing

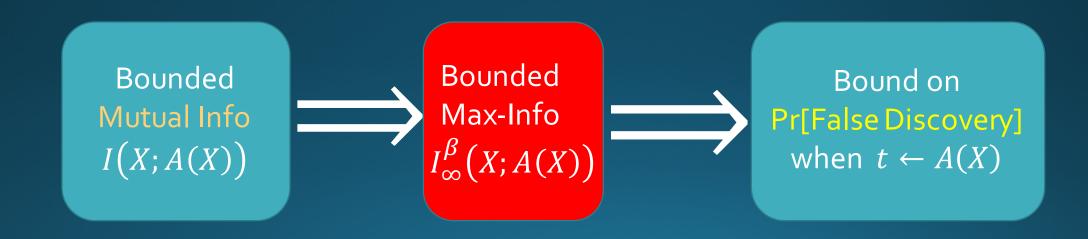
• [RZ'16]: When mutual info I(X; A(X)) is bounded, we can control Pr[False Discovery] for adaptively selected tests.

Bounded Mutual Info I(X; A(X))

Bound on Pr[False Discovery] when $t \leftarrow A(X)$

Post-selection Hypothesis Testing

- [RZ'16]: When mutual info I(X; A(X)) is bounded, we can control Pr[False Discovery] for adaptively selected tests.
- [This Paper]: We get a tighter connection via max-info



What procedures A have bounded max-info?

- [DFHPRR'15] Max-information bounds for:
 - (Pure) Differential Privacy algorithmic stability condition.
 - Description Length log(image size of A)

Differential Privacy [Dwork, McSherry, Nissim, Smith'o6]

• A randomized algorithm $A: D^n \to Y$ is (ε, δ) -differentially private if for any neighboring data sets $x, x' \in D^n$ and for any outcome $S \subseteq Y$ we have

$$P(A(x) \in S) \le e^{\varepsilon} P(A(x') \in S) + \delta$$

If $\delta = 0$ we say pure DP, and otherwise approximate DP.

Technical Contributions

• [DFHPRR'15] : If $A:D^n\to T$ is $(\epsilon,0)$ -DP, then for $\beta>0$, $I_{\infty,\Pi}^{\beta}(A;n)\leq \tilde{O}(\epsilon^2 n)$ $I_{\infty}^{0}(A;n)\leq O(\epsilon n)$

• [This paper]: If
$$A:D^n\to T$$
 is (ϵ,δ) -DP, then
$$I_{\infty,\Pi}^\beta(A;n)\leq \tilde{O}(\epsilon^2 n \) \ \text{ where } \beta\approx n\sqrt{\frac{\delta}{\epsilon}}$$

• [This paper] (based on [De'12]) : There exists an (ϵ, δ) -DP procedure A where,

$$I_{\infty}^{\beta}(A;n) \approx n \text{ for any } \beta < \frac{1}{2} - \delta$$

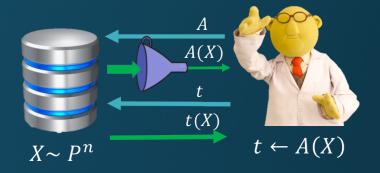
Consequences of Positive Result

Theorem: If
$$A: D^n \to T$$
 is (ϵ, δ) -DP, then
$$I^{\beta}_{\infty,\Pi}(A;n) \leq \tilde{O}(\epsilon^2 n) \text{ where } \beta \approx n \sqrt{\frac{\delta}{\epsilon}}$$

- Recover (optimal) results of [BNSSSU'16] for low sensitive queries.
 - However, our bounds apply more generally (e.g. adaptive hypothesis tests).
- Composition of k adaptively selected $(\epsilon, 0)$ -DP procedures: $A_1, ..., A_k$
 - [DFHPRR'15]: $I_{\infty,\Pi}^{\beta}(A_k \circ \cdots \circ A_1; n) \leq \tilde{O}(n\epsilon^2 k^2)$
 - [This Paper]: $I_{\infty,\Pi}^{\beta}(A_k \circ \cdots \circ A_1; n) \leq \tilde{O}(n\epsilon^2 k)$

Via strong composition theorem from [Dwork,Rothblum,Vadhan'10]

Contributions



- Post-selection Hypothesis Testing
 - Max-Info Bound ⇒ bound Pr[False Discovery] in adaptive settings
 - Improves on previous result of [RZ'16] that uses mutual info.
- (ϵ, δ) -DP \Longrightarrow Bounded Max–Info over product distributions
 - Recovers results from [BNSSSU'16] that dealt with specific analyses.
 - k rounds of adaptivity: we get max-info $\sim k$, where [DFHPRR'15] gives $\sim k^2$

Thanks!

Proof Sketch of Positive Result

Theorem: If
$$A: D^n \to T$$
 is (ϵ, δ) -DP, then
$$I^{\beta}_{\infty,\Pi}(A;n) \leq \tilde{O}(\epsilon^2 n) \text{ where } \beta \approx n \sqrt{\frac{\delta}{\epsilon}}$$

• Define the following random variable where $x \sim P^n$, $a \sim A(x)$ and

$$Z(a,x) = \log\left(\frac{\Pr[(A(X),X) = (a,x)]}{\Pr[(A(X'),X) = (a,x)]}\right)$$

$$= \sum_{i=1}^{n} \log\left(\frac{\Pr[X_i = x_i | a, x_{1:i-1}]}{\Pr[X_i = x_i]}\right) = \sum_{i=1}^{n} Z_i(a, x_{1:i})$$

 Note that if we can bound this with high probability then we can bound approximate max-info.

Proof Sketch of Positive Result

- We want to apply a concentration bound (Azuma's inequality) to the following quantity: $\sum_{i=1}^{n} Z_i(a, x_{1:i})$
- We must then have:
 - A bound on the expectation of each $Z_i(a, x_{1:i})$
 - A bound on each $Z_i(a, x_{1:i})$
- Problem: Each $Z_i(a, x_{1:i})$ is **NOT** bounded.
- Although each term is bounded with high probability, conditioning on the same A(X)=a and a prefix of data $X_{1:i-1}=x_{1:i-1}$ in every term complicates the argument.

Proof Sketch of Positive Result

For any
$$t > 0$$

$$\Pr\left[\sum_{i=1}^{n} Z_{i}(A, X_{1:i}) \ge \epsilon^{2}n + n\sqrt{\delta/\epsilon} + t \epsilon\sqrt{n}\right]$$

$$\le \Pr\left[\sum_{i=1}^{n} Z_{i}(A, X_{1:i}) \ge \epsilon^{2}n + n\sqrt{\delta/\epsilon} + t \epsilon\sqrt{n} \cap (A, X) \in GOOD\right]$$

$$+ \Pr[(A, X) \in BAD]$$

$$\le e^{\frac{-t^{2}}{2}} + O(n\sqrt{\delta/\epsilon})$$
Set $t = O(\epsilon\sqrt{n})$