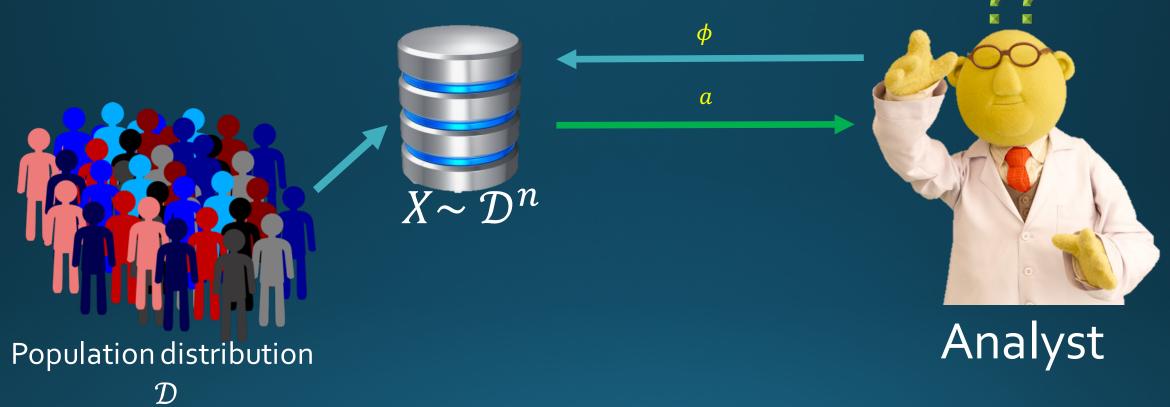
Leveraging Privacy in Data Analysis

Ryan Rogers

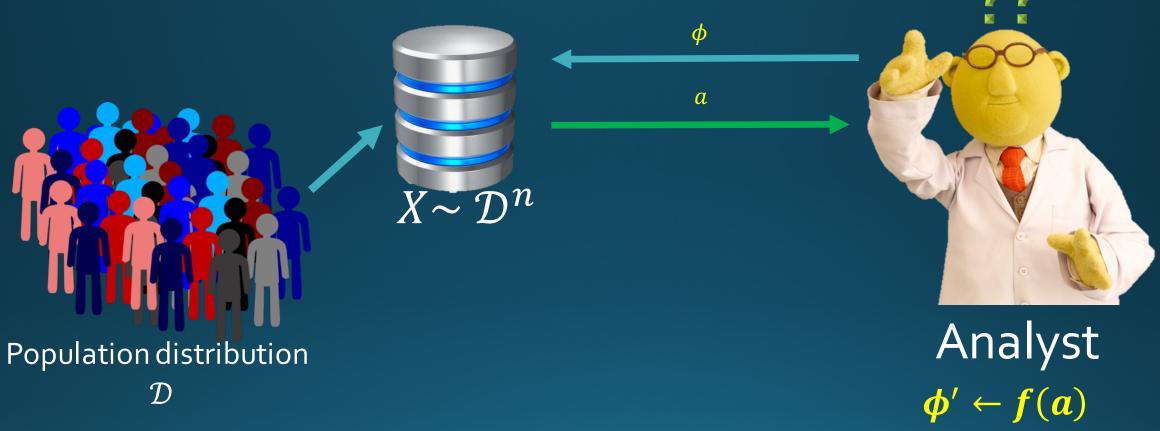
Applied Mathematics and Computational Sciences Department
Dissertation Defense

Advisors: Michael Kearns and Aaron Roth

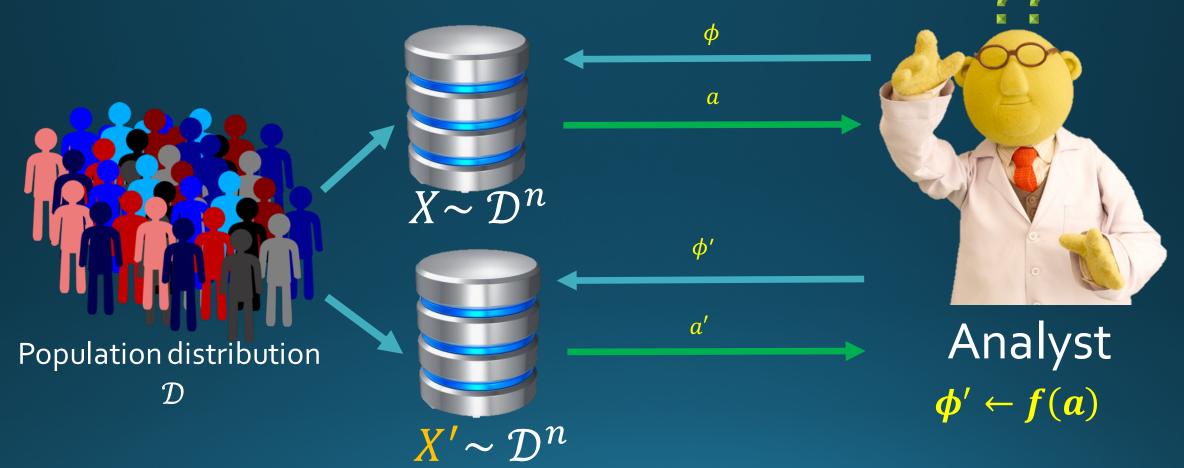
Data Analysis



Data Analysis

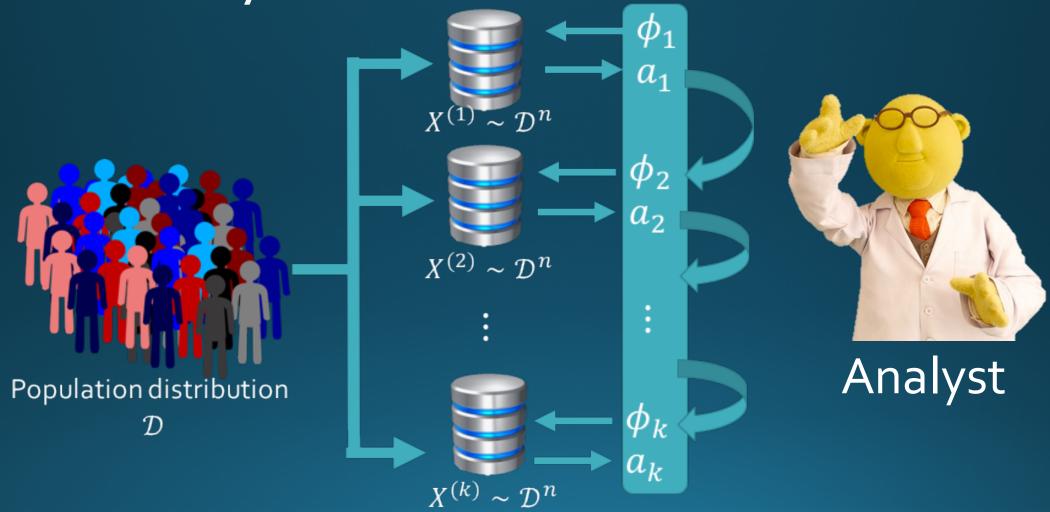


Data Analysis - Ideal



A lot of existing theory assumes tests are selected independently of the data.

Data Analysis - Ideal



Data Analysis - Realistic ϕ_1 a_1 ϕ_2 Population distribution Data Analyst \mathcal{D} $X \sim \mathcal{D}^n$

Data Analysis - Realistic

P-HACKING

Why Most Published Research Findings Are False

The Statistical Crisis in Science

Data-dependent analysis—a "garden of forking paths"— explains why many statistically significant comparisons don't hold up.

Andrew Gelman and Eric Loken

here is a growing realization

a short mathematics test when it is expressed in two different contexts, well known in statistics and has been nificant" claims in scientific involving either healthcare or the called "p-hacking" in an influential

This multiple comparisons issue is military. The question may be framed., 2011 paper by, the nevchology residence of the control of tested relationships.

And analytical modes: When effect sizes are when effect when when effect sizes are

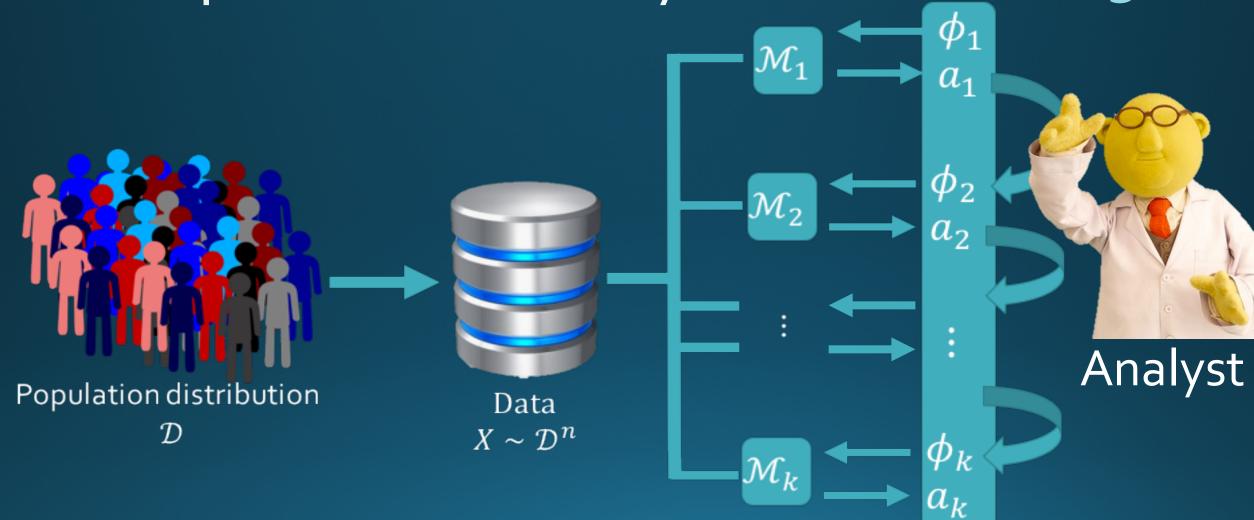
Adaptive Data Analysis



Question: How can we provide statistically valid answers to adaptively chosen analyses?

- 1. Traditional method split the dataset into k chunks.
 - Requires $k \ll n$.
- 2. Limit the info learned about the dataset with each analysis [Dwork, Feldman, Hardt, Pitassi, Reingold, Roth'15].
 - Can handle $k \gg n$.

Adaptive Data Analysis [DFHPRR'15]



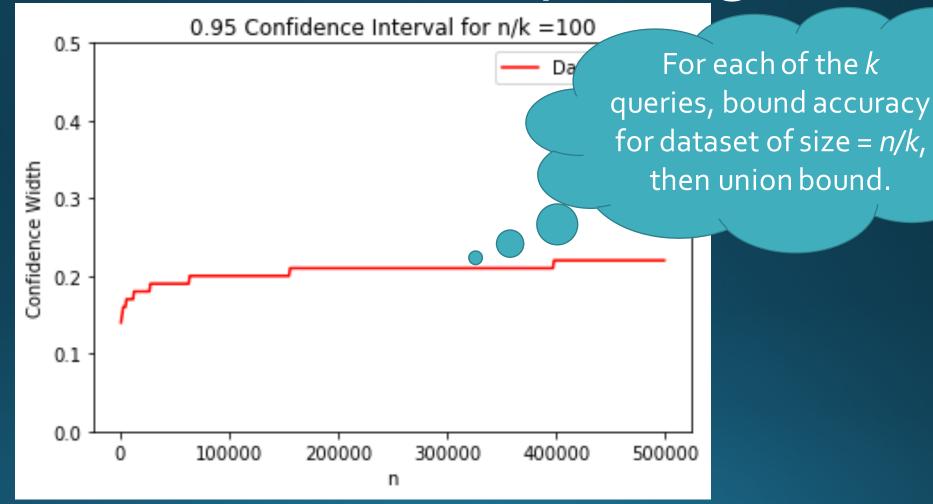
Example – Statistical Queries

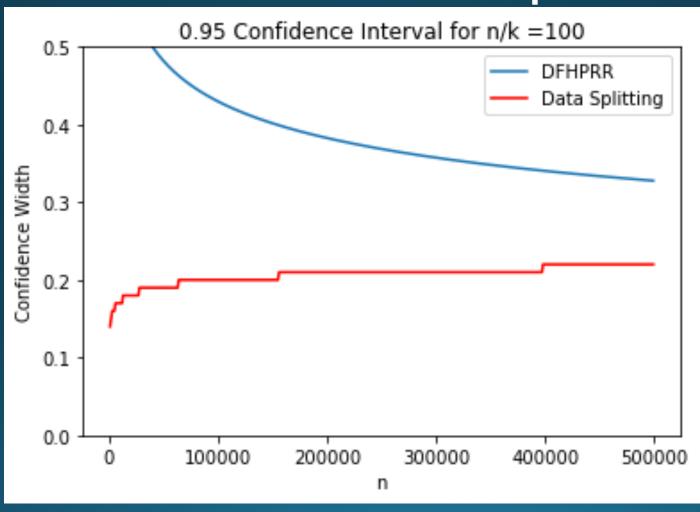
- Let each analysis $\phi_j \colon \mathcal{X} \to [0,1]$ for $j=1,\cdots,k$. We want to estimate $\phi_j(\mathcal{D}) = \mathbb{E}_{Y \sim \mathcal{D}} \big[\phi_j(Y) \big]$
- ullet Want to design algorithms \mathcal{M}_j such that $\mathcal{M}_j(X)=a_j$ and

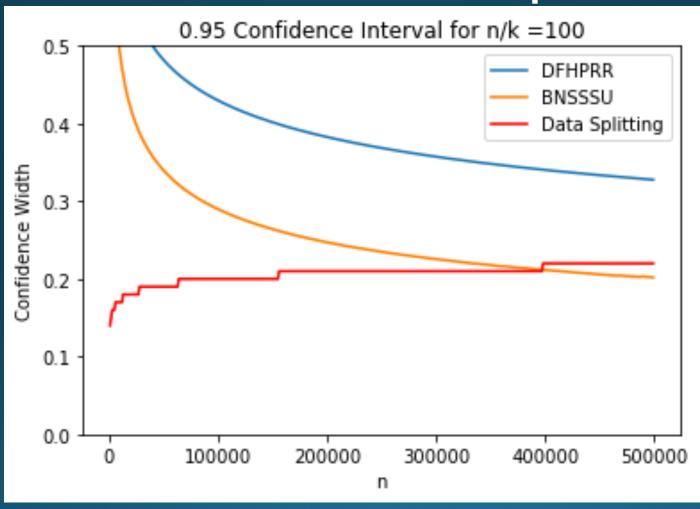
$$\max_{j \in \{1, \dots, k\}} \{ |a_j - \phi_j(\mathcal{D})| \} \le \tau \quad \text{w.p.} \ge 1 - \beta$$

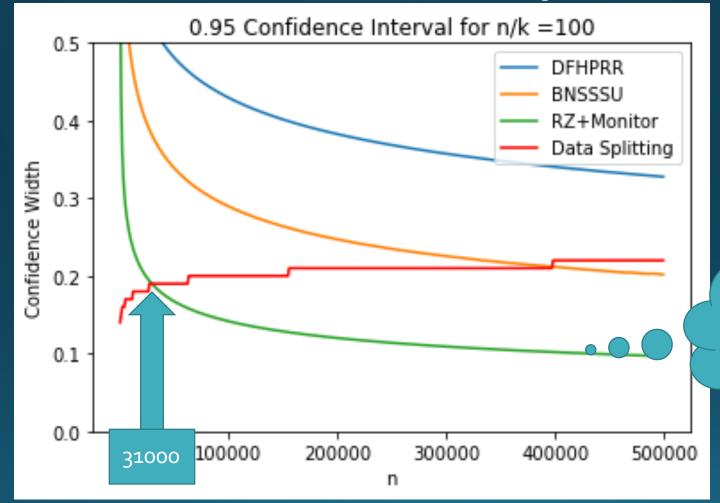
• [DFHPRR'15]:
$$\mathcal{M}_j(X) = \frac{1}{n} \sum_{i=1}^n \phi_j(X_i) + N(0, \sigma^2)$$

so for properly chosen σ , we can have $k \sim n^2$









Ongoing work with Roth, Smith, Thakkar

Questions

- What types of algorithms can we use to ensure validity?
- Can we do more general types of analyses, beyond linear queries?
- What existing techniques can we use, and what needs to be modified for adaptivity and the algorithms we use?

Related Work

- Lots of work in statistics community on selective inference [Freedman'83], [Leeb, Potscher'06], [Berk, Brown, Buja, Zhang, Zhao'13], ...
 - Specific to type of analyses performed
- [DFHPRR](STOC'15,NIPS'15,Science'15)
 - Initial connections between information, privacy and adaptive analysis
- Accuracy for specific queries
 - [DFHPRR] (STOC'15, Science'15)
 - [Bassily, Nissim, Smith, Steinke, Stemmer, Ullman'16]
 - [Cummings,Ligett,Nissim,Roth,Wu'16]
 - [Russo,Zou'16]
 - [Wang,Lei,Fienberg'16]
- Impossibility results
 - [Hardt,Ullman'14], [Steinke,Ullman'15]

Outline

- Post Selection Hypothesis Testing [R,Roth,Smith,Thakkar FOCS'16]
 - Connection between Max-Info and Differential Privacy
- DP composition with adaptively selected parameters [R,Roth,Ullman,Vadhan NIPS'16]
 - Privacy Odometers and Filters
- Private Hypothesis Tests [Gaboardi,Lim,R,Vadhan ICML'16],[Kifer,R AISTATS'16]
 - Chi-Square Tests
- Directions for Future Work

Max-Information [DFHPRR'15]

• Algorithm \mathcal{M} has small max-info $\Rightarrow \mathcal{M}(X)$ and X are "close" to independent.

• The β -approximate max-info between $\mathcal{M}(X)$ and Y-Real World

$$I_{\infty}^{\beta}(\mathcal{M}(X);X)$$

$$= \log \left(\sup_{O} \frac{\mathbb{P}[(\mathcal{M}(X),X) \in O] - \beta}{\mathbb{P}[(\mathcal{M}(X'),X) \in O]} \right)$$

$$|\mathcal{M}(X)| \leq O$$

$$|\mathcal{M}(X)| \leq O$$

$$|\mathcal{M}(X)| \leq O$$

$$|\mathcal{M}(X)| \leq O$$

Max-Information of Algorithms [DFHPRR'15]

$$I_{\infty}^{\beta}(\mathcal{M}(X);X) = \log \left(\sup_{O} \frac{\mathbb{P}[(\mathcal{M}(X),X) \in O] - \beta}{\mathbb{P}[(\mathcal{M}(X'),X) \in O]} \right)$$

The β -approximate max-info of an algorithm $\mathcal M$ on data sets of size n is:

$$I_{\infty,\Pi}^{\beta}(\mathcal{M};n) = \sup_{\mathcal{D}:X\sim\mathcal{D}^n} \left\{ I_{\infty}^{\beta}(\mathcal{M}(X);X) \right\}$$

Hypothesis Testing

- Hypothesis test $t: \mathcal{X}^n \to \{Inconclusive, Reject H_0\}$ is defined by
 - null hypothesis $H_0 \subseteq \Delta(\mathcal{X})$ and
 - statistic:

$$g: \mathcal{X}^n \to \mathbb{R}$$

	$oldsymbol{H_0}$ is True	$oldsymbol{H_0}$ is False
t rejects	α = False Discovery	Power
t fails to reject	1 - α = Significance	Type II Error

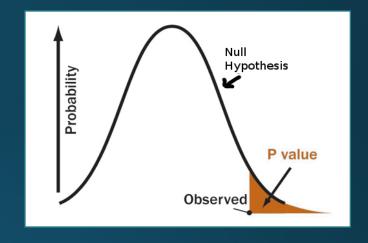
• Want to bound $\mathbb{P}[\mathsf{False}\ \mathsf{Discovery}] \leq \alpha$ and get good Power.

p-Values

• The *p*-value associated with a value y and a distribution $\mathcal{D} \in H_0$ is given as

$$p(y) = \mathbb{P}_{X \sim \mathcal{D}^n}[g(X) > y]$$

• Denotes the prob of observing a value of the test statistic that is at least as extreme as y.



- Note that $p(g(X)) \sim U[0,1]$ if $X \sim \mathcal{D}^n$ where $\mathcal{D} \in H_0$.
- If we reject the model when $p(g(X)) < \alpha$ then $\mathbb{P}[\mathsf{False Discovery}] < \alpha$.
- No longer true when $t \leftarrow \mathcal{M}(X)$!

p-Value Corrections

- Even when we use the data to determine a test, we still want to be able to control the $\mathbb{P}[False\ Discovery]$.
- A function $\gamma: [0,1] \to [0,1]$ is a valid p-value correction function for a selection procedure $\mathcal{M}: \mathcal{D}^n \to \mathcal{O}$ if for every α the procedure:
 - 1. Select test $t \leftarrow \mathcal{M}(X)$
 - 2. Reject H_0 if $p(g(X)) < \gamma(\alpha)$

has probability at most α of false discovery.

Max-Info gives Valid p-Value Corrections

• If we have selection procedure \mathcal{M} such that $I_{\infty,\Pi}^{\beta}(\mathcal{M},n) \leq m$ then a valid p-value correction function is

$$\gamma(\alpha) = \frac{\alpha - \beta}{2^m}$$

• Proof: Let $S \subseteq \mathcal{X}^n \times \mathcal{O}$ be the event that \mathcal{M} selects a test statistic where the p-value is at most $\gamma(\alpha)$, but the null is true.

$$\mathbb{P}[p(g(X)) \leq \gamma(\alpha) \cap t \leftarrow \mathcal{M}(X)|H_0]$$

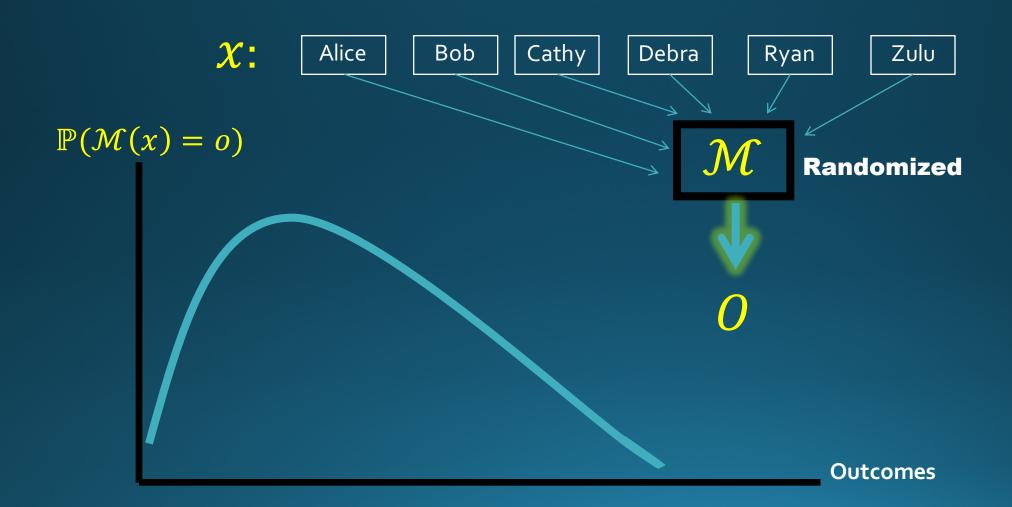
$$= \mathbb{P}[(X, \mathcal{M}(X)) \in S|H_0]$$

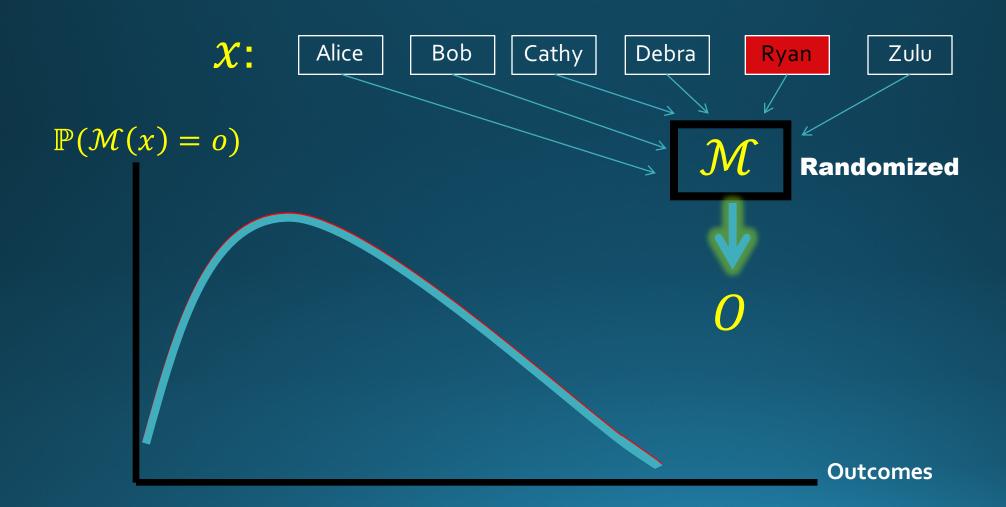
$$\leq 2^m \mathbb{P}[(X, \mathcal{M}(X')) \in S|H_0] + \beta$$

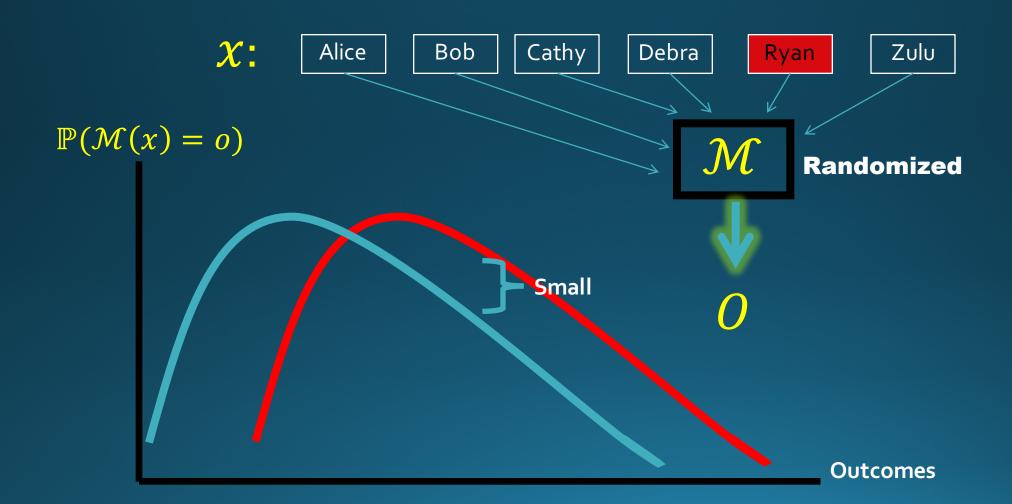
$$\leq \gamma(\alpha)$$

What procedures M have bounded max-info?

- [DFHPRR'15] Max-information bounds for:
 - (Pure) Differential Privacy algorithmic stability condition.
 - Description Length $\log(image\ size\ of\ \mathcal{M}\)$







• A randomized algorithm $\mathcal{M}: \mathcal{D}^n \to \mathcal{O}$ is (ε, δ) -differentially private if for any neighboring data sets $x, x' \in \mathcal{X}^n$ and any outcome $S \subseteq \mathcal{O}$ we have

$$\mathbb{P}(\mathcal{M}(x) \in S) \le e^{\varepsilon} \mathbb{P}(\mathcal{M}(x') \in S) + \delta$$

If $\delta = 0$ we say pure DP, and otherwise approximate DP.

DP Composition

- If we run k many $(\epsilon, 0)$ -DP algorithms $\mathcal{M}_1, \mathcal{M}_2, \cdots, \mathcal{M}_k$ on the same data set, then:
 - [DMNS'06]: The composed algorithm $\mathcal{M}=\mathcal{M}_k\circ\cdots\circ\mathcal{M}_1$ is:

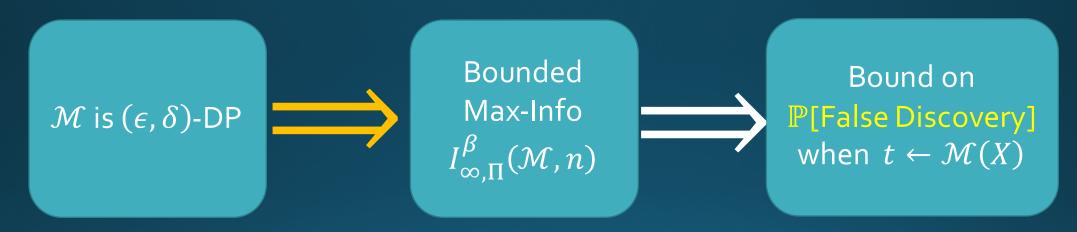
$$(\epsilon k, 0)$$
-DP.

• [Dwork,Rothblum,Vadhan'10]: The composed algorithm $\mathcal{M} = \mathcal{M}_k \circ \cdots \circ \mathcal{M}_1$ is: $(O(\epsilon \sqrt{k} \log(1/\delta)), \delta) - \mathsf{DP}.$

Quadratic Improvement with small $\delta > 0$!

Post-selection Hypothesis Testing

• [RRST'16] Connection between Max-Information and (approx)-differential privacy



Technical Contribution

• [DFHPRR'15]: If $\mathcal{M}: \mathcal{X}^n \to \mathcal{O}$ is $(\epsilon, 0)$ -DP, then for $\beta >$ Similar Max- $I_{\infty,\Pi}^{\beta}(\mathcal{M}; n) \leq \tilde{\mathcal{O}}(\epsilon^2 n)$ Info bounds

• [RRST'16]: If
$$\mathcal{M}: \mathcal{X}^n \to \mathcal{O}$$
 is (ϵ, δ) -DP, then
$$I^{\beta}_{\infty,\Pi}(\mathcal{M};n) \leq \tilde{\mathcal{O}}(\epsilon^2 n) \ \, \text{where} \, \beta \approx n \sqrt{\frac{\delta}{\epsilon}}$$

Consequences of Positive Result

Theorem: If
$$\mathcal{M}: \mathcal{X}^n \to \mathcal{O}$$
 is (ϵ, δ) -DP, then
$$I^{\beta}_{\infty,\Pi}(\mathcal{M};n) \leq \tilde{\mathcal{O}}(\epsilon^2 n) \text{ where } \beta \approx n \sqrt{\frac{\delta}{\epsilon}}$$

- Recover (optimal) results of [BNSSSU'16] for low sensitive queries.
 - However, our bounds apply more generally (e.g. adaptive hypothesis tests).
- Composition of k adaptively selected $(\epsilon, 0)$ -DP procedures: $\mathcal{M}_1, \dots, \mathcal{M}_k$
 - [DFHPRR'15]: $I_{\infty,\Pi}^{\beta}(\mathcal{M}_k \circ \cdots \circ \mathcal{M}_1; n) \leq \tilde{O}(n\epsilon^2 k^2)$
 - [RRST'16]: $I_{\infty,\Pi}^{\beta}(\mathcal{M}_k \circ \cdots \circ \mathcal{M}_1; n) \leq \tilde{O}(n\epsilon^2 k)$

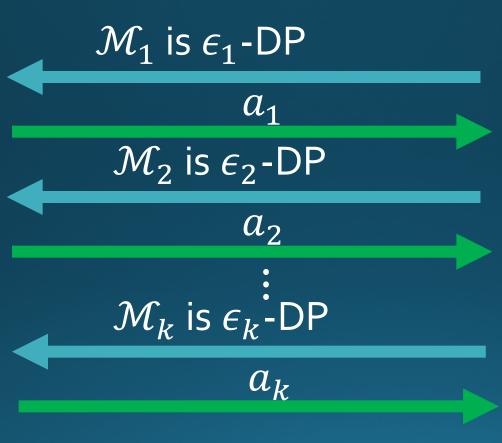
Via strong composition theorem from [DRV'10]

Outline

- Post Selection Hypothesis Testing [R,Roth,Smith,Thakkar FOCS'16]
 - Connection between Max-Info and Differential Privacy
- DP composition with adaptively selected parameters [R,Roth,Ullman,Vadhan NIPS'16]
 - Privacy Odometers and Filters
- Private Hypothesis Tests [Gaboardi,Lim,R,Vadhan ICML'16],[Kifer,R AISTATS'17]
 - Chi-Square Tests
- Directions for Future Work

DP Composition

Data: x

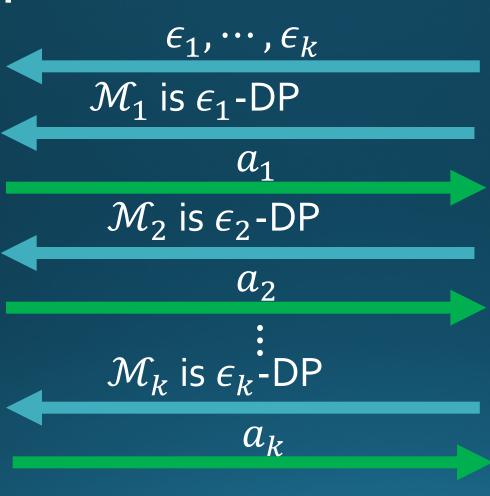


$$f(\epsilon_1, \cdots, \epsilon_k) \le \epsilon_g$$

$$\Rightarrow \mathcal{M}_k \circ \cdots \circ \mathcal{M}_1 \text{ is } \epsilon_g\text{-DP}$$

DP Composition

Data: x



$$f(\epsilon_1, \cdots, \epsilon_k) \le \epsilon_g$$

$$\Rightarrow \mathcal{M}_k \circ \cdots \circ \mathcal{M}_1 \text{ is } \epsilon_g\text{-DP}$$

DP Composition - Adaptive Privacy Parameters

- Our focus: Allow the analyst to allocate his privacy budget adaptively also adaptively select the number of analyses.
 - Natural to allow the analyst to select parameters AND analyses adaptively

 different DP analyses have different utility vs. privacy tradeoffs.

Questions:

- Which composition theorems still apply when we can select the parameters adaptively?
- How can we even define differential privacy in this adaptively parameter setting?

Privacy Loss Random Variable

• Privacy loss for neighboring x, x' and for an algorithm $\mathcal{M}: \mathcal{X}^n \to \mathcal{O}$:

$$L(o) = \log\left(\frac{\mathbb{P}(\mathcal{M}(x)=o)}{\mathbb{P}(\mathcal{M}(x')=o)}\right)$$
 where $o \sim \mathcal{M}(x)$

• Each round $i=1,2,\cdots,k$ the analyst selects $\epsilon_i\geq 0$ and an ϵ_i -DP algorithm \mathcal{M}_i based on previous outcomes in an adversarial way.

$$L(o_1, \dots, o_k) = \sum_{i=1}^k L_i(o_i) = \sum_{i=1}^k \log \left(\frac{\mathbb{P}(\mathcal{M}_i(x) = o_i | o_1, \dots, o_{i-1})}{\mathbb{P}(\mathcal{M}_i(x') = o_i | o_1, \dots, o_{i-1})} \right)$$

Privacy Odometer [R,Roth,Ullman,Vadhan'16]

- Privacy odometer provides a running upper bound on privacy loss.
- A valid privacy odometer $\widehat{COMP}_{\delta_a} \colon \mathbb{R}^* \to \mathbb{R}$ where an analyst selects $\epsilon_1, \cdots, \epsilon_k$ adaptively and w.p. $\geq 1 - \delta_a$

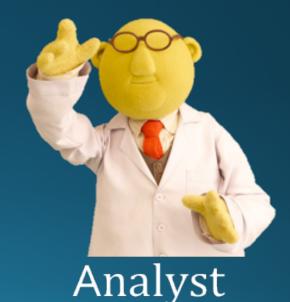
$$|L(o_1, \dots, o_k)| \le COMP_{\delta_g}(\epsilon_1, \dots, \epsilon_k)$$

Data: x

 ϵ_1 and \mathcal{M}_1 is ϵ_1 -DP a_1 and $COMP_{\delta_a}(\epsilon_1)$

 ϵ_k and $\dot{\mathcal{M}}_k$ is ϵ_k -DP

 a_k and $COMP_{\delta_a}(\epsilon_1, \cdots, \epsilon_k)$



Privacy Odometer Results [RRUV'16]

• Basic composition applies – for any $\delta_g \geq 0$, the following is a valid privacy odometer:

$$COMP_{\delta_g}(\epsilon_1, \dots, \epsilon_k) = \sum_{i=1}^{\kappa} \epsilon_i$$

• For $\sum_{i=1}^{k} \epsilon_{i}^{2} \geq \frac{1}{n^{2}}$, the following is a valid privacy odometer for $\delta_{g} > 0$:

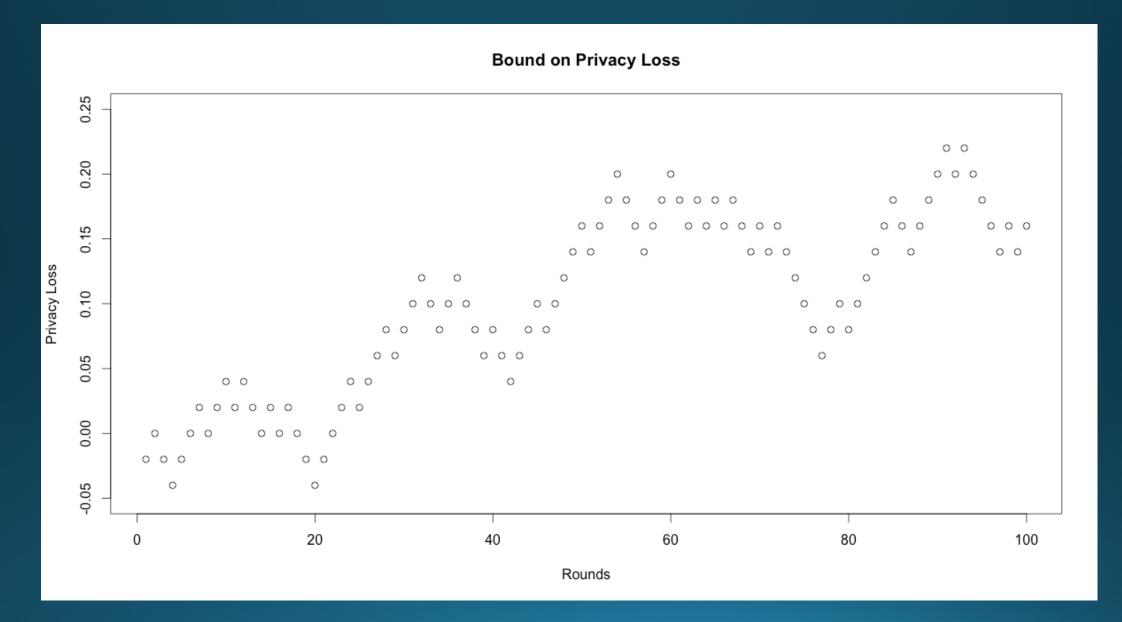
$$COMP_{\delta_g}(\epsilon_1, \cdots, \epsilon_k) = O\left(\sqrt{\sum_{i=1}^k \epsilon_i^2 \log\left(\frac{\log(n)}{\delta_g}\right)}\right)$$

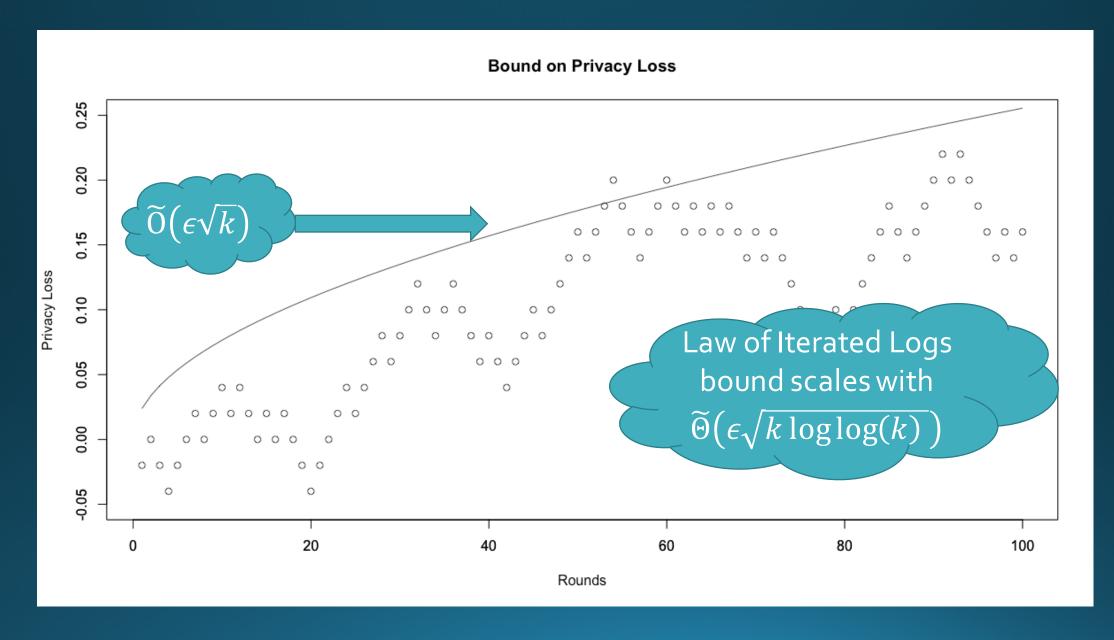
• There is no valid privacy odometer with k > n and

$$COMP_{\delta_g}(\epsilon_1, \dots, \epsilon_k) = o\left(\sqrt{\sum_{i=1}^k \epsilon_i^2 \log\left(\frac{\log(n)}{\delta_g}\right)}\right)$$

Proof Sketch

• Privacy Loss is a "biased" random walk with step size
$$\pm \epsilon$$
:
$$L(o_1, \cdots, o_k) = \sum_{i=1}^k L_i(o_i) = \sum_{i=1}^k \log \left(\frac{\mathbb{P}(\mathcal{M}_i(x) = o_i | o_1, \cdots, o_{i-1})}{\mathbb{P}(\mathcal{M}_i(x') = o_i | o_1, \cdots, o_{i-1})} \right)$$





Outline

- Post Selection Hypothesis Testing [R,Roth,Smith,Thakkar FOCS'16]
 - Connection between Max-Info and Differential Privacy
- DP composition with adaptively selected parameters
 - [R,Roth,Ullman,Vadhan NIPS'16]
 - Privacy Odometers and Filters
- Private Hypothesis Tests [Gaboardi,Lim,R,Vadhan ICML'16],[Kifer,R AISTATS'17]
 - Chi-Square Tests
- Directions for Future Work

Differentially Private Hypothesis Tests

- DP analyses ensure statistical validity over adaptive sequences of analyses.
- Thus, we aim to develop analyses which are each DP and produce valid conclusions.
- GOAL: Valid hypothesis testing while preserving privacy.

Classical Hypothesis Testing

• Want to design a test $t: \mathcal{X}^n \to \{Inconclusive, Reject H_0\}$ s.t.:

	H_0 is True	H_0 is False
t rejects	α = False Discovery	Power
t fails to reject	$1-\alpha$ = Significance	Type II Error

• Want to ensure test has $\mathbb{P}[\mathsf{False}\ \mathsf{Discovery}] \leq \alpha$ and has good Power.

Chi-Square Tests

- Categorical data X. Histogram: $D = (D_1, ..., D_d) \sim Multinomial(n, \vec{p})$.
- 1. Goodness of Fit: $H_0: \vec{p} = \vec{p}^0$
 - Simple Test data distribution completely determined
- 2. Independence Test: $H_0: Y^{(1)} \perp Y^{(2)}$
 - Composite Test data distribution not completely determined
- Both classical tests use the Chi-Squared Statistic:

$$Q^{2} = \sum \frac{(Observed_{i} - Expected_{i})^{2}}{Expected_{i}}$$

Private Goodness of Fit

- Add noise to each cell count to preserve differential privacy.
- Form the private chi-squared statistic:

$$Q_{DP}^2 = \sum_{i=1}^d \frac{\left(D_i + \mathbf{Z}_i - np_i^0\right)^2}{np_i^0}$$
 where we use either:

$$Z_i \sim N\left(\mathbf{0}, O\left(\frac{\log\left(\frac{1}{\delta}\right)}{\epsilon^2}\right)\right)$$
 for $(\varepsilon, \delta) - DP$

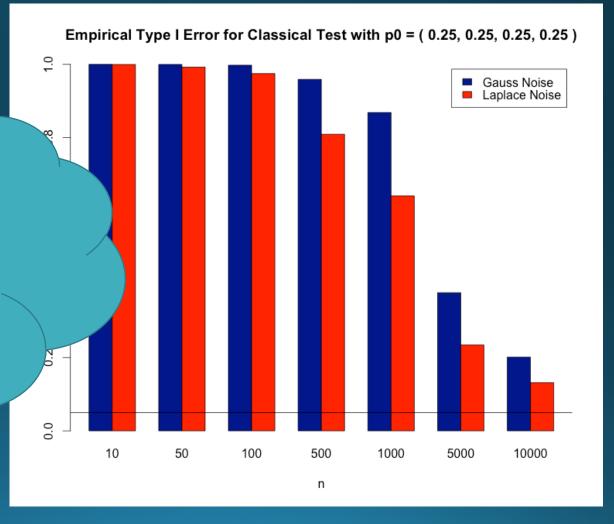
or
$$Z_i \sim Lap\left(O\left(\frac{1}{\varepsilon}\right)\right)$$
 for $(\varepsilon, 0) - DP$

Naïve Approach – Use Classical Test

Noise is small as $n \to \infty$

[Johnson and Shmatikov '13], [Vu and Slavkovic '09]

Se Similar findings shown in [Fienberg, Rinaldo, Yang '10], [Karwa and Slavkovic '12, '16]

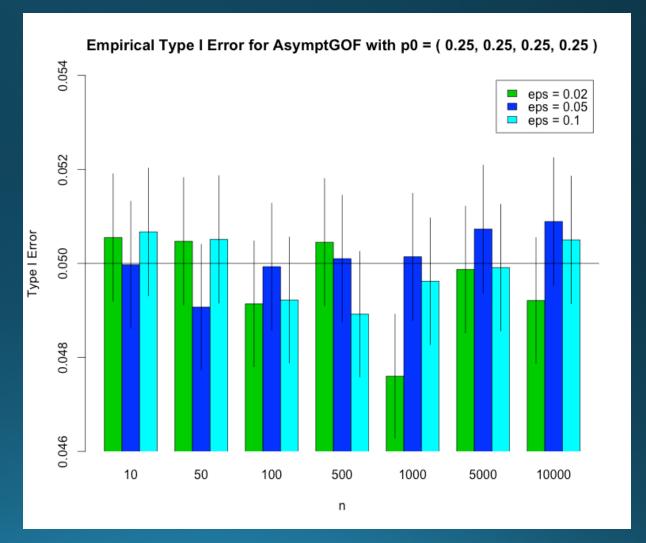


AsymptGOF – Private GOF Test [GLRV'16]

Take the (Gaussian) noise into account

$$\mathsf{Set}\,\delta=10^{-6}$$

Plotting the proportion of 100,000 trials that rejected H_0 , despite it being true.



AsymptGOF – Private GOF Test [GLRV'16]

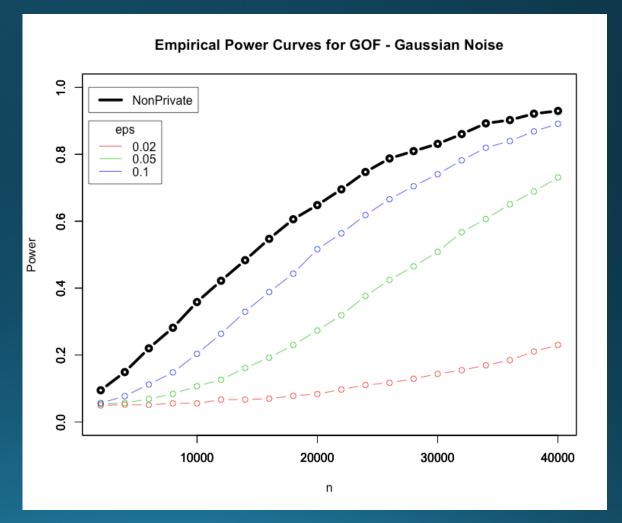
• Set
$$\delta = 10^{-6}$$

• Test
$$\vec{p}^0 = \left(\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \right)$$

Generate data from

$$\vec{p}^{1} = \\ \vec{p}^{0} + 0.01 \left(1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3} \right)$$

 Plot the proportion of 10,000 trials that correctly rejected null.



AsymptGOF vs NewStatAsymptGOF [KR'17]

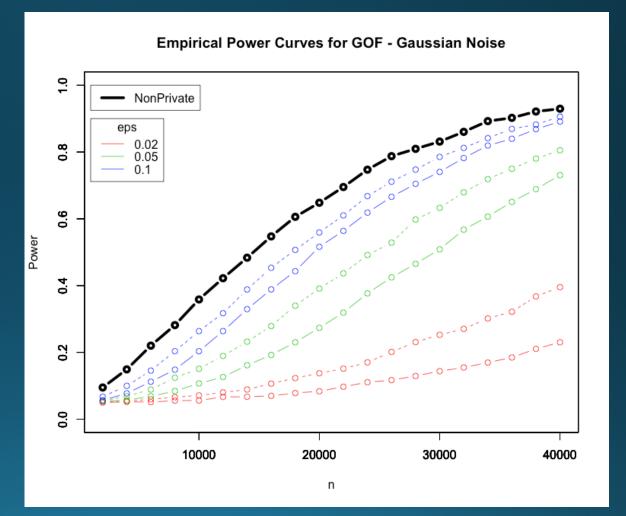
• Set
$$\delta = 10^{-6}$$

• Test
$$\vec{p}^0 = \left(\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \right)$$

Generate data from

$$\vec{p}^{1} = \\ \vec{p}^{0} + 0.01 \left(1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3} \right)$$

 Plot the proportion of 10,000 trials that correctly rejected null.



Outline

- Post Selection Hypothesis Testing [R,Roth,Smith,Thakkar-FOCS'16]
 - Connection between Max-Info and Differential Privacy
- DP composition with adaptively selected parameters [R,Roth,Ullman,Vadhan-NIPS'16]
 - Privacy Odometers and Filters
- Private Hypothesis Tests [Gaboardi,Lim,R,Vadhan-ICML'16],[Kifer,R AISTATS'17]
 - Chi-Square Tests
- Directions for Future Work

Directions for Future Work

- Adaptive Data Analysis:
 - We do not fully understand adaptive data analysis.
 - Is there a unifying measure in adaptive data analysis?
 - Is differential privacy the right approach?
- Develop private hypothesis tests that incorporate the noise:
 - Local model.
 - Other tests, e.g. ANOVA and Regression.

Contributions

Thanks!

Adaptive Data Analysis:

- [RRST- FOCS'16] Information and privacy
- [RRUV- NIPS'16] Adaptive parameter composition
- [GLRV- ICML'16], [KR- AISTATS'17] Private hypothesis tests

Algorithmic Game Theory:

- Incorporate privacy as a constraint:
 - [Kannan, Morgenstern, R, Roth- EC'15] private allocations in kidney exchanges.
- Leverage stability of DP to solve new problems
 - [Kearns, Pai, R, Roth, Ullman'15a], [R, Roth, Ullman, Wu- EC'15] Coordinate agents with incomplete information to desirable strategies
- [Hsu, Morgenstern, R, Roth, Vohra-STOC'16] Prices as coordination devices
- [Jabbari, R, Roth, Wu-NIPS'16] Revealed preferences
- [Dudik, Lahaie, R, Vaughan'17] Prediction markets