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Hypothesis Testing

H0 True H0 False

Reject H0 False Discovery Power

Not Significance Type II Error

I Given dataset D and proposed model of H0, should H0 should be rejected or
not based on data.

I Goal: Bound P [False Discovery] ≤ α, while obtaining good power.

The Need for Privacy

I Data may contain sensitive information.
I Releasing the result may leak information
I Homer et al. ’08 showed that with only aggregate

statistics on genomic-wide association studies we
can determine whether someone in the study has
a disease or not.

Modified Goal: Obtain statistically valid hypothesis tests which preserve the
privacy of those in the study.

(Concentrated) Differential Privacy [DMNS], [BS]

I Outcome of test A : D → O should
roughly stay the same if one person
changes his data.

I DP [DMNS]: For any neighboring D,
D′ and outcome set S ⊆ O:

P [A(D) ∈ S]
≤ eεP [A(D′) ∈ S] + δ.

I zCDP [BS]: Another measure of
privacy “between” (ε, 0)-DP and
(ε, δ > 0)-DP.

Focus of this work: Chi-Square Tests

I Categorical data histogram: X ∼ Multinomial(n, p = (p1, · · · , pd))
I General class of tests use the chi-square statistic:

Q2 =
∑

i

(Observedi − Expectedi)
2

Expectedi
.

I Goodness of Fit: H0 : p = p0.
I Independence Testing: H0 : Y 1 ∼ Multinomial(1, π1) and

Y 2 ∼ Multinomial(1, π2) are independent. Form the contingency table of
counts based on n trials:

Y 2 = 0 Y 2 = 1

Y 1 = 0 X00 X01

Y 1 = 1 X10 X11

I Tests based on a critical value τ , so that if Q2 > τ then reject H0.

I Known that Q2 D→ χ2
df , so we set τ = χ2

df ,1−α in order for Type I error to
be nearly α. Works well even for moderately sized datasets.

Prior Work for DP Hypothesis Tests

I [USF13, YFSU14] Add noise to statistic to preserve privacy→ leads to
unbounded noise in worst case.

I [JS] Add noise to histogram, use classical test→ leads to
P [False Discovery] > α for small datasets.

I [GLRV, WLK15] Add noise to histogram, use classical statistic but modify
distribution to take into account the noise.

I This Work: Add noise to histogram, modify statistic to account for the noise
so that it is a chi-square random variable as in the classical tests.

Preliminaries

I Add N(0, σ2) noise to each cell count of histogram, get noisy version X̃
I Write covariance matrix for multinomial with added noise

ΣDP = Diag(ppp0)− ppp0
(
ppp0
)ᵀ

+ σ2Id

Two New Test Statistics for DP Hypothesis Tests

I The unprojected statistic:

Q2
DP = n

(
X̃/n − ppp0

)ᵀ
Σ−1

DP

(
X̃/n − ppp0

)
I Theorem: Under the null hypothesis and σ2/n→ constant > 0,

Q2
DP

D→ χ2
d.

I The projected statistic with projection Π = Id − 1
d111111ᵀ:

Q2
DP = n

(
X̃/n − ppp0

)ᵀ
ΠΣ−1

DPΠ
(
X̃/n − ppp0

)
I Theorem: Under the null hypothesis and σ2 = O(n),

Q2
DP

D→ χ2
d−1.

I Difference of two statistics is a scaled independent chi-square

Q2
DP −Q

2
DP = d σ2 χ2

1

I Statistics can be extended to more general chi-square tests and we can use
other types of noise distributions via an MC approach.

Power Results – also works with Laplace noise

I Test is designed to achieve P[False Discovery] close to α, as in classical test.
I Experimentally check the power of our test in 10,000 trials, fixing δ = 10−6

(projected stat is solid and unprojected is dashed)
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Power Comparison with [GLRV]: α = 0.05, (ε, δ) = (0.24, 10−6)
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