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Hypothesis Testing
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» Given dataset D and proposed model of Hp, should Hy should be rejected or
not based on data.

» Goal: Bound P [False Discovery] < «, while obtaining good power.

The Need for Privacy

» Data may contain sensitive information.
» Releasing the result may leak information

» Homer et al. '08 showed that with only aggregate
statistics on genomic-wide association studies we
can determine whether someone in the study has
a disease or not.

Modified Goal: Obtain statistically valid hypothesis tests which preserve the
privacy of those in the study.

(Concentrated) Differential Privacy [DMNS], [BS]

» Outcome of test A : D — O should
roughly stay the same if one person
changes his data.

» DP [DMNS]: For any neighboring D,
D’ and outcome set S C O: v
PIA(D) € S] 0

< e‘P[A(D’) € S] + 6.

» zCDP [BS]: Another measure of

privacy “between” (€, 0)-DP and
(e, 0 > 0)-DP.

b: e =W | [ ) .

P(A(D) = o) S A

Randomized

Qutcomes

P(A(D)eS)<e®*P(A( )ES)+ 6

Focus of this work: Chi-Square Tests

» Categorical data histogram: X ~ Multinomial(n,p = (p1,++* , pd))
» General class of tests use the chi-square statistic:

02 — Z (Observed; — Expected;)’
- I, Expected; .

» Goodness of Fit: Hy: p = p°.

» Independence Testing: Hp : Y1 ~ Multinomial(1, 71) and
Y% ~ Multinomial(1, 7v2) are independent. Form the contingency table of
counts based on n trials:

Y 0lY

X1 X1
» Tests based on a critical value T, so that if Q% > T then reject Hp.

D .
» Known that Q% = Xf,f, so we set T = ngf 1_., In order for Type | error to
be nearly ae. Works well even for moderately sized datasets.

Prior Work for DP Hypothesis Tests

» [USF13, YFSU14] Add noise to statistic to preserve privacy — leads to
unbounded noise in worst case.

» [JS] Add noise to histogram, use classical test — leads to
P [False Discovery] > o« for small datasets.

» [GLRV, WLK15] Add noise to histogram, use classical statistic but modify
distribution to take into account the noise.

» T[his Work: Add noise to histogram, modify statistic to account for the noise
so that it is a chi-square random variable as in the classical tests.

Preliminaries

» Add N(0, o?) noise to each cell count of histogram, get noisy version X
» Write covariance matrix for multinomial with added noise

2 pp = Diag(po) — pO (pO)T + Gzld
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Two New Test Statistics for DP Hypothesis Tests

» The unprojected statistic:
~ T ~
Q%p=n(X/n—p°) T5L (X/n—p)
» Theorem: Under the null hypothesis and 0%/n — constant > 0,
2 D2
Gpbp — Xy
» The projected statistic with projection N = I — %IIT:
\ ~ T 4 ~
Qrp =n (X/n — po) N - (X/n — po)
» Theorem: Under the null hypothesis and % = O(n),
2 D2
Qop = Xg_1-
» Difference of two statistics is a scaled independent chi-square
2 2 2 2
Qpp — Lpp =d 0° X3
» Statistics can be extended to more general chi-square tests and we can use

other types of noise distributions via an MC approach.

Power Results — also works with Laplace noise

» Test is designed to achieve P[False Discovery] close to «, as in classical test.

» Experimentally check the power of our test in 10,000 trials, fixing 6 = 10~°
(projected stat is solid and unprojected is dashed)
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Power Comparison with [GLRV]:

GOF Power Comparisons with Projected Statistic
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