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Mean estimation (ME) Lower Bounds

Main Lemma: Let M be a one-shot (each individual is
presented with a single query) local e-differentially private

mechanism. Let P and Q be two distributions, with

; x A Z drv(P, Q). Fixany 0 < § < e~ ! and set

e* = 8eA+/n < %In(z/é) -+ 166A\/ﬁ>. Then, for any
set S of outputs,

Sl.JCh that Z3S [— R, R] for some knovyn bound R, and o is Pr [M(X€ES|<e’ Pr [M(X)€E S]+06
either provided as an input (known variance case) or left i.id gl

e : X~P; M
unspecified (unknown variance case).

» Setting: We have n samples drawn from a Gaussian

X1, coey Xn ~i.i.d N(,U’? 02)

Lower bound: Any one-shot local differentially private

Goal: Determine an estimate of g useful for Z-test and for : :
a algorithm must return an interval of length

releasing confidence intervals:

P meMX)]>1-3 5 (ffv '°g(1/ﬂ)>

i.i.d.

X'~ N(/J,,O'Z),M(X)

ev'n

Lower bound: Let M be a e-LDP mechanism which is
The Need for Privacy (otdists Ctquant, B)-useful for the p-quantile problem over P,
given that the true p-quantile lies in the interval [— R, R].

1 -
» Data may contain sensitive information. Then, for any § < g ”;\, A ol e
n> Q1 - In(zE)).

3
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» Releasing the result may leak information
Modified Goal: Determine an estimate of p which preserves LDP ME - Unknown Variance
the privacy of those in the study and that is useful for Z-test
and for releasing confidence interval. Our approach mimics the same approach from

Algorithm KnownVar but without the knowledge of the
Local Differential Privacy [4] (LDP) variance.

» Goal: Find a suitably large yet sufficiently tight interval
Central Model: Data is submitted in the clear to a trusted [s1, 52]-

curator and the output of a statistic on the data is privatized. > Problem: This cannot be done using the off-the-shelf Bit
Local Model: No trusted curator - data is privatized and Flipping mechanism as that required we know the granularity
then collected. of each bin in advance.
An algorithm M : X — O is e-differentially private if for all Solution: We abandon the idea of finding a histogram on the
inputs, x, x” and outcome sets S C O: data. Instead, we propose finding a good approximation for
P[M(x) € S] < eP[M(x') € S]. a.using a quan'tile estimation based on a binary search,
using the following algorithm.
» Local model of differential privacy is used in practice.

Algorithm BinQuant

Require: Data {x1,--- , xn}, target quantile p*; €, i «,
LDP randomizers properties ;\' T ix1,- -+, xn}, targetq P*; €, [Qmins Qmax]

Initialize j =0, n = N/ T, s1 = Qumins S2 = Qmax-
> Gaussian Noise [2]: S h datum | led f forj=1,-.., T do
aussian Noise [2]: Suppose each da um is sampled from Safesi wem U = T o w1l 7o i 4b B e (2 30 o )
an interval I of length £. Then we add independent noise - S145

N(0,26%1In(2/8)/€%) Denote pU)(x) = 1{x < t(j)}:
Run randomized response on UY) and obtain

We use the following mechanisms

to each datum guaranteeing (€, d)-differential privacy. ' i .
Randomized Response [5]: Suppose each datum is a bit zU) = %HRR(na o).
{0,1} and on each datum we operate independently, ; () . A
applying RR, : {0,1} — {0, 1} where if (ZV) > p* + 3) then

Sp < tU)

RR.(b) = { b w.p. lie else if (Z.U) < p* — %) then
: 1—0b else s; «— tU)
else
break

Ensure: tU)

Bit Flipping algorithm [1]: Suppose each datum X; is a
d-dimensional vector indicating its type using a standard
basis vector. The Bit Flipping mechanism now runs d
independent randomized response mechanism for each
coordinate separately with parameter €/2:

Our algorithm UnkVar uses the quantile estimation twice: once
for p* = % where t* = u, and once for the value of

BF(X,-I, cee x,-d) = (RRe/z(X,-l), S RRe/z(X,-d)) p* = ®(1) = 0.8413 for which the corresponding threshold is
t* = u + o. Using these two values we obtain estimations for

LDP ME - Known Variance p, o and we apply a similar approach to Algorithm KnownVar.

Our approach is inspired by the work of Karwa and Vadhan [3]. UnkVar properties

We adapt it to the local model.

KnownVar (X; o, 3, €, n, R) (sketch)
. Find a bin of length & most likely to hold w

» Privacy: UnkVar is (e, §)-LDP.
» Confidence Interval: Let X ~ N (u, 0?) i.i.d. Fix
1 i _
. Construct an interval of length 40 + 20/2 log (8n/3) Eﬁarin;i::ss'o.ﬂfo(.:;x/i)'z%\’/?? that o € [=R, R] and
centered at this bin - - )
. Project all remaining points onto this interval and add n > 1500 |°g2(cl,f:1f:) . (2:1'{) . In(16'°g2(;6"’/amin))
ind. Gaussian noise.

then the interval I returned by Algorithm UnkVar satisfies

: _ that P [IA > p,} > 1 — 3, and moreover
» Privacy: KnownVar is (€,d)-LDP. X, UnkVar

_ 2
» Confidence Interval: If n > 1600 (2;21“}) log (@), i—ols. V/log (n/3) log (1/3) log(1/4)
then KnownVar returns an interval I such that:

e\/n
P [ mu € 1] > 1 — 3. whose size is: : _ :
X,KnownVar Very large variance case: If o > R we give a different

\/Iog (n/B3) - log (1/3) - log(1/9) algorithm, based on matching quantiles. We estimate
Il = O (a : >

KnownVar properties

p— = Pr[X < —R] and p;y = Pr[X < R], then plot the
ev/n Gaussian based on the quantiles of A(0, 1) obtaining p_
and p;.
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