Homework Set 8, Due Thursday, March 24, 2005

(Late papers will be accepted until 4 PM on Fri. March 25)
To get experience with simple calculations, where specified do the calculations by hand, not with a calculator or computer.

1. Let A be a 5×5 matrix whose second column is $V=(0,-3,0,0,0)$. Show that V is an eigenvector of A and find the corresponding eigenvalue.
2. Let $S=\left(\begin{array}{ll}5 & 7 \\ 2 & 3\end{array}\right), \quad D=\left(\begin{array}{rr}-2 & 0 \\ 0 & 1\end{array}\right)$, and $B=S D S^{-1}$.
a) Compute B^{4} (by hand).
b) What are the eigenvalues and corresponding eigenvectors of B ?
c) What are the eigenvalues and corresponding eigenvectors of $C:=B+3 I$?
3. Diagonalize (by hand): $\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 3 & 0 \\ 1 & 4 & -2\end{array}\right)$.
4. By hand, find the eigenvalues and corresponding eigenvectors of the following matrices. [Complex numbers might be needed.]
a). $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$
b). $B=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
c). $C=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
d). $D=\left(\begin{array}{ll}3 & 0 \\ 3 & 3\end{array}\right)$.
5. Let the matrix $A=\left(a_{i j}\right)$ have the special form $a_{i j}=b_{i} c_{j}$, where $b=(2,0,-1,1)$ and $c=(1,2,-1,1)$.
a) Compute the rank of A.
b) Find a basis for the nullspace of A.
c) Compute the trace of A.
d) Find the eigenvalues and corresponding eigenvectors.
e) Find a matrix S so that $S^{-1} A S$ is a diagonal matrix.
f) Use this to compute A^{100}.
6. Let T be a 6×6 matrix with rank 1 and $\operatorname{trace}(T)=5$.
a) What is $\operatorname{det} T$? Why?
b) What are all the eigenvalues of T ?
c) Can any such T be diagonalized? Why?
d) What are all the eigenvalues of $B:=T-2 I$?
e) $\operatorname{det} B=$?
7. Let $Z:=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \neq 0, b$, and c be given real numbers, $A:=\left(z_{i} z_{j}\right)$, so A has rank one, and let $M=b A+c I$. What are the eigenvalues of M ? [The answer of course involves a, b, and Z.]
8. Let M be an anti-symmetric 5×5 matrix (so $M^{T}=-M$). Show that $\operatorname{det} M=0$.
9. Describe all matrices C with the property $\operatorname{det} C+\operatorname{det} C=\operatorname{det}(C+C)$.
10. Let A be a 5×5 matrix with eigenvectors V_{1}, \ldots, V_{5} and corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{5}$. Say $X=2 V_{1}-V_{2}+V_{4}+3 V_{5}$.
a) Compute $A X, A^{2} X$, and $A^{4} X$ in terms of the eigenvalues and eigenvectors.
b) If $\lambda_{1}=1$ and that the remaining eigenvalues have absolute value less than one: $\left|\lambda_{j}\right|<1, j=2,3,4,5$, compute $\lim _{k \rightarrow \infty} A^{k} X$.
