Problem Set 8

Due: In class Thursday, Apr. 4 Late papers will be accepted until 1:00 PM Friday.

1. Complex numbers, $z=x+i y$, can be represented perfectly as 2×2 using the observation that $J:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ has the property that $J^{2}=-I$ (geometrically, J represents a rotation by $\pi / 2$). We represent the complex number $z=x+i y$ as the 2×2 matrix

$$
Z=x I+y J=\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right) .
$$

a) If $W=u I+v J$, where u and v are real numbers, show that complex multiplication of these special matrices is commutative: $Z W=W Z$.
b) If $Z \neq 0$, show that Z is invertible. Compute Z^{-1} and verify that the result agrees with the usual formula for $1 / z$.
2. Say a square matrix C has the property that $C^{3}-C=0$. What are the possible eigenvalues of C ? Justify your answer.
3. For which real numbers a and b can the matrix $M:=\left(\begin{array}{ll}1 & a \\ 0 & b\end{array}\right)$ be diagonalized? Justify your response.
4. [Bretscher Sec. 7.2 \#32] Consider the matrix $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ k & 3 & 0\end{array}\right)$, where k is an arbitrary real number. For which values of k does A have three real eigenvalues? [Suggestion: Graph the characteristic polynomial.]
5. Find the eigenvalues and eigenvectors of $B:=\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$.
6. A certain real 4×4 matrix A has $\lambda_{1}=2-5 i$ and $\lambda_{2}=1+2 i$ as eigenvalues. What are the other two eigenvalues? Can you diagonalize A ? Why or why not?
7. [Bretscher Sec. $7.3 \# 40,41,44]$ Let A and B be $n \times n$ matrices.
a) Show that $\operatorname{trace}(A B)=\operatorname{trace}(B A)$.
b) Use this to give another proof that if A and C are similar, then $\operatorname{trace}(A)=$ trace (C).
c) Are there $n \times n$ matrices so that $A B-B A=I$?
8. [Bretscher ($5^{\text {th }}$ edition, Sec. $\left.7.4 \# 30 \mathrm{a}\right]$ Sketch the phase portrait for the dynamical system $\vec{x}(t+1)=A \vec{x}(t)$ where $A:=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$.
9. Multinational companies in the Americas, Asia, and Europe have assets of $\$ 4$ trillion. At the start, $\$ 2$ trillion are in the Americas and $\$ 2$ trillion are in Europe. Each year $1 / 2$ of the Americas money stays home and $1 / 4$ goes to each of Asia and Europe. For Asia and Europe, $1 / 2$ stays home and $1 / 2$ is sent to the Americas.
a) Let C_{k} be the column vector with the assets of the Americas, Asia, and Europe at the beginning of year k. Find the transition matrix T that gives the amount in year $k+1: C_{k+1}=T C_{k}$
b) Find the eigenvalues and eigenvectors of T.
c) Find the limiting distribution of the $\$ 4$ trillion as the world ends
d) Find the distribution of the $\$ 4$ trillion at year k.
10. Let A and B be $n \times n$ matrices that can both be diagonalized by the same matrix S, so $A=S D_{1} S^{-1}$ and $B=S D_{2} S^{-1}$, where D_{1} and D_{2} are both diagonal matrices. Show that $A B=B A$.
11. Let $A:=\left(\begin{array}{ll}4 & 5 \\ 5 & 4\end{array}\right)$ and let $\vec{x}(t):=\binom{x_{1}(t)}{x_{2}(t)}$. Solve the system of second order differential equations

$$
\frac{d^{2} \vec{x}(t)}{d t^{2}}=A \vec{x}(t)
$$

with the initial conditions $\vec{x}(0)=\binom{0}{0}$ and $\vec{x}^{\prime}(0)=\binom{2}{0}$.
[REMARK: This problem assumes you know how to solve scalar ordinary differential equations like $u^{\prime \prime}+25 u=0$ and $u^{\prime \prime}-25 u=0$. Review your Nath 240 text.]
12. If M is a square matrix, define e^{M} by the power series

$$
e^{M}=I+M+\frac{M^{2}}{2!}+\cdots+\frac{M^{k}}{k!}+\cdots
$$

We will take the convergence of this series for granted (it is not difficult - but we skip this).
a) If $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$, compute e^{A}.
b) For real t show that

$$
e^{\left(\begin{array}{cc}
0 & -t \\
t & 0
\end{array}\right)}=\left(\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) .
$$

(The matrix on the right is a rotation of \mathbb{R}^{2} through the angle t).
c) $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, compute e^{A}. [Hint: diagonalize $\left.A.\right]$
d) If A does not depend on t, show that $\frac{d e^{A t}}{d t}=A e^{A t}$.
e) If A is a diagonalizable constant square matrix, show that the solution of $\frac{d \vec{x}(t)}{d t}=$ $A \vec{x}(t)$ with initial condition $\vec{x}(0)=\vec{b}$ is $\vec{x}(t)=e^{A t} \vec{b}$.

Bonus Problem

[Please give this directly to Professor Kazdan]
1-B Let A be an $n \times n$ matrix all of whose elements are 1 (as in Problem Set $7 \# 5$) and let $L:=I+A$.
a) Why is L invertible?
b) Find and explicit formula for L^{-1}. [Suggestion: Let \vec{v} be a column vector of all 1 's and note that \vec{v} is a basis for the image of A. Thus $A \vec{x}=c \vec{v}$ for some scalar c that depends on \vec{x}. But if $L \vec{x}=\vec{y}$, then $\vec{x}=\vec{y}-A \vec{x}=\vec{y}-c \vec{v}$ so all you need to do is find the scalar c.]
[Last revised: May 5, 2013]

