
Fourier Series of f (x) = x

Given a real periodic functionf (x), −π < x < π , one can find its Fourier series in two
(equivalent) ways: using trigonometric functions:
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Note that if f (x) is a real-valued function, we can take the real part of the complex expo-
nential version to get the trigonometric version (caution:the coefficiantsck will probably
be complex numbers).

Here we will use complex exponentials. The Fourier coefficients are
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Finally we compute what the Phthagorean Theorem tells us:‖x‖2 = ∑|ck|2. Since
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Interesting! – and not obvious at all.
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