Typical Linear Programming Examples

REFERENCE: Gilbert Strang, *Linear Algebra and Its Applications*, 4th Edition, Brooks/Cole 2006 [Chapter 8]

Production Planning Suppose General Motors makes a profit of \$200 on each Chevrolet, \$300 on each Buick, and \$500 on each Cadilac. These get 20, 17, and 14 miles per gallon, respectively. Congress passed a law that the average car must get 18. The plant can assemble a Chevrolet in one minute, a Buick in 2 minutes, and a Cadilac in 3 minutes.

What is the maximum profit, P, in 8 hours (480 minutes)?

Let x number of Chevrolets, y Buicks, z Cadilacs.

SUMMARY: Maximize P = 200x + 300y + 500z subject to the constraints:

$$20x + 17y + 14z \ge 18(x + y + z), \quad x + 2y + 3z \le 480,$$

 $x \ge 0, \quad y \ge 0, \quad z \ge 0.$

Portfolio Selection Say federal bonds pay 5% interest, municipals pay 6%, amd junk bonds pay 9%. We buy dollar amounts of x, y, z and have \$100,000. The problem is to maximize the interest with two constraints:

- (i) No more that \$20,000 can be invested in junk bonds.
- (ii) The portfolio's average quality cannot be lower than municipals, so $x \ge z$.

SUMMARY: Maximize 5x + 6y + 9z subject to

$$x+y+z \le 100,000,$$
 $z \le 20,000,$ $z \le x,$ $x, y, z \ge 0.$

REMARK: There is a simple way to change the first three inequalities like $x+y+z \le 100,000$ into equations: just introduce the three differences as *slack variable*

$$u := 100,000 - x - y - z,$$
 $v := 20,000 - z,$ $w := x - z$ with the constraints $u \ge 0$, $v \ge 0$, and $w \ge 0$.

Then we have three *equality* constraints

$$x+y+z+u = 100,000,$$
 $z+v = 20,000,$ $x-z-v = 0$ and the *inequalities*

$$x \ge 0$$
, $y \ge 0$, $z \ge 0$, $u \ge 0$, $v \ge 0$, $w \ge 0$.

This has more variables but is concetpually easier to manage. In the language of linear algebra, the problem now has the form

Maximize
$$\vec{c} \cdot \vec{x}$$
 subject to $A\vec{x} = \vec{b}$ and $\vec{x} \ge 0$.

Here $\vec{x} := (x, y, z, u, v, w)$ and $\vec{c} := (5, 6, 9, 0, 0, 0)$. Note that the zeroes in \vec{c} correspond to the coefficients of the slack variables in the income (which we want to maximize).