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Abstract

We discuss the powerful statistical method of principal component analysis
(PCA) using linear algebra. The article is essentially self-contained for a reader
with some familiarity of linear algebra (dimension, eigenvalues and eigenvectors,
orthogonality). Very little previous knowledge of statistics is assumed.

1 Introduction to the problem

Suppose we take n individuals, and on each of them we measure the same m variables.
We say that we have n samples of m-dimensional data. For the ith individual, record
the m measurements as a vector ~xi belonging to Rm.

For instance, we might ask 30 people their height (in meters), their weight (in
kilograms), and their IQ. In this case, n = 30 and m = 3. The measurement ~x1 might
look like

~x1 =

 1.8
70.3
105

 .
You could visualize this data as a plot of 30 points in R3.

Principal component analysis, or PCA, is a powerful statistical tool for analyzing
data sets and is formulated in the language of linear algebra. Here are some of the
questions we aim to answer by way of this technique:

1. Is there a simpler way of visualizing the data (which a priori is a collection of
points in Rm, where m might be large)? For instance, in the above example, are
the points in R3 essentially clustered around a plane?

2. Which variables are correlated? In the example, we would probably expect to
see little correlation between height and IQ, but some correlation between height
and weight.

3. Which variables are the most significant in describing the full data set? Later,
we will see more precisely what this means.
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2 Linear algebra background

Let A be an m×n matrix of real numbers and AT its transpose. The following theorem
is one of the most important in linear algebra.

Theorem 1. If A is symmetric (meaning AT = A), then A is orthogonally diagonaliz-
able and has only real eigenvalues. In other words, there exist real numbers λ1, . . . , λn
(the eigenvalues) and orthogonal, non-zero real vectors ~v1, . . . , ~vn (the eigenvectors)
such that for each i = 1, 2, . . . , n:

A~vi = λi~vi.

This is a very powerful result (often called the Spectral Theorem), but it is limited
by the fact that it applies only to symmetric matrices. Nevertheless, we can still get
some use out of the theorem in general with the following observation:

Exercise 1. If A is any m × n matrix of real numbers, then the m ×m matrix AAT

and the n× n matrix ATA are both symmetric.

Thus, we can apply the theorem to the matrices AAT and ATA. It is natural to
ask how the eigenvalues and eigenvectors of these matrices are related.

Proposition 1. The matrices AAT and ATA share the same nonzero eigenvalues.

Proof. Let ~v be a (nonzero) eigenvector of ATA with eigenvalue λ 6= 0. This means:

(ATA)~v = λ~v.

Now, multiply both sides on the left by A, and group the parentheses as follows:

AAT (A~v) = λ(A~v).

This is precisely the statement that the vector A~v is an eigenvector of AAT , with
eigenvalue λ. The only technical point we must check is that A~v is not the zero vector
(since eigenvectors aren’t allowed to be zero). But from the first equation, if A~v were
zero, then λ~v would be zero as well. However, we specifically said that ~v 6= ~0 and
λ 6= 0, so this can’t happen.

We conclude that the nonzero eigenvalue λ of ATA is also an eigenvalue of AAT .
Moreover, we learned that to get from an eigenvector ~v of ATA to an eigenvector of
AAT , you just multiply ~v on the left by A. (And it is worth checking that to get from
an eigenvector ~w of AAT to an eigenvector of ATA, you just multiply ~w on the left by
AT .)

This proposition is very powerful in the case that m and n are drastically different
in size. For instance, if A is 500 × 2, then there’s a quick way to find the eigenvalues
of the 500× 500 matrix AAT : first find the eigenvalues of ATA (which is only 2× 2).
The other 498 eigenvalues of AAT are all zero!
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Proposition 2. The eigenvalues of AAT and ATA are nonnegative numbers.

Proof. First, recall that length squared of a vector ~w is given by the dot product ~w · ~w,
which equals ~wT ~w.

Let ~v be an eigenvector of ATA with eigenvalue λ. We compute the length squared
of A~v:

‖A~v‖2 = (A~v)T (A~v)

= ~vT (ATA)~v

= λ~vT~v

= λ‖~v‖2.

Since lengths are nonnegative, we see that λ is nonnegative. Replacing A with AT , we
get the corresponding statement for AAT .

3 Statistics background

Suppose we’re measuring a single variable A (such as the height of randomly selected
individuals) n times (so m = 1). Let the n measurements be denoted a1, . . . , an. The
most basic quantity in statistics is the mean of a variable A. However, the mean is
rarely known in practice, so we estimate the mean using the sample average:

µA =
1

n
(a1 + . . .+ an).

In this article, we will be a little sloppy and not distinguish between the mean and
sample average.

The mean tells us where the measurements are centered. The next question we
would like to ask is: how spread out are the measurements? This is commonly quanti-
fied with the variance of A (again, generally unknown in practice), which is estimated
by the sample variance:

Var(A) =
1

n− 1

(
(a1 − µA)2 + . . .+ (an − µA)2

)
.

The square root of the variance, is called the standard deviation, but we will only
use the variance. We will not distinguish here between the variance and the sample
variance.

What if we’re measuring two variables A, B in a population? It’s natural to ask
if there’s some relationship between A and B. (For instance, you’d expect to see a
significant relationship between height and weight, but not necessarily height and IQ.)
One way to capture this is with the covariance of A and B, defined as:

Cov(A,B) =
1

n− 1
((a1 − µA)(b1 − µB) + . . .+ (an − µA)(bn − µB)) .
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If the covariance is negative, it indicates that when variable A is larger, variable B
tends to be smaller. Also, notice that Cov(A,B) = Cov(B,A).

If we’re measuring three or more variables, notice that we can talk about the vari-
ance of any variable, and covariance of any two different variables.

4 Principal component analysis

Using the notation from the introduction, we can store the mean of all m variables as
a single vector in Rm:

~µ =
1

n
(~x1 + . . .+ ~xn) . (1)

It’s common to “re-center” the data so that the mean is zero. (In other words, shift the
cluster of data points in Rm so their center of mass is the origin.) This is accomplished
by subtracting the mean ~µ from each sample vector ~xi. Let B be the m × n matrix
whose ith column is ~xi − ~µ:

B = [~x1 − ~µ | . . . | ~xn − ~µ ]. (2)

Define the covariance matrix S (which will be m×m) as

S =
1

n− 1
BBT . (3)

By exercise 1, we see that S is symmetric. Let’s investigate what the entries of S
look like in an example. Suppose

~x1 =


a1

a2

a3

a4

 , ~x2 =


b1
b2
b3
b4

 , ~x3 =


c1
c2
c3
c4

 , ~µ =


µ1

µ2

µ3

µ4

 ,
so that

B =


a1 − µ1 b1 − µ1 c1 − µ1

a2 − µ2 b2 − µ2 c2 − µ2

a3 − µ3 b3 − µ3 c3 − µ3

a4 − µ4 b4 − µ4 c4 − µ4

 .
Then, for instance, the 1, 1 entry of S is

S11 =
1

3− 1

(
(a1 − µ1)

2 + (b1 − µ1)
2 + (c1 − µ1)

2
)
,

which is precisely the variance of the first variable. As another example, consider the
2, 1 entry of S:

S21 =
1

3− 1
((a1 − µ1)(a2 − µ2) + (b1 − µ1)(b2 − µ2) + (c1 − µ1)(c2 − µ2)) ,

which is the covariance of the first and second variables.
We generalize these observations as follows. For 1 ≤ i, j ≤ m:
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• The ith entry on the diagonal of S, namely Sii, is the variance of the ith variable.

• The ijth entry of S, Sij, with i 6= j, is the covariance between the ith and jth
variables.

Example 1. Suppose that m = 2, so that each of the n individuals’ measurements
forms a point in R2. Suppose the plot of the n data points looks like:

In the first variable (corresponding to the horizontal axis), there is quite a lot of vari-
ation, so we expect S11 to be large. However, in the second variable (corresponding
to the vertical axis), there is little variation by comparison; we expect S22 to be much
smaller. How about the covariance? Well, there is very little relationship between the
two variables: knowing where you are on the horizontal axis tells you essentially noth-
ing about where you are on the vertical axis. So, perhaps our covariance matrix might
look like

S =

[
95 1
1 5

]
.

On the other hand, suppose our data points look like:
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Now the horizontal and vertical directions have approximately the same variance, and
there is a strong, positive correlation between the two. So the covariance might look
something like:

S =

[
50 40
40 50

]
.

The two data sets of the last example in some sense are very similar: they both es-
sentially form a thin rectangular strip, clustered along a line. However, their covariance
matrices are completely different. PCA will provide a mechanism to recognize
this geometric similarity through algebraic means.

Since S is a symmetric matrix, it can be orthogonally diagonalized by Theorem 1.
This connection between statistics and linear algebra is the beginning of PCA.

Apply the theorem, and let λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 be the eigenvalues of S
(in decreasing order) with corresponding orthonormal eigenvectors ~u1, . . . , ~um. These
eigenvectors are called the principal components of the data set. (Remark: you can
always replace any of the ~ui with their negatives.)

Observation: on one hand, the trace of S is the sum of the diagonal entries of S,
which is the sum of the variances of all m variables. Let’s call this the total variance, T
of the data. On the other hand, the trace of a matrix is equal the sum of its eigenvalues,
so T = λ1 + . . .+ λm.

The following interpretation is fundamental to PCA:

• The direction in Rm given by ~u1 (the first principal direction) “explains” or
“accounts for” an amount λ1 of the total variance, T . What fraction of the total
variance? It’s λ1

T
. And similarly, the second principal direction ~u2 accounts for

the fraction λ2

T
of the total variance, and so on.

• Thus, the vector ~u1 ∈ Rm points in the most “significant” direction of the data
set.

• Among directions that are orthogonal to ~u1, ~u2 points in the most “significant”
direction of the data set.

• Among directions orthogonal to both ~u1 and ~u2, the vector ~u3 points in the most
significant direction, and so on.

Below we describe one of the possible uses of this technique. The example on birds
in the next section indicates additional uses.

4.1 Dimension reduction

It is often the case that the largest few eigenvalues of S are much greater than all the
others. For instance, suppose m = 10, the total variance T is 100, and λ1 = 90.5, λ2 =
8.9 and λ3, . . . , λ10 are all less than 0.1. This means that the first and second principal
directions explain 99.4% of the total variation in the data. Thus, even though our

6



data points might form some cloud in R10 (which seems impossible to visualize), PCA
tells us that these points cluster near a two-dimensional plane (spanned by ~u1 and ~u2).
In fact, the data points will look something like a rectangular strip inside that plane,
since λ1 is a lot bigger than λ2 (similar to the previous example). We have effectively
reduced the problem from ten dimensions down to two.

Warning: don’t forget that we subtracted µ from the vectors ~x1, . . . ~xn. Then to
make the last statement completely accurate, the data points would be clustered around
the plane passing through µ and spanned by directions parallel to ~u1 and ~u2.

4.2 Summary

In short, here is how to perform PCA on a data set.

1. Gather the n samples of m-dimensional data ~x1, . . . , ~xn, vectors in Rm. Compute
the mean µ (equation (1)), build the matrix B (equation (2)), and compute S
(equation (3)).

2. Find the eigenvalues λ1, . . . , λm of S (arranged in decreasing order), as well as
an orthogonal set of eigenvectors ~u1, . . . , ~um.

3. Interpret the results: are a small number of the λi much bigger than all the
others? If so, this indicates a dimension reduction is possible. Which of the n
variables are most important in the first, second, etc. principal components?
Which factors appear with the same or opposite sign as others?

The last couple of questions will become clearer after the main example on birds in
section 5.

First we return to example 1. In the first case, in which

S =

[
95 1
1 5

]
,

we find (using a computer) that (approximately) λ1 = 95.011, λ2 = 4.99, and

~u1 =

[
0.9999
0.0111

]
, ~u2 =

[
−0.0111
0.9999

]
.

So in particular, ~u1 essentially points along the x-axis, the “main direction” of the
data, and ~u2 essentially points along the y-axis.

Exercise 2. In the second case of example 1, in which

S =

[
50 40
40 50

]
,
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verify (by hand) that λ1 = 90, λ2 = 10, and

~u1 =

[
1/
√

2

1/
√

2

]
, ~u2 =

[
−1/
√

2

1/
√

2

]
.

Draw these vectors in the corresponding figure, and verify that ~u1 points in the “main
direction” of the data.

5 Bird example

This example and data is courtesy of Adam Kapelner, from Wharton Statistics. Adam
used Sibley’s Bird Database of North American birds to gather data on a simple random
sample of 100 bird species. Three factors were measured: length (inches), wingspan
(inches), and weight (ounces). Thus, m = 3 and n = 100, so B is a 3 × 100 matrix,
and S is 3× 3, given below:

S =

 91.43 171.92 297.99
373.92 545.21

1297.26

 .
As is customary, the entries below the diagonal were omitted, since the matrix is
symmetric. Also, S was computed without dividing by n−1 (also a common practice).

We can use MATLAB or octave1, for instance, to compute the eigenvalues and
orthonormal eigenvectors. In this case:

λ1 = 1626.52, λ2 = 128.99, λ3 = 7.10

and

~u1 =

 0.22
0.41
0.88

 , ~u2 =

 0.25
0.85
−0.46

 , ~u3 =

 0.94
−0.32
−0.08

 .
The first thing to notice is that λ1 is much larger than λ2 and λ3. In fact, the first
principal component ~u1 accounts for λ1

λ1+λ2+λ3
= 92.28% of the variation in the data,

and the second ~u2 accounts for 7.32%. The remaining principal component, explaining
only 0.40% of the data, is negligible compared to the first two.

Now, how to interpret all of this? In studying the sizes (length, wingspan, weight)
of North American birds, there are apparently only two factors that are important
(corresponding to ~u1 and ~u2). We might think of ~u1 as giving a generalized notion of
“size” that incorporates length, wingspan, and weight. Indeed, all three entries of ~u1

have the same sign, indicating that birds with larger “size” tend to have larger length,
wingspan, and weight.

1octave is a free, open source alternative to MATLAB.
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We could also ask: which of the factors (length, wingspan, weight) is most signifi-
cant in determining a bird’s “size”? In other words, does the first principal component
~u1 point the most in the direction of the length axis, the wingspan axis, or the weight
axis in R3? Well, the third entry, weight, of ~u1 is the largest, so weight is the most
significant. This means a change in one unit of weight tends to affect the size more so
than a change in one unit of length or wingspan. The second entry of ~u1 is the next
largest, which corresponds to wingspan. Thus, wingspan is the next most important
factor in determining a bird’s size (followed lastly by length).

Now, what does the second principal component mean? It is mostly influenced
by wingspan and weight, as these entries in ~u2 have the greatest absolute values.
However, they also have opposite signs. This indicates that ~u2 describes a feature of
birds corresponding to relatively small wingspan and large weight, or vice versa. We
might call this quality “stoutness.”

For each of these birds, is the “size” large or small? Is the degree of “stoutness” large or small?

In other words, to a very good approximation, this sample of North American birds
is described by only two parameters: the “size” (most important) and the “stoutness”
(less important).

6 Eigenfaces: facial recognition

A very exciting application of PCA that was first considered by Sirovich and Kirby [2]
and implemented by Turk and Pentland [3] is to the field of human facial recognition
by computers. The basic idea of this “Eigenface” method is to collect a database of
(black and white, say) images of faces of a wide variety of people, say n of them. Store
each image as a huge vector of length m by sticking the second column of pixels below
the first column, then the third column below that, etc. Each entry represents the
brightness of a pixel (say where 0.0 is black and 1.0 is white). So we can view every
possible face as a vector in some Rm, where m is very large. Running PCA on this data
set gives us principal components, which can be converted back into images. These
are what are known as eigenfaces, each of which is a composite (linear combination)
of faces from the data set. Generally, it is found that a relatively small number of
eigenfaces (say around 100) are needed to give a basis, up to a good approximation,
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of all other faces in the data set. (In terms of PCA, the first 100 variances were much
larger compared to the other remaining ones.)

In Spring 2012, I performed an eigenface demonstration using my students’ ros-
ter photos for the database. Here is what the first eigenface (i.e., the first principal
component) looked like:

How could this be used for face recognition? Suppose you are a casino operator and
have a database of images of everyone that is banned from your casino. For each of
these, you use the Gram–Schmidt method (i.e., orthogonal projection) to approximate
the image as a linear combination of eigenfaces. For each individual that walks through
the doors, your security system would take a picture of their face, break that down
into its eigenface components, and compare it to all images in the database. If it is
close enough to one in the database, perhaps that person is banned from the casino.

A number of resources for and examples of the implementation of Eigenfaces are
available on the web.

For additional reading on PCA in general, we refer the reader to section 7.5 of
Lay’s textbook [1]. We also encourage the reader to search for additional applications
of PCA (of which there are many).
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