Feb. 12, 2013
Directions This exam has two parts. Part A has shorter 5 questions, (10 points each so total 50 points) while Part B had 4 problems (15 points each, so total is 60 points). Maximum score is thus 110 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Clarity and neatness count.

Part A: Five short answer questions (10 points each, so 50 points).
A-1. Which of the following sets are linear spaces? [If not, why not?]
a) In \mathbb{R}^{3}, the span of $\left(\begin{array}{r}1 \\ 0 \\ -2\end{array}\right)$ and $\left(\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right)$.
b) The points $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ in \mathbb{R}^{3} with the property $x_{1}-2 x_{3}=5$.
c) The set of points $(x, y) \in \mathbb{R}^{2}$ with $y=2 x+x^{2}$.
d) The set of once differentiable solutions $u(x)$ of $u^{\prime}+3 x^{2} u=0$. [You are not being asked to solve this equation.]
e) The set of polynomials $p(x)$ of degree at most 2 with $p^{\prime}(1)=0$.

A-2. Let \mathcal{S} be the linear space of 2×2 matrices $A=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ with $2 a+d=0$. Find a basis and compute the dimension of \mathcal{S}.

A-3. Let S and T be linear spaces and $L: S \rightarrow T$ be a linear map. Say \vec{v}_{1} and \vec{v}_{2} are (distinct!) solutions of the equations $L \vec{x}=\vec{y}_{1}$ while \vec{w} is a solution of $L \vec{x}=\vec{y}_{2}$. Answer the following in terms of \vec{v}_{1}, \vec{v}_{2}, and \vec{w}.
a) Find some solution of $L \vec{x}=2 \vec{y}_{1}-7 \vec{y}_{2}$.
b) Find another solution (other than \vec{w}) of $L \vec{x}=\vec{y}_{2}$.

A-4. Say you have matrices A and B.
a) If $A: \mathbb{R}^{7} \rightarrow \mathbb{R}^{7}$, what are the possible dimensions of the kernel of A ? The image of A ?
b) If $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$, what are the possible dimensions of the kernel of B ? The image of B ?

A-5. Give an example of 2×2 matrices A and B with $A B=0$ but $A \neq 0$ and $B \neq 0$.

Part B Four questions, 15 points each (so 60 points total).
B-1. Let $C=\left(\begin{array}{rrrr}1 & 0 & -2 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1\end{array}\right)$. [NOTE: In this problem, there is no partial credit for incorrect computations.]
a) Find the inverse of C.
b) Find the inverse of C^{2}.

B-2. Define the linear maps A, B, and C from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by the rules

- A rotates vectors by $\pi / 2$ radians counterclockwise.
- B reflects vectors across the vertical axis.
- C orthogonal projection onto the vertical axis, so $\left(x_{1}, x_{2}\right) \rightarrow\left(0, x_{2}\right)$

Let M be the linear map that first applies A, then B, and finally C. Find a matrix that represents M in the standard basis for \mathbb{R}^{2}.
$\mathrm{B}-3$. Let the linear map $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be specified by the matrix $A:=\left(\begin{array}{ccc}3 & 1 & 0 \\ 1 & 1 & -2 \\ 2 & 1 & -1\end{array}\right)$.
a) Find a basis for the kernel of A. (Caution: in this problem, $\operatorname{ker} A \neq 0$)
b) Find a basis for the image of A.
c) With the above matrix A, is it possible to find an invertible 3×3 matrix B so that the matrix $A B$ is invertible?

B-4. Say you are given the four data points $(-1,0),(1,2),(4,-2)$, and $(5,3)$. Find a polynomial $p(x)$ of degree at most three that passes through these four points. [Don't bother to "simplify" your answer.]

