DIRECTIONS This exam has two parts. Part A has shorter 5 questions, (10 points each so total 50 points) while Part B had 4 problems (15 points each, so total is 60 points). Maximum score is thus 110 points.

Closed book, no calculators or computers—but you may use one $3'' \times 5''$ card with notes on both sides. Clarity and neatness count.

PART A: Five short answer questions (10 points each, so 50 points).

A-1. Which of the following sets are linear spaces? [If not, why not?]

- a) In \mathbb{R}^3 , the span of $\begin{pmatrix} 1\\0\\-2 \end{pmatrix}$ and $\begin{pmatrix} -2\\0\\1 \end{pmatrix}$.
- b) The points $\vec{x} = (x_1, x_2, x_3)$ in \mathbb{R}^3 with the property $x_1 2x_3 = 5$.
- c) The set of points $(x, y) \in \mathbb{R}^2$ with $y = 2x + x^2$.
- d) The set of once differentiable solutions u(x) of $u' + 3x^2u = 0$. [You are *not* being asked to solve this equation.]
- e) The set of polynomials p(x) of degree at most 2 with p'(1) = 0.

A-2. Let \mathcal{S} be the linear space of 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with 2a + d = 0. Find a basis and compute the dimension of \mathcal{S} .

A-3. Let S and T be linear spaces and $L: S \to T$ be a linear map. Say \vec{v}_1 and \vec{v}_2 are (distinct!) solutions of the equations $L\vec{x} = \vec{y}_1$ while \vec{w} is a solution of $L\vec{x} = \vec{y}_2$. Answer the following in terms of \vec{v}_1 , \vec{v}_2 , and \vec{w} .

- a) Find some solution of $L\vec{x} = 2\vec{y}_1 7\vec{y}_2$.
- b) Find another solution (other than \vec{w}) of $L\vec{x} = \vec{y}_2$.

A-4. Say you have matrices A and B.

- a) If $A: \mathbb{R}^7 \to \mathbb{R}^7$, what are the possible dimensions of the kernel of A? The image of A?
- b) If $B: \mathbb{R}^3 \to \mathbb{R}^5$, what are the possible dimensions of the kernel of B? The image of B?

A-5. Give an example of 2×2 matrices A and B with AB = 0 but $A \neq 0$ and $B \neq 0$.

PART B Four questions, 15 points each (so 60 points total).

B-1. Let
$$C = \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
. [NOTE: In this problem, there is no partial credit for incorrect computations.]

- a) Find the inverse of C.
- b) Find the inverse of C^2 .
- B-2. Define the linear maps A, B, and C from $\mathbb{R}^2 \to \mathbb{R}^2$ by the rules
 - A rotates vectors by $\pi/2$ radians counterclockwise.
 - B reflects vectors across the vertical axis.
 - C orthogonal projection onto the vertical axis, so $(x_1, x_2) \to (0, x_2)$

Let M be the linear map that first applies A, then B, and finally C. Find a matrix that represents M in the standard basis for \mathbb{R}^2 .

- B-3. Let the linear map $A: \mathbb{R}^3 \to \mathbb{R}^3$ be specified by the matrix $A:=\begin{pmatrix} 3 & 1 & 0 \\ 1 & 1 & -2 \\ 2 & 1 & -1 \end{pmatrix}$.
 - a) Find a basis for the kernel of A. (CAUTION: in this problem, $\ker A \neq 0$)
 - b) Find a basis for the image of A.
 - c) With the above matrix A, is it possible to find an invertible 3×3 matrix B so that the matrix AB is invertible?
- B-4. Say you are given the four data points (-1,0), (1,2), (4,-2), and (5,3). Find a polynomial p(x) of degree at most three that passes through these four points. [Don't bother to "simplify" your answer.]