
Math 210 Jerry L. Kazdan
Quadratic Polynomials

Polynomials in One Variable.

After studying linear functions y = ax + b , the next step is to study quadratic poly-

nomials, y = ax2 + bx + c , whose graphs are parabolas. Initially one studies the simpler
special case

y = ax2 + c (1)

If a > 0 these parabolas have a minimum at x = 0 and open upward, while if a < 0 they
have a maximum at x = 0 and open downward.

One can reduce the more general quadratic polynomial

y = ax2 + bx + c (2)

to the special case (1) by a change of variable, x = v + r translating x by r , where r is to
be found. Substituting this into (2) we find

y = a(v + r)2 + b(v + r) + c = av2 + (b + 2ar)v + ar2 + br + c.

We now pick r to remove the linear term in v , that is, b + 2ar = 0 so r = −b/(2a). Then

y = av2 + k = a(x − r)2 + k, (3)

where k = c − b2/(4a). Thus, x = r is the axis of symmetry of this parabola.

This procedure is equivalent to “completing the square”, a
procedure that should be familiar from algebra. Another way
to find r is to observe that the only critical point of (2) is at
x = −b/(2a). Thus translating by b/(2a) places this critical
point on the vertical axis.
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Shifted Parabola

Example. On the right are the graphs of y = x2 + 1 and
y = (x − 2)2 + 1 = x2 − 2x + 2. They clearly shows the graph
on the right is merely a translation of the graph on the left.

Polynomials in Several Variables.

Maxima, minima, and saddle points.

There are more interesting possibilities for quadratic polynomials in two variables.

w = 2x2 + y2 w = −(2x2 + y2) w = −2x2 + y2

From the graphs it is clear that the first has a minimum at the origin, the second a maxi-

mum, while the third has a saddle point there.
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It is less obvious how to treat polynomials such as

w = 3x2 − 2xy + y2 (4)

or
w = 3x2 − 2xy + y2 + z2 (5)

with xy terms and possibly more variables. These two examples can be handled if one
recognizes that x2 −2xy +y2 = (x−y)2 so, if one makes the change of variables r = x, s =
x − y and t = z then in the new coordinates these polynomials become

w = 2x2 + (x − y)2 = 2r2 + s2 and w = 2r2 + s2 + t2,

which clearly have minima at the origin in rs and rst space, respectively.

The primary task of this section is to give useful criteria for a quadratic polynomial in
several variables to have a maximum, minimum, or saddle point. This will then be used in
the next section to generalize the calculus of one variable second derivative test for a local
maximum to functions of several variables such as our quadratic polynomials.

The first step is to be a bit more systematic. Rewrite (4) as w = 3x2−xy−yx+y2 and
observe that using the inner (=dot) product it can be written in the more compact form

w = X·AX, (6)

where

X =

(

x
y

)

and A is the symmetric matrix A =

(

3 −1
−1 1

)

.

Similarly, we can also write

w = 3x2 + 2xy + y2 − 4yz + xz + 5z2 (7)

= 3x2 + xy + yx + y2 − 2yz − 2zy + 1

2
xz + 1

2
zx + 5z2 (8)

in the form (6) where

X =







x
y
z






and A is the symmetric matrix A =







3 1 1

2

1 1 −2
1

2
−2 5






.

In the simplest cases when there are no cross-product terms,

w = ax2 + by2 + cz2 (9)

the matrix A is a diagonal matrix

A =







a 0 0
0 b 0
0 0 c






.

If a, b and c are all positive, then clearly w has a minimum at the origin. Similarly if a, b
and c are all negative then clearly w has a maximum at the origin. However if at least one
of the coefficients a, b, c is positive and at least one is negative, then the origin is a saddle

point.
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For a given symmetric matrix A we say that the matrix A is

positive definite if X·AX > 0 for all X 6= 0
negative definite if X·AX < 0 for all X 6= 0
indefinite if X·AX changes sign

Thus, positive definite means precisely that the quadratic polynomial w = X·AX has
a minimum only at the origin, negative definite means that w has a maximum only at the
origin, and indefinite means that w has a saddle point at the origin.

If A is invertible, we will see that these three cases are
the only possibilities, while if A is not invertible, there are a
few degenerate cases not included in the above. One of the
simplest examples is the polynomial w = x2 + 2xy + y2 . Since
w = (x + y)2 ≥ 0, it is almost positive definite. The difficulty is
that w = 0 at points other than just x = y = 0 since it is zero
along the whole line y = −x . This is clearer from its graph.

For situations such as these, we say that the quadratic polynomial X·AX is positive

semi-definite if X·AX ≥ 0 for all X with the understanding that it may be zero for values
of X other than just zero. There is a similar definition of negative semi-definite.

We can now rephrase the primary task for this section: give criteria on the matrix A for
the quadratic polynomial w = X·AX to be positive definite, negative definite, or indefinite.
We will give two different versions, one using eigenvalues and one using determinants. Both
of these have their own virtues and are applicable in different situations.

Before venturing further, we make four useful elementary observations.

Observation 1. A diagonal matrix is positive definite if and only if all its diagonal elements

are positive, it is negative definite if and only if all its diagonal elements are negative. We
mentioned this above. For a diagonal matrix, the corresponding quadratic polynomial looks
like (9), so this assertion should be obvious.

Observation 2. If A is positive definite, then −A is negative definite. The simplest
example is w = x2 + y2 where A = I is the identity matrix. w has a minimum only at the
origin. The polynomial w = −(x2 + y2), where A = −I , has a maximum at the origin.

Observation 3. If a symmetric matrix A, has at least one positive diagonal element and

at least one negative diagonal element, then it is indefinite. For instance, the matrix A
associated with the quadratic polynomial

w = 3x2 + 2xy + y2 − 4yz + xz − 5z2

has two positive diagonal elements (the coefficients of x2 and of y2 ), and one negative (the
coefficient of z2 ). At points of the form (x, 0, 0) the polynomial w = 3x2 is clearly positive,
while at points of the form (0, 0, z), w = −5z2 is clearly negative. Thus the origin is neither
a max nor a min, it is a saddle point. We conclude that A is indefinite.

The same reasoning shows that the diagonal elements of a positive definite matrix are

positive while the diagonal elements of a negative definite matrix are negative.

Observation 4. If the symmetric matrix A is positive definite, then it is invertible. To see
this, note that if A were not invertible, then there would be a vector Z 6= 0 with AZ = 0.
But then Z·AZ = 0 which contradicts A being positive definite.
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Criterion for Positive Definite Using Eigenvalues

The key ingredients to this approach are Observation 1 just above and the fundamen-
tal fact that one can always diagonalize a symmetric matrix. To be more specific, given a
real symmetric n×n matrix A there is an orthogonal matrix R whose columns are eigenvec-
tors of A so that the matrix D := R−1AR is a diagonal matrix. The diagonal elements of D
are the eigenvalues λ1, λ2, . . . , λn of A . From this we can write A = RDR−1 . Thus, using
the general rule X·RY = RTX·Y and since RT = R−1 , we find the quadratic polynomial
is

w = X·AX = X·RDR−1X = R−1X·DR−1X.

This leads us to make the change of coordinates V = R−1X . In these V = (v1, . . . , vn)
coordinates

w = V·DV = λ1v
2

1 + λ2v
2

2 + · · · + λnv2

n
. (10)

We now apply Observation 1 and conclude that w has a minimum only at the origin if
and only if the eigenvalues λ1, λ2, . . . , λn are positive. To summarize:

Eigenvalue Test. A symmetric matrix A is:

positive definite if and only if all of its eigenvalues are positive

negative definite if and only if all of its eigenvalues are negative

indefinite if and only if some eigenvalues are positive and some negative.

If A is invertible, that is, if none of its eigenvalues are zero, these three are the only possi-
bilities. However, some degenerate cases, such as a matrix having some positive eigenvalues
and the remaining eigenvalues being zero, are not included in the above. This is treated
further in Exercises 26-28.

Example 1. The quadratic polynomial

4x2 − 6xy + 4y2 + 2z2

is associated with the matrix

A =







4 −3 0
−3 4 0

0 0 2







whose characteristic polynomial is (2 − λ)[(4 − λ)2 − 9] = (2 − λ)(λ − 7)(λ − 1). Thus
its eigenvalues are 1, 2 and 7. Since these eigenvalues are all positive, the matrix A is
positive definite. Notice that this matrix A does have some negative elements, although by
Observation 3 they couldn’t have been on the diagonal since then A could not possibly
have been positive definite.

Criterion for Positive Definite Using Determinants

One can also use determinants to test if a matrix is positive definite. This has the
advantage that one does not need to find the eigenvalues. Associated with an n×n matrix
A one has the principal minors

A1 = (a11) , A2 =

(

a11 a12

a21 a22

)

, A3 =







a11 a12 a13

a21 a22 a23

a31 a32 a33






, . . . , An =











a11 a12 · · · a1n

a21 a22 · · · a2n

: : · · · :
an1 an2 · · · ann











.
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Determinant Test. The symmetric matrix A is positive definite if and only if the deter-

minants of all the principal minors are positive. Similarly, by Observation 2, A is negative

definite if and only if these determinants alternate in sign: detA1 < 0, det A2 > 0, . . . .

The above assertion concerning negative definite matrices follows from the first part by
using Observation 2.

This criterion is not obvious to most people. However it is easy to use, at least for
matrices that are not too large.

Example 1 (again). The principal minors are

A1 = (4) , A2 =

(

4 −3
−3 4

)

, and A3 =







4 −3 0
−3 4 0

0 0 2






.

Since det A1 = 4 > 0, det A2 = 7 > 0, and det A3 = 14 > 0, by this determinant criterion
the matrix A is positive definite.

Example 2. Although the diagonal elements of a positive definite matrix must be positive
(Observation 3), the sign of the off-diagonal elements is not significant. For instance,
consider the matrices

(

1 2
2 1

)

, and

(

1 −2
−2 1

)

associated with the quadratic polynomials w = x2±4xy+y2 . By the determinant test both
are indefinite so these quadratic polynomials both have saddle points at the origin. One
can transform from one of these polynomials to the other merely by replacing y with −y ,
that is, by making a reflection across the x−axis; clearly this does not change the essential
behavior of the polynomial.

Example 3. The symmetric matrix















1 2 −2 5 3
2 9 7 0 8

−2 7 7 0 3
5 0 0 1 0
3 8 3 0 −5















is indefinite. To see this one could use the determinant test, but it is simpler to use
Observation 3 since at least one of the diagonal elements is positive and a at least one is
negative.

proof of the determinant test. The proof is instructive, but complicated. It is
included so the more adventurous readers can see how it works. Upon first reading it is
best just to skim it.

Part 1. If A is positive definite then the determinants of all its principal minors are positive.

Step 1. We first show that if the symmetric matrix A is positive definite, then its determinant is
positive. In fact, we give two different proofs of this.

The first proof begins from the basic fact that the determinant of matrix is the product of its
eigenvalues. If A is positive definite, above we showed that all of its eigenvalues must be positive,
hence the determinant is positive.
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The second proof starts from the observation that the sum of two positive definite symmetric
matrices A and B is positive [proof:

X · (A + B)V = X · AV + X · BV > 0

for all X 6= 0.] In particular, if A is positive definite, so is the matrix C(t) = tA + (1 − t)I for
0 ≤ t ≤ 1. Since C(t) is positive definite, by Observation 4 above it is invertible and hence
detC(t) 6= 0 for 0 ≤ t ≤ 1. Since detC(0) = det I > 0, then detC(1) = det A > 0.

Step 2. We claim that if A is positive definite, then so are its principal minors. For this we must
show, for instance, that A3 is positive definite. Let V = (v1, v2, v3) and let X be a vector whose
first part is V and the rest is 0, so X = (v1, v2, v3, 0. . . . , 0). If V 6= 0, then since A is positive
definite we know

0 < X·AX = V·A3V.

Thus A3 is positive definite. One similarly shows that Ak is positive definite for any 1 ≤ k ≤ n .
Since these Ak are positive definite, by Step 1 their determinants are all positive.

Part II. Conversely, if the determinants of all its principal minors are positive, then A is positive

definite.

Step 1 . We need a preliminary computation relating detA and the matrix An−1 . For cleanliness,
let B = An−1 and write A as

A =









a1n

B :
an−1 n

an1 · · · an n−1 c









,

where ann = c . If we let α be the column vector α = (a1n, a2n, . . . , an−1 n) this can be further
abbreviated as

A =

(

B α
αT c

)

. (11)

We want to compute detA . Perhaps the simplest approach is to notice that matrix multiplication
also works for block matrices such as (11). In the formula below let I be the (n − 1) × (n − 1)
identity matrix. We seek a column vector v with the same shape as α so that the product

(

B α
αT c

)(

I v

0 1

)

=

(

B Bv + α
αT αT v + c

)

(12)

is as simple as possible. Notice that the second matrix on the left is upper triangular, so its
determinant is the product of the diagonal elements and hence is 1 no matter how we pick v . We’ll
use Bv + α = 0; that is, assuming B is invertible, then v = −B−1α . With this choice of v we can
evaluate the determinant on the right easily, expanding by minors using the last column. Thus, we
take the determinant of both sides of (12) to conclude that

detA = (c − αT B−1α) det B = (c − α·B−1α) det B. (13)

Step 2 . We will use this to show that if B is a positive definite symmetric matrix and if A in (11)
has detA > 0 , then A is also positive definite.

We must show that X·AX > 0 for all X 6= 0. To utilize the block structure of (11), write X

as the column vector X = (x, z) where x = (x1, . . . , xn−1) and z is a scalar. Then from (11)

AX =

(

B α
αT c

)(

x

z

)

=

(

Bx + αz
αTx + cz

)

. (14)

Consequently
X·AX = x·Bx + 2α · xz + cz2. (15)
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Since B is positive definite, in Part 1 we showed that detB > 0 so B is invertible. Because
detA > 0, equation (13) tells us that c > α·B−1α . We use this in (15) to find

X·AX ≥ x·Bx + 2α · xz + α·B−1αz2 ( > 0 unless z = 0), (16)

To make this equation clearer, as above let v = −B−1α , so α = −Bv . Then we can rewrite (16) as

X·AX ≥ x·Bx − 2Bv · xz + Bv · vz2 (17)

= (x − vz)·B(x − vz). (18)

Since the right side if this is of the form w·Bw and because B is positive definite, we conclude that
(17) is positive unless x − vz = 0 and, from (16), z = 0. Thus (17) is positive unless x = 0 and
z = 0, so it is positive for all X 6= 0. This proves that A is positive definite.

Step 3 . We finally show that if the principal minors of A all have positive determinant, then A

is positive definite. If a11 > 0 and detA2 > 0, then by Step 2, A2 is positive definite. But since

detA3 > 0 Step 2 again implies that A3 is positive definite. Repeating this we conclude eventually

that An = A is positive definite. This completes the proof.

Some Pictures.

One way to understand the quadratic polynomial w = X·AX is to look at the level
sets; thus so we are looking at the points X where X·AX = k , for the particular values
k = 1, 0, and − 1. As we saw in equation (10), by using a rotation, that is, an orthogonal
transformation, we need only consider the special case when A is diagonal. For pictures,
we will look at the special cases of two and three dimensions.

Two dimensions

λ1x
2

1 + λ2x
2

2 = c. (19)

There are two cases, depending if λ1 and λ2 have the same or have opposite sign.
If λ1 and λ2 have the same sign, then since we can always change the sign of c , we make
assume that both λ ’s are positive and write λ1 = 1/a2, λ2 = 1/b2 . Then our equation is

x2
1

a2
+

x2
2

b2
= k.

If k = 1, this defines an ellipsoid whose semi-axes have lengths a and b , respectively. If
k = 0, only the origin satisfies the equation, while if k = −1 no points satisfy the equation.
Of course all of this is obvious from the three dimensional graph of w = x2

1/a
2 +x2

2/b
2 . The

alternate approach here will make it easier to compare with the other cases below.
If λ1 and λ2 have the opposite sign, then say 0 < λ1 = 1/a2 and 0 > λ2 = −1/b2 . The
equation becomes

x2
1

a2
− x2

2

b2
= k.

If k = 1 this is a hyperbola that opens on the horizontal axis, if k = 0 the equation is
(x1 − x2)(x1 + x2) = 0 which is the pair of straight lines x1 = ±x2 . Finally if k = −1 this
is a hyperbola that opens on the vertical axis.
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x2 − 1

4
y2 = 1 x2 − 1

4
y2 = 0 x2 − 1

4
y2 = −1

Three dimensions

λ1x
2

1 + λ2x
2

2 + λ3x
2

3 = 1. (20)

The three cases depend on how many of the λ ’s are positive or negative.

All λ’s positive. For reasons that will be clear shortly, it is convenient to write λ1 = 1/a2 ,
λ2 = 1/b2 , and λ3 = 1/c2 , so the equation is

x2
1

a2
+

x2
2

b2
+

x2
3

c2
= k.

This is an ellipsoid . If k > 0 we can always divide by it to reduce to
the case where k = 1 (the cases k ≤ 0 are not interesting, Why?).
Thus, we assume k = 1. Since x1 is largest when x2 = x3 = 0, in
which case x1 = ±a , we see that the length of this semi-axis is a .
Similarly the lengths of the other semi-axes are b and c , respectively.
If k = 0 the only point that satisfies this is the origin, while if
k = −1, no real points satisfy this.

x2+ 1

25
y2+ 1

9
z2 = 1.

Two λ’s positive, one negative. In this case we write, say, λ1 = a2 , λ2 = b2 , while λ1 = −c2

and the equation is
x2

1

a2
+

x2
2

b2
− x2

3

c2
= k.

If k = 1 this is a hyperboloid of one sheet . If k = 0 this is a cone, while if k = −1 this is a
hyperboloid of two sheets.

One λ positive, two negative. Multiplying the equation by −1 reduces this case to the
previous case (just change the sign of k ).

x2 + y2/25 − z2/9 = 1 x2 + y2/25 − z2/9 = 0 x2 + y2/25 − z2/9 = −1
hyperboloid of one sheet cone hyperboloid of two sheets
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Quadratic polynomials with lower order terms

We close this section by showing how to treat quadratic polynomials such as

w = 3x2 − 2xy + y2 + z2 − 2x + y − 5z + 11

with lower order terms. Write this in the form

w = X·AX + b ·X + c, (21)

where the matrix A is as before, b = (−2, 1, −5) and c = 11. We will use the approach
mentioned at the beginning of this section for a polynomial in one variable and make a
change of variable X = V + r where r is to be found. Substituting and computing gives

w = (V + r) · A(V + r) + b·(V + r) + c (22)

= V·AV + (b + 2Ar) · V + r·Ar + b · r + c. (23)

Now we choose r to eliminate the linear term in v ; thus 2Ar = −b , so r = −1

2
A−1b .

Then w has the desired simpler form

w = V·AV + k = (X− r) · A(X − r) + k,

where k is the constant

k = r·Ar + b · r + c = c − 1

4
b·A−1b.

This procedure is the generalization of “completing the square” to quadratic polynomials
in several variables.

Just as for a quadratic polynomial in one variable, another way to find r is to ob-
serve from (21) that since grad w = 2AX + b , the only critical point of (21) is at X =
−(1/2)A−1b . Thus translating by (1/2)A−1b places this critical point on the vertical axis
of symmetry. Observe that these formulas are essentially identical with (3) for a polynomial
in one variable.

We leave it as an exercise for you to find the particular value of r for the special example
we have. Note that this procedure presumes that A is invertible, or at least that one can
solve 2Ar + b = 0.

Example. To the right are plots of z = x2 + 4y2 and its translate,
z = x2+4(y−2)2 so the axis of symmetry is the vertical line through
(0, 2, 0). Note that for z = c , the level curve on the left is the ellipse
x2 + 4y2 = c , while on the right is the same ellipse, just translated:
x2 + 4(y − 2)2 = c .

0
1
2
3
4
5
6

-1 1 2 3
-2

2

Problems

1. Write the following quadratic polynomials in the form a(x − r)2 + k , that is, find the axis of
symmetry r , and the height k .

(a) x2 + 4x − 3 (b) −2x2 − 6x + 5
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2. Write each of the following quadratic polynomials in the form X·AX , that is, find the symmetric
matrix A .

(a) 3x2 + 3y2

(b) 3x2 − 4xy − 2y2

(c) −2x2 + xy + y2

(d) 4xy

(e) x2 + (x + 2y)2

(f) x2 + y2 + 2xz + 5z2

(g) −2x2 + xy + y2 + 4xz − 2yz + 6z2

(h) 2xy − 6yz + z2

(i) (x + y − z + 2u)2

(j) 4xy + y2 − 7xz + 2z2

(k) x2 + 2y2 + 3z2 − 4w2 + 4wz

(l) x2 + 2y2 + 3z2 + 4w2 + 6yw

3. Determine which of the quadratic forms in Problem 2 are positive definite (or semi-definite),
negative definite (or semi-definite), or indefinite.

4. For the polynomial 3x2
1 − 4x1x2 + 3x2

2 :

(a) Determine if it is positive-definite, negative-definite, or indefinite.

(b) Use Maple to graph it.

(c) Find an orthogonal matrix R that diagonalizes the symmetric matrix A associated with this
quadratic polynomial, so R−1AR = D is a diagonal matrix. Then make the change of variable
X=RV, where V = (v1, v2), and write the polynomial in these new coordinates.

5. Repeat Problem 4. for the polynomial 3x2
1 + 8x1x2 − 3x2

2 .

6. Repeat Problem 4. for the polynomial 3x2
1 + 8x1x2 − 3x2

2 − z2 .

7. Use Maple to graph 3x2 − 4xy + 3y2 = 1. Use all of the three following approaches:

(a) plot3d: z = x2
1 − 4x1x2 + 3x2

2 for 0 ≤ z ≤ 1 (Maple uses view=0..1), or else show the
contour line z = 1.

(b) Plot this curve implicitly.

(c) Use the procedure of Problem 4c to write this curve as a2v2
1 + b2v2

2 = 1, and then use the
parameterization v1 = (cos t)/a, v2 = (sin t)/b for 0 ≤ t ≤ 2π .

8. Repeat Problem 7 for the quadratic polynomial 3x2
1+8x1x2−3x2

2 , only for part c) use hyperbolic
functions cosh t = 1

2 (et + e−t) and sinh t = 1
2 (et − e−t). The only property one needs of these

hyperbolic functions is the easily verified identity cosh2 t−sinh2 t = 1, which serves as a replacement
for sin2 t + cos2 t = 1.

9. Let q(x, y, r, s) = 5x2 + 2xy − 6xs + 5y2 − 6ys− 9s2 − 18xr − 18yr + 3r2 + 36rs . Determine if q
is positive definite, negative definite, or indefinite.

10. Let h(x, y, r, s) = 5x2 + 2xy − 6xs + 5y2 − 6ys + 9s2 − 18xr − 18yr + 3r2 + 36rs .

(a) Determine if h is positive definite, negative definite, or indefinite.

(b) Find the eigenvalues of the symmetric matrix associated with h . [Remark: Maple does this
quite quickly.]

11. Let p(x, y) = 3x2 − 4xy + 3y2 − 14x + 16y + 25.

(a) Write this in the form p(x, y) = (X−X0) ·A(X−X0)+ c , that is, find the axis of symmetry
X0 and the height c . Here, as usual, X is the column vector X = (x, y).

(b) Graph this polynomial.

12. Repeat Problem 11 for q(x, y) = 3x2 + 8xy − 3y2 + 24x − 18y + 1.

13. Let A be a positive definite symmetric matrix.

(a) Show that A2 and A−1 are also positive definite.

(b) Better yet, show that Ak is positive definite for any integer k .
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14. If A is a symmetric matrix, let f(X) = X·AX . Use Lagrange multipliers to show that the
maximum value of f for all points on the unit ball, ‖X‖ = 1, is the largest eigenvalue of A .

15. If A is any symmetric matrix, show that there is some constant c so that the matrix A + cI is
positive definite. Can you find the optimal value of c?

16. Let A be a symmetric n × n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn . Show that for any
vector X

λ1‖X‖2 ≤ X·AX ≤ λn‖X‖2.

[Suggestion: Use equation (10).]

17. Let B be any invertible matrix. Show that BT B and BBT are both positive definite. If
B is not necessarily invertible – or even a square matrix – show that these are at least positive
semi-definite.

18. If A is a symmetric positive definite matrix and C is any invertible matrix, show that CT AC
is also positive definite.

19. A matrix C is called skew-symmetric if CT = −C .

(a) Give an example of a skew-symmetric 2 × 2 matrix (other than the 0 matrix).

(b) Show that C is skew-symmetric if and only if CX · Y = −X · CY for all vectors X and Y .

(c) If C is skew-symmetric, show that X·CX = 0 for all vectors X.

20. Let M be any square matrix and write M = S + T , where S = 1
2 (M + MT ) and T =

1
2 (M − MT ).

(a) Show that S is symmetric and T is skew-symmetric.

(b) Show that if M = A+B , where A is symmetric and B is skew symmetric, then in fact A = S
and B = T .

(c) Prove the identity X·MX = X·SX for all vectors X. Thus, the quadratic polynomial depends
only on the symmetric part of M . (This is why we only use symmetric matrices in quadratic
polynomials).

21. Let A, B , and C be n × n symmetric matrices.

(a) Expand (X + Y) · C(X + Y) to obtain the formula

X · CY = 1
2 [(X + Y) · C(X + Y) − X · CX− Y · CY.]

The point is that the expressions on the right are all of the form V · CV for various vectors
V, while the left side has a more general form.

(b) Use this to show that if X ·CX = 0 for all vectors X , then the only possibility is that C = 0.
[There is an alternate proof by diagonalizing C ].

(c) Show that if the two quadratic polynomials X·AX and X·BX are equal for all values of
X, then A = B . Thus a quadratic polynomial uniquely determines its associated symmetric
matrix.

22. Let A be a positive definite matrix.

(a) Show A has a square root , that is, there is a positive definite symmetric matrix P so that
A = P 2 . [Suggestion: First do the special case when A is a diagonal matrix. For the general
case, begin by diagonalizing A ].

(b) As an example, find the square root of

(

4 −1
−1 4

)

(c) Let g(X) = X·AX . Show that if one makes the change of variable Y = PX , then g takes
the much simpler form g(X) = ‖Y‖2 = y2

1 + y2
2 + · · · + y2

n . This change of variable is often
valuable. Problems 24d, 35, 36 and 37 all benefit from this observation, or variants of it.
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(d) If P is a positive definite square root of A and B is any other symmetric matrix, show that
A − B = P (I − C)P , where C = P−1BP−1 is a symmetric matrix. This is usually more
convenient than writing A − B = A(I − A−1B) since C is a symmetric matrix while A−1B
is probably not.

23. If M is any invertible matrix, the point of this problem is to show that there is a positive
definite matrix P and an orthogonal matrix R so that M = PR . This is analogous to writing a
complex number z in the polar form z = reiθ . In the complex case, one finds r by the observation
that zz = r2 and then finds eiθ using |z/r| = 1. The same procedure is used here.

(a) Observe that if M = RP , then MMT = P 2 . Since MMT is positive definite (Problem 17),
it has a square root P (Problem 22). This determines P .

(b) Now that one knows P , define the matrix R by R = MP−1 . Show that this R is an
orthogonal matrix.

(c) Use an analogous procedure to find a positive definite matrix Q and an orthogonal matrix S
so that M = SQ .

24. For parts a)-b), consider the ellipse x2 + y2/4 = 1 and the lines 2x + y = c .

(a) Use Maple to plot the graphs of the ellipse and the line (on the same plot) for various values
of c , both positive and negative.

(b) For which value(s) of c does this line intersect the ellipse in exactly one point?

(c) Repeat parts a)-b). for the ellipsoid x2 + y2/4 + z2 = 1 and, on the same plot, the planes
2x + y + z = c .

(d) More generally, let A be a positive definite symmetric matrix and b a given non-zero vector.
For which value(s) of the constant c does the “plane” b ·X = c intersect the ellipsoid X·AX =
1 in exactly one point? [Suggestion: First do the case when A = I , then do the case when A

is a diagonal matrix. The answer is c = ±
√

b·A−1b .]

25. Let V = (v1, . . . , vn) be a non-zero column vector and let C be the matrix C = VVT = (vivj),
so the jth column of C is vjV .

(a) Show that C is positive semi-definite.

(b) Compute the inverse of I + C .

(c) Find the eigenvalues and eigenvectors of C .

(d) If A is a symmetric matrix with V as an eigenvector, find the eigenvalues and eigenvectors
of A + C . When is this matrix positive definite?

26. Show that both of the following are positive semi-definite, but is not positive definite. Also find
the eigenvalues of the associated symmetric matrix, and, for part a), graph w = q(x, y).

(a) q(x, y) = x2 − 6xy + 9y2 .

(b) Q(x, y, z) = x2 − 6xy + 9y2 + z2

27. Show that a symmetric matrix is positive semi-definite if and only if all of its eigenvalues satisfy
λk ≥ 0. State and prove the related assertion for a negative semi-definite matrix.

28. Let A be a symmetric matrix.

(a) If A is positive semi-definite, show that its principle minors all have non-negative determinant:
detA1 ≥ 0, det A2 ≥ 0, etc.

(b) Use the example A =





1 1 1
1 1 1
1 1 0



 to show that the converse of part a) is false. Do this by

showing that detA1 > 0, detA2 = det A3 = 0 but that A is not positive semi-definite.

12



29. Let A = (aij) be a symmetric matrix.

(a) If a11 = 0 but a12 6= 0, show that A is indefinite.

(b) More generally, if some diagonal element of A is zero but some other element in the same

column is not zero, show that A is indefinite. This can be thought of as an extension of
Observation 3.

30. Some people define an orthogonal matrix R by the property RT = R−1 (transpose is the
inverse). The following presents an different approach that is more fundamental.

(a) If R is an orthogonal matrix, show that for any vectors X and Y one has

RX · RY = X ·Y.

Thus, orthogonal matrices preserve inner products – and hence the angles between vectors. As
a special case, show that for all vectors X one has ‖RX‖ = ‖X‖ , that is, orthogonal matrices

preserve the distance from the origin.

(b) Conversely, if for any vectors X and Y one has

RX · RY = X ·Y, (24)

show that RT = R−1 (transpose is the inverse). Thus, preserving inner products is equivalent
to the other definition of an orthogonal matrix.

(c) Use the property (24) directly to show that of R and S are both n× n orthogonal matrices,
then so their product, RS .

31. If a matrix R has the property that for any vector X one has ‖RX‖ = ‖X‖ , show that
RT = R−1 (transpose is the inverse). Thus, preserving distance to the origin is also equivalent to
other definitions of an orthogonal matrix. [Suggestion: use Problem 21a].

32. Let F (X) be a (not necessarily linear) map from R3 (or Rn ) to itself.

(a) If F has the property that it preserves inner products (see Problem 30. above):

F (X) · F (Y) = X ·Y. (25)

show that in fact F is linear:

F (cX) = cF (X) for any scalar c, and F (X + Y) = F (X) + F (Y) for any X and any Y.

Thus F is an orthogonal mapping, F (X) = RX): [Suggestion: Show that ‖F (X + Y) −
[F (X) + F (Y)]‖2 = 0, and ‖F (cX) − cF (X)‖2 = 0].

(b) Show that if a F both fixes the origin and preserves distance between points:

F (0) = 0 and ‖F (X) − F (Y)‖ = ‖X − Y‖,

then F has the property (25). Hence it is an orthogonal mapping.

(c) Let T (X) be a rigid mapping, that is, it preserves the distance between any two points:

‖T (X) − T (Y)‖ = ‖X− Y‖.

Show that T is the sum of a translation by some vector X0 plus an orthogonal transformation,
R :

T (X) = X0 + RX.

[Suggestion: Apply the preceding part to F (X) := T (X) − T (0).]
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33. Use both the eigenvalue and determinant tests to decide if the following matrix is positive
definite.













3 −2 3 −1 0
−2 6 −6 2 0

3 −6 11 −3 0
−1 2 −3 3 0

0 0 0 0 2













34. One can think of the vector function X(t), depending on a parameter t as describing the position
of a particle at time t . If

dX(t)

dt
= S(t)X,

where S(t) is a skew-symmetric matrix, show that the distance from X(t) to the origin is a constant,
that is, X(t) moves on a sphere of fixed distance from the origin. [Suggestion: Problem 19 is useful
here].

35. This problem assumes you know how to make a change of variable in a multiple integral by
using the Jacobian determinant. Let X = (x1, . . . , xn).

(a) Using the result from the special case n = 1, Evaluate

∫

Rn

e−‖X‖2

dx1 . . . dxn.

(b) Let A be a symmetric positive definite n × n matrix and let

Q =

∫

Rn

e−X·AX dx1 . . . dxn.

Use the change of variable in Problem 22c to show that Q = (π/ detA)n/2 .

(c) As an example, apply this to evaluate

∫ ∞

−∞

∫ ∞

−∞

e−(x2−2xy+3y2) dx dy.

(d) Generalize part a) and evaluate

∫

Rn

e−(X·AX+2b·X+c) dx1 . . . dxn,

where b is a specified vector and c a scalar.

36. If A = aij is a positive definite symmetric matrix and B = (bij) is positive semi-definite
symmetric (but not identically zero), show that

trace (AB) =

n
∑

1,j=1

aijbij > 0.

Here trace (A) is the sum of the diagonal elements of the square matrix A . [Suggestion: First try
the case where A = I and B is a diagonal matrix. For the general case it will help to use the fact
that if A and C are similar matrices, then trace (A) = trace (C), and also that for any matrices
C, D we have trace (CD) = trace (DC).]
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37. The following problem shows some of the ideas in this section at work in a related setting.

(a) Let u(x1, . . . , xn) be a given function and say one makes the change of variable Y = SX ,
where S = (sij) is an invertible matrix. Show that

∂2u

∂xi∂xj
=

n
∑

k,ℓ=1

skisℓj
∂2u

∂yk∂yℓ

(b) If A = (aij) is a positive definite 2× 2 matrix and u(x1, x2) is a given function, let L be the
partial differential operator

Lu := a11
∂2u

∂x2
1

+ 2a12
∂2u

∂x1∂x2
+ a22

∂2u

∂x2
2

.

Show that one can introduce new coordinates (y1, y2) so that in these new coordinates L is
the standard Laplace operator

Lu =
∂2u

∂y2
1

+
∂2u

∂y2
2

.

[Suggestion: If A = (a) is a 1 × 1 matrix and L is the corresponding ordinary differential
operator Lu = auxx , then under the change of variable x =

√
ay we get Lu = uyy . This leads

one to try the change of variable X =
√

AY , so Problem 22 may help here. From another
view it may be useful to think of Lu := trace (Au′′)]
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