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ABSTRACT

Rook Theory and Matchings

Daniel E. Cain

Advisor: James Haglund

In this paper we study an analogue of classical rook theory for new types of boards

where rook placements represent matchings from graph theory. We survey recent

results in this area, including the presentation of a statistic for combinatorially deter-

mining the q-hit numbers of such boards. In addition, we provide some results and

conjectures on the zeros of rook polynomials associated with matchings of weighted

graphs.
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Chapter 1

Motivation: Why Rook Theory?

Classical rook theory was developed in the 1940's by Riordan and Kaplansky as a

framework for studying permutations with restricted position. In the game of chess,

rooks are permitted to move horizontally or vertically across the board to attack an

opposing piece. Thus, one can envision a permutation as a placement of n rooks on

an n x n chessboard such that no two rooks have the ability to attack one another

(i.e. no two rooks are in the same row or column). The notions of rook numbers and

hit numbers were formulated, with the k-th hit number counting the number of ways

that n non-attacking rooks can be placed on an n x n chessboard such that k of those

rooks lie on a certain prede�ned subset of the squares on that board. A fundamental

result of rook theory shows that these hit numbers can be calculated in terms of

the more easily calculated rook numbers, where the k-th rook number is de�ned to

be the number of ways of placing k non-attacking rooks on some prede�ned subset
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of squares on a chessboard. One can likely already see the potential applications

of this theory to permutations with restricted position. For instance, if we take

the prede�ned subset to be the squares along the diagonal from bottom left to top

right on an n x n chessboard, the 0-th hit number corresponds to the number of

permutations in Sn with no �xed points (i.e. the number of derangements in Sn).

Similarly, any problem of permutations with restricted position can be formulated

in terms of rook numbers and hit numbers.

Over the second half of the twentieth century, especially in the 1990's, mathe-

maticians became increasingly interested in developing the theory of rooks, both for

its own intrinsic appeal and for using it as a tool to prove theorems from other areas

of enumerative combinatorics. Garsia, Remmel, Haglund, Dworkin, and many oth-

ers used rook theory in connection with graphs, hypergeometric series (see [3]), Stir-

ling numbers and permutations, Bessel polynomials, Abel polynomials and forests,

among other combinatorial objects. In this paper, we focus on connections between

rook theory and graph theory, particularly with regard to matchings of graphs. In

Chapter 2, we provide a rapid introduction to the basics of classical rook theory be-

fore delving into a rook theory for perfect matchings of graphs in Chapter 3. These

concepts will be examined from both a combinatoric and an algebraic perspective.

Chapter 4 examines some of the recent results and conjectures pertaining to the

zeros of polynomials that arise in the study of rook theory and matchings of graphs.
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Chapter 2

Classical Rook Theory

As a warm-up for the rook theory for perfect matchings in Chapter 3, we give a

quick review of the basics of classical rook theory. Here we provide de�nitions of

rook numbers and hit numbers, their q-analogues for Ferrers boards, examples of

how to calculate these numbers, and an application of classical rook theory to the

probl�eme des m�enages.

2.1 Rook and Hit Numbers for Boards in An

In classical rook theory, our setting is an n x n array, which we will denote by An.

By a square (i; j) 2 An, we mean the square lying in the i-th column from the left

and the j-th row from the bottom. A board B is de�ned to be a subset of the squares

of An, which we will denote pictorially as shaded squares. On such a board we can

realize a partial permutation as a rook placement, de�ned as follows.
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De�nition 2.1.1. Let B � An be a board and k a natural number. A k-element

rook placement p on B consists of a k-element subset of B such that no two squares

of p lie in the same row or column. The collection of all placements of k rooks on

B will be denoted Rk(B), and the k-th rook number (relative to B), denoted rk(B),

is de�ned to be jRk(B)j.

A permutation � 2 Sn corresponds to a rook placement p� 2 Rn(B) in the obvious

way: (i; j) 2 p� () �(i) = j. This leads us to the de�nition of a hit number.

De�nition 2.1.2. Let B � An. Then Tk;n(B) denotes the set of all permutations

� such that p� intersects B in k squares and the k-th hit number (relative to B),

denoted tk;n(B), is de�ned to be jTk;n(B)j.

It turns out that the rook numbers and hit numbers are inherently linked, as evi-

denced by the following equivalence, �rst proved in [7].

Theorem 2.1.3. Let B � An. Then
nP

k=0

tk;n(B)z
k =

nP
k=0

rk(B)(n� k)!(z � 1)k.

Proof: We will count in two ways the number of pairs (�; C), where � 2 Sn and C

is a k-subset of B \ p�. First, for each 0 � j � n we can choose � in tj;n(B) ways

such that jB \ p�j = j and then select C in
�
j
k

�
ways. Alternatively, we could �rst

choose C in rk(B) ways and extend this partial permutation to a full permutation

� 2 Sn in (n�k)! ways. Hence,
nP

j=0

�
j
k

�
tj;n(B) = rk(B)(n�k)!. Summing over k, we

get
nP

k=0

rk(B)(n� k)!yk =
nP

k=0

tk;n(B)(y + 1)k, and the result follows by substituting

z � 1 for y.
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Example 2.1.4. Consider the board B � A3 consisting in the shaded squares in

the �gure below, along with a sample rook placement p 2 R2(B):

1 2 3

1

2

3

X

X

Figure 2.1: p 2 R2(B)

We leave it to the reader to verify the following rook numbers and hit numbers:

r0(B) = 1 (the empty placement), r1(B) = 4, r2(B) = 4, r3(B) = 1, t0;3(B) =

1, t1;3(B) = 3, t2;3(B) = 1, and t3;3(B) = 1. The reader can then check that

3P
k=0

tk;3(B)z
k and

3P
k=0

rk(B)(3� k)!(z � 1)k both sum to 1 + 3z + z2 + z3.

Example 2.1.5. (Probl�eme des m�enages): This classic problem ponders the

question of how many ways to seat n married couples around a circular table, al-

ternating male-female, such that no couple sits side-by-side. Equivalently, we seek

the number of permutations � 2 Sn such that �(i) 6� i; i + 1 (mod n) for all

i 2 f0; 1; :::ng. Putting this into rook theoretic terminology, we want to �nd t0;n(B)

for the board B = f(1; 1); (2; 2); :::; (n; n); (1; 2); (2; 3); :::(n� 1; n); (n; 1)g shown at

the top of the following page.
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Figure 2.2: B = f(1; 1); (2; 2); :::; (n; n); (1; 2); (2; 3):::(n� 1; n); (n; 1)g

Here, the kth rook number relative to B corresponds to the number of ways of choos-

ing k pairwise non-adjacent points from a collection of 2n points arranged in a circle.

In [9], Stanley proves that the number of ways is 2n
2n�k

�
2n�k
k

�
. Therefore, by letting

z = 0 in Theorem 2.1.3, we see that there are precisely
nP

k=0

(�1)k 2n
2n�k

�
2n�k
k

�
(n� k)!

ways to seat the n couples so that no husband and wife sit side-by-side.

2.2 q-Rook and q-Hit Numbers for Ferrers Boards

In the mid-80's, Garsia and Remmel in [1] posited a q-analogue of the rook numbers

and hit numbers for a special collection of boards in An called Ferrers boards. This

description of the q-hit numbers was given algebraically in terms of the q-rook num-

bers. A decade later, Dworkin and Haglund independently came up with statistics

that gave the q-hit numbers a combinatorial interpretation. Shortly, we will present
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Haglund's statistic, but �rst we need some de�nitions.

De�nition 2.2.1. A skyline board A(a1; a2; :::; an) � An is the board with column

heights a1; a2; :::; an from left to right containing the squares f(i; j) : j � aig. If, in

addition, ai � aj for 1 � i < j � n, we call such a board a Ferrers board.

Given a rook placement p 2 Rk(F ) on a Ferrers board F � An, by letting each rook

in p cancel all squares to its right and below, we get a statistic uF (p) denoting the

number of squares of F that are neither in p nor canceled by a rook in p. Throughout

this paper, rooks will be shown as x's and the squares they cancel as dots �. This

statistic allows us to de�ne the k-th q-rook number rk(F; q) to be
P

p2Rk(F )

quF (p).

Example 2.2.2. The Ferrers board A(1; 2; 4; 5; 5; 5) � A6 in the �gure has uF (p) =

10.

1 2 3 4 5 6

1

2

3

4

5

6

����

��

��

�� �� ����

����

������

X

X

X

Figure 2.3: F = A(1; 2; 4; 5; 5; 5) � A6
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Garsia and Remmel then de�ned in [1] the k-th q-hit number for Ferrers boards in

terms of the q-rook numbers by the formula

nX
k=0

tk;n(F; q)z
k =

nX
k=0

rk(F; q)[n� k]!
nY

i=n�k+1

(z � qi);

where [n]! = [n][n� 1] � � � [2][1] and [n] = 1 + q + q2 + ::: + qn�1.

In the late 90's, Dworkin and Haglund each gave descriptions of statistics for

calculating the q-hit numbers of Ferrers boards. We will only describe the Haglund

statistic here; the Dworkin statistic is very similar. It was later proved that they

both give rise to the same q-hit numbers that Garsia and Remmel postulated.

Haglund's statistic sF;h(p), as presented in [5], is calculated by the following cancel-

lation method. For a rook placement p 2 Tk;n(F ), begin by letting each rook cancel

all squares to its right, both shaded and unshaded. Then, let each rook r in F cancel

all squares above it, regardless of whether or not they are in F , while letting each

rook r in An=F cancel the squares below it that are not in F . The statistic sF;h(p) is

then de�ned to be the number of uncanceled squares remaining in all of An, and the

k-th q-hit number can then by described by the formula tk;n(F; q) =
P

p2Tk;n(F )

qsF;h(p).

The �gure at the top of the following page illustrates an example of Haglund can-

cellation for a placement p on the board F = A(1; 3; 3; 4; 6; 6; 6; 8) � A8. The reader

can verify that for this placement, sF;h(p) = 21.
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Figure 2.4: F = A(1; 3; 3; 4; 6; 6; 6; 8) � A8

The next chapter develops notions of rook numbers, hit numbers, and their q-

analogues in relation to matchings from graph theory. Like the exposition on q-hit

numbers for Ferrers boards above, we give both algebraic and combinatoric de�ni-

tions of these q-hit numbers as formulated by Haglund and Remmel in [5]. In the

�nal section of Chapter 3, we go on to show that these two interpretations do in

fact give rise to the same q-analogue.
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Chapter 3

Rook Theory & Matchings

In this chapter, we illustrate Haglund and Remmel's theory of rooks for match-

ings. Most importantly, we present a statistic they developed that allows one, for

a special kind of board, to combinatorially determine the same q-hit numbers that

they previously de�ned algebraically. The last section of this chapter is devoted to

demonstrating that for such boards the algebraic and combinatoric interpretations

coincide.

3.1 Basic Results on Rook/Hit Numbers in B2n

Recall from graph theory that a matching of a graph G = (V;E), where V is a set

of vertices and E is a set of edges, is a subset E 0 � E of pairwise vertex disjoint

edges. A perfect matching is a matching such that every vertex in G is the endpoint

of some edge in the matching.
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To study matchings in the framework of rook theory, we need to consider di�erent

types of boards from the ones in Chapter 2. The boards we will now work with

consist in subsets of squares of the board B2n shown below. To avoid confusion, in

this chapter when we speak of square (i; j), we mean the square in row i, column j.

1

2

2n−2

2n−1

2n−1 2n32

����

��
��
��
��

����

�
�
�
�

�
�
�
�
��
��
��
��

Figure 3.1: B2n

Two classes of boards are of particular interest, nearly Ferrers boards and a subset

of these boards called shifted Ferrers boards.

De�nition 3.1.1. A board B � B2n is a nearly Ferrers board if (i; j) 2 B =)

f(s; j) : s < ig [ f(t; i) : t < ig � B. If, in addition, (i; j) 2 B =) (i; r) 2 B for

all r < j, then we call such a board a shifted Ferrers board.

Thus, a shifted Ferrers board is a special type of shifted skyline board, where we

now specify the row lengths instead of the column heights when we write F =
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B(a1; a2; :::; an). A shifted Ferrers board F = B(a1; a2; :::; an) has the property that

2n�1 � a1 � a2 � ::: � a2n�1 � 0 with the nonzero row lengths strictly decreasing.

The shifted Ferrers board F = B(6; 5; 3; 2; 0; 0; 0) � B8 is pictured below.

1

2

32

4

6

4

3

7

5

5 6 7 8

Figure 3.2: F = B(6; 5; 3; 2; 0; 0; 0) � B8

Whereas partial permutations are modeled by rook placements in classical rook

theory, rook placements will now correspond to matchings of the complete graphK2n

on vertices 1; 2; :::; 2n. We associate a matchingm with the rook placement pm, using

the rule (i; j) 2 pm () i < j and fi; jg 2 m. The rook placement pm in the �gure

below corresponds to the (perfect) matching m = ff1; 2g; f3; 8g; f4; 6g; f5; 7gg.

1

2

32

3

4

5

6

7

4 5 7 86

X

X

X

X

Figure 3.3: pm for m = ff1; 2g; f3; 8g; f4; 6g; f5; 7gg

12



Now we are at a point where we can formally de�ne rook placements, rook numbers,

and hit numbers for boards in B2n. For notational purposes, let PM(B2n) = fpm : m

is a perfect matching of K2ng.

De�nition 3.1.2. Let p � B � B2n. Then p is a rook placement of B if p � B\pm

for some pm 2 PM(B2n). For any nonnegative integer k, Mk(B) will denote the

set of all k-element rook placements of B, and we subsequently de�ne the k-th rook

number (relative to B) to be jMk(B)j and denote this by mk(B).

De�nition 3.1.3. For any nonnegative integer k, we de�ne Fk;2n(B) to be the set

fpm 2 PM(B2n) : jpm\Bj = kg. Then the k-th hit number (relative to B) is de�ned

to be jFk;2n(B)j and will be denoted as fk;2n(B).

Having de�ned rook and hit numbers for boards in B2n, we can now give some basic

results involving these numbers, immediately following a few notational conventions

that we will use throughout the rest of the paper, repeating a couple from Chapter 2

for convenience. We de�ne [n] = 1+q+q2+:::+qn�1, [n] #k= [n][n�1] � � � [n�k+1],

[n]! = [n][n� 1] � � � [2][1], n!! =
nQ
i=1

(2i� 1), [n]!! =
nQ
i=1

[2i� 1], (x) ##k= x(x� 2)(x�

4) � � � (x� 2k+ 2), [x] ##k= [x][x� 2][x� 4] � � � [x� 2k+ 2], and
�
n
k

�
= [n]!

[k]![n�k]!
. We

now present an analogue of Theorem 2.1.3 that demonstrates the close relationship

between rook numbers and hit numbers for boards in B2n.

13



Theorem 3.1.4. Let B � B2n. Then
nP

k=0

fk;2n(B)z
k =

nP
k=0

mk(B)(n� k)!!(z � 1)k.

Next, we introduce a method from [5] for obtaining two new boards from a given

board. First, if B � B2n and (i; j) 2 B with i < j, we obtain the board B=(i; j) �

B2n simply by removing the square (i; j) from B. Second, we obtain the board

B=(i; j) � B2n�2 by getting rid of any square that have either i or j as a coordinate.

In doing so, we will delete two entire rows and columns, giving us our new board

B=(i; j) lying on a board isomorphic to B2n�2. We can map this to an actual board

in B2n�2 by an explicit isomorphism that can be found in [5]. For our purposes, it

suÆces to show an example, which will elucidate the process of obtaining these two

boards. In the �gure at the top of the next page, we denote with a � the squares that

share a common coordinate with the rook on square (2; 6). These squares, along

with the square (2; 6) itself, are the squares that are deleted to form B=(2; 6) � B6

from B = B(6; 5; 3; 2; 0; 0; 0) � B8. This construction allows us to now present two

recursions involving the rook and hit numbers for boards in B2n, whose proofs can

be found in [5].
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Figure 3.4: B=(2; 6) (bottom left) and B=(2; 6) (right)

Theorem 3.1.5. Let B � B2n and (i; j) 2 B. Then the following recursions hold:

(1) mk(B) = mk(B=(i; j)) +mk�1(B=(i; j)).

(2) fk;2n(B) = fk;2n(B=(i; j)) + fk�1;2n�2(B=(i; j))� fk;2n�2(B=(i; j)).

The signi�cance of these recursions is that they provide recursive algorithms for

calculating the rook and hit numbers of a board in terms of the smaller boards

B=(i; j) and B=(i; j). Before moving on to an important theorem that will yield as

a corollary the number of perfect matchings of a graph, we present another important

recursion from [5], whose q-analogue will be presented in the next section.
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Theorem 3.1.6. Let B � B2n such that B has no squares in the last column of

B2n. Then

fk;2n(B) =
2n�1X
i=1

fk;2n�2(B=(i; 2n)):

The next theorem we will present is a type of theorem that arises frequently in rook

theory, usually referred to as a \factorization" theorem. The following factorization

of shifted Ferrers boards was �rst proved recursively by Reiner and White, and

a direct bijection is given in [5] by Haglund and Remmel, which provides a more

general factorization applicable to all nearly Ferrers boards.

Theorem 3.1.7. (Factorization Theorem for B2n): Let B � B2n be a nearly

Ferrers board, and let ai be the number of squares of B in row i for i = 1; : : : ; 2n�1.

Then
2n�1Y
i=1

(x+ a2n�i � 2i+ 2) =
nX

k=0

mk(B)(x) ##2n�1�k :

From this theorem we derive a corollary about perfect matchings in graphs.

Corollary 3.1.8. Let B � B2n be a nearly Ferrers board, and let ai be the number of

squares of B in row i for i = 1; 2; : : : ; 2n� 1. Then the number of perfect matchings

in the graph GB = (f1; 2; : : : ; 2ng; ffi; jg : (i; j) 2 Bg) is

2n�1Y
i=1

(a2n�i + 2(n� i))=2n�1(n� 1)!:
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Proof. Set x = 2n� 2 in the conclusion of the previous theorem. Then all terms in

the right-hand sum will drop out except mn(B)(2n�2) ##n�1. Since (2n�2) ##n�1=

2n�1(n� 1)!, we solve for mn(B) and get the desired result.

In the next section, we will develop q-analogues of rook and hit numbers for match-

ings, including the presentation of Haglund and Remmel's statistic for combinato-

rially determining the q-hit numbers.

3.2 q-Rook and q-Hit numbers in B2n

As was the case in Chapter 2 for boards in An, we need a type of cancellation in

B2n in order to de�ne q-rook numbers.

De�nition 3.2.1. Let B � B2n and r a rook lying on square (i; j) 2 B. Then we

say r rook-cancels the squares f(r; i) : r < ig[f(i; s) : i+1 � s < jg[f(t; j) : t < ig.

We also de�ne a statistic uB(p) for a rook placement p, which denotes the number

of squares in B � p that are not rook-canceled by a rook in p.

We now de�ne q-rook numbers in terms of the statistic uB(p).

De�nition 3.2.2. Let B � B2n and k a nonnegative integer. Then we de�ne the

k-th q-rook number relative to B, denoted mk(B; q), by the following formula:

mk(B; q) =
X

p2Mk(B)

quB(p):

We also de�ne m0(B; q) = qjBj.

17



Example 3.2.3. The �gure below depicts the four rook placements in M1(B) for

the board B = f(1; 3); (2; 3); (2; 4); (3; 4)g.

X

X X

X

1

2

3 3

2

1

3

2

1

3

2

1

2 3 2 3 2 3 2 34 4 4 4
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�

����

��
��
��
��

������

�
�
�
�

uB(p1) = 3 uB(p2) = 2 uB(p3) = 2 uB(p4) = 0

Figure 3.5: B = f(1; 3); (2; 3); (2; 4); (3; 4)g

Thus, m1(B; q) = 1 + 2q2 + q3. The reader can check that m0(B; q) = q4 and

m2(B; q) = q. We next provide a de�nition related to the statistic uB(p), which we

will need in the next section.

De�nition 3.2.4. We say that a square (i; j) on a board B � B2n is a corner

square of B if there does not exist a square (s; t) 2 B2n that could rook-cancel (i; j)

according to the uB(p) statistic.

In the special case where B is a shifted Ferrers board, the quality of a square (i; j)

being a corner square reduces to (i; j) having no squares in B to the southeast in

B2n.

Our next task is to present Haglund and Remmel's algebraic and combinatoric

de�nitions of the q-hit numbers. The entire section to follow will be devoted to
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showing that for shifted Ferrers boards these interpretations yield the same q-hit

numbers. We �rst give the algebraic formulation.

De�nition 3.2.5. Let B � B2n and k a nonnegative integer. Then we de�ne the

k-th q-hit number (relative to B), denoted fak;2n(B; q) via the formula

nX
k=0

fak;2n(B; q)z
k =

nX
k=0

mk(B; q)[n� k]!!
nY

i=n�k+1

(z � q2i�1):

The fak;2n(B; q) are not necessarily polynomials in q with nonnegative coeÆcients,

but in Section 3.3 we will show they are as such in the case where B is a shifted

Ferrers board.

We now de�ne a new type of cancellation and a statistic based on that cancel-

lation similar to the Haglund statistic sF;h(p) presented in Section 2.2, which will

allow us to give a combinatorial interpretation of the q-hit numbers.

De�nition 3.2.6. Let B � B2n and p 2 Fk;2n(B). For a rook r on cell (i; j) 2 p\B,

we say r pm-cancels all squares f(r; i) : r < ig [ f(i; s) : i+1 � s < jg [ f(t; j) : t <

ig [ f(u; j) : u > j and (u; j) 62 Bg. For a rook r on (i; j) 62 B, we say r pm-cancels

all squares in f(r; i) : r < ig[ f(i; s) : i+1 � s < jg[ f(t; j) : t < i and (t; j) 62 Bg.

For a rook placement p 2 Fk;2n(B), we de�ne the statistic tB(p) to be the number

of squares in B2n � p that are not pm-canceled.

In other words, a rook r on the board pm-cancels all squares that it would rook-

cancel, plus all squares below r in its column that are not in B, while a rook r o�
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the board pm-cancels all squares to the left of r that it would rook-cancel plus all

squares above r in its column that are not in B. The statistic tB(p) then counts

the number of uncanceled squares in B2n� p. The following example illustrates this

process.

Example 3.2.7. For the rook placement p shown on the board F = B(7; 5; 4; 2; 0; 0; 0),

we see that tF (p) = 7.

1

2

32

4

6

4

3

7

5

5 6 7 8

X

X

X

X

Figure 3.6: F = B(7; 5; 4; 2; 0; 0; 0)

We are now in a position to give the combinatorial interpretation of the q-hit num-

bers as de�ned in [5].

De�nition 3.2.8. Let B � B2n and k a positive integer. Then we de�ne the com-

binatorial object f ck;2n(B; q) according to the formula f ck;2n(B; q) =
P

p2Fk;2n(B)

qtF (p).
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The purpose of the following section is to show that for shifted Ferrers boards, the

combinatorial interpretation of q-hit numbers coincides with the algebraic de�nition

(i.e. fak;2n(B; q) = f ck;2n(B; q)). The following analogue of the second recursion in

Theorem 3.1.5, with which we conclude this section, will be utilized in that endeavor.

Theorem 3.2.9. Let B � B2n such that B \ f(j; 2n) : 1 � j � 2n � 1g =

f(j; 2n) : j � ig, where i � 1 (i.e. the last column of B contains exactly the

squares (1; 2n); (2; 2n); : : : ; (i; 2n)). Then

f ck;2n(B; q) = qf ck;2n(B=(i; 2n); q)+f
c
k�1;2n�2(B=(i; 2n); q)�q

2n�1f ck;2n�2(B=(i; 2n); q):

Proof. See [5].

3.3 fak;2n(B; q) = f ck;2n(B; q)

Our goal in this section is to show that the q-hit numbers of shifted Ferrers boards

are polynomials in q with nonnegative coeÆcients. We do this by showing the

formal algebraic de�nition of the q-hit numbers, fak;2n(B; q), is equivalent to the

combinatorial object f ck;2n(B; q), which is clearly a polynomial in q with nonnegative

coeÆcients.

Theorem 3.3.1. Let B � B2n be a shifted Ferrers board and k a nonnegative

integer. Then fak;2n(B; q) = f ck;2n(B; q).
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Sketch of Proof: The proof of the theorem is broken up into cases for di�erent types

of shifted Ferrers boards B:

(1) B is the empty board

(2) B contains at least one square in the last column of B2n

(3) B contains no squares in the last column of B2n

Case (1) is easy. If B is the empty board, then f ck;2n(B; q) = Æk;0[n]!!. Since

mk(B; q) = Æk;0, then by the recursion de�ning q-hit numbers we see that f
a
k;2n(B; q) =

Æk;0[n]!! = f ck;2n(B; q).

To prove Case (2), we will show that fak;2n(B; q) and f
c
k;2n(B; q) satisfy the same

recursion with the same initial conditions for a board B with at least one square

in the last column of B2n. We start by giving an analogue of the �rst recursion in

Theorem 3.1.5.

Theorem 3.3.2. Let B � B2n, (i; j) a corner square of B, and k a positive integer.

Then

mk(B; q) = qmk(B=(i; j); q) +mk�1(B=(i; j); q):

Proof. We can partition the rook placements in Mk(B) according to whether or

not they contain (i; j). Let M
(i;j)
k (B) denote the set of rook placements in Mk(B)

which contain a rook on (i; j). For a rook placement p 2 M
(i;j)
k (B), the rook r

on (i; j), by virtue of being a corner square, will rook-cancel any square in B with
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which it shares a common coordinate (i.e. there will be no uncancelled squares

sharing a coordinate with r). This tells us that there exists a 1:1 weight-preserving

correspondence between M
(i;j)
k (B) and Mk�1(B=(i; j)), and consequently

X

p2M
(i;j)
k (B)

quB(p) = mk�1(B=(i; j); q):

Next, for a rook placement p 2Mk(B)nM
(i;j)
k (B), the cell (i; j) is not rook-canceled

by any rook in p by de�nition of what it is to be a corner square. Hence, uB(p) =

1 + uB=(i;j)(p), and thus

X

p2Mk(B)nM
(i;j)
k (B)

quB(p) =
X

p2Mk(B=(i;j))

q1+uB=(i;j)(p) = qmk(B=(i; j); q);

and the theorem follows.

By using Theorem 3.3.2 to manipulate the algebraic formula de�ning the q-hit num-

bers, the following corollary can be reached.

Corollary 3.3.3. Let B � B2n, (i; j) a corner square of B, and k > 0. Then

fak;2n(B; q) = qfak;2n(B=(i; j); q) + fak�1;2n�2(B=(i; j); q)� q2n�1fak;2n�2(B=(i; j); q):

Corollary 3.3.3 clearly can be applied to a shifted Ferrers board B that has at least

one square in the last column, because the southernmost square in the last column

that is in B is a corner square (since it can't possibly have any squares in B to the

southeast). Thus, we see from Theorem 3.2.9 and Corollary 3.3.3 that fak;2n(B; q)

and f ck;2n(B; q) satisfy the same recursion for shifted Ferrers boards with at least

one cell in the last column of B2n, so case (2) of the theorem is taken care of.
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The �nal case that we have to deal with to show that the algebraic de�nition

and combinatoric interpretation of the q-hit numbers coincide is for a board B that

has no squares in the last column of B2n. Our method of proof for case (3) again

amounts to showing that fak;2n(B; q) and f
c
k;2n(B; q) satisfy a recursion with the same

initial conditions. To prove this case, we �rst need a few preliminary theorems. We

begin by giving the following analogue of Theorem 3.1.6 for f ck;2n(B; q).

Theorem 3.3.4. Let B � B2n have no squares in the last column of B2n and k a

positive integer. Then

f ck;2n(B; q) =
2n�1X
i=1

q2n�i�1f ck;2n�2(B=(i; 2n); q):

Proof. We can partition Fk;2n(B) into [
2n�1
i=1 F

(i;2n)
k;2n (B) since B contains no squares in

the last column on B2n and any perfect matching must contain some edge with vertex

2n as an endpoint. Note that since (i; 2n) 62 B, there exists a 1:1 correspondence

between F
(i;2n)
k;2n (B) and Fk;2n�2(B=(i; 2n)). For a rook placement p 2 F

(i;2n)
k;2n (B), the

rook r on (i; 2n) pm-cancels all squares (j; 2n) with j < i since all squares above

(i; 2n) are not in B. Consequently, there are 2n � i � 1 uncanceled squares in the

last column on B2n with respect to p. Hence,

X

p2F
(i;2n)
k;2n (B)

qtB(p) = q2n�i�1
X

Fk;2n�2(B=(i;2n))

qtB=(i;2n)(p) = q2n�i�1f ck;2n�2(B=(i; 2n); q);

and the theorem follows.
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Haglund and Remmel also derived the following two recursions for boards that have

no squares in the �nal column of B2n, whose proofs can be found in [5].

Theorem 3.3.5. Let B � B2n be a shifted Ferrers board with no squares in the last

column of B2n, (i; r) the southernmost square in the rightmost column of B, and k

a positive integer. Then the following hold:

(1) mk(B=(r; 2n); q) = [r � 2k]mk�1(B=(i; r); q) + qr�2�2kmk(B=(i; 2r); q)

(2)
2n�1P
j=1

q2n�j�1mk(B=(j; 2n); q) = [2n�1�2k]mk(B; q)�(q
2n�1�q2n�3�2k)mk+1(B; q).

These two theorems along with two other lemmas, which we will not present here

but can be found in [5], yield the �nal piece of the puzzle necessary to prove case

(3).

Theorem 3.3.6. Let B � B2n be a shifted Ferrers board and k a positive integer.

Then

fak;2n(B; q) =
2n�1X
i=1

q2n�i�1fak;2n�2(B=(i; 2n); q):

Thus, Theorems 3.3.4 and 3.3.6 combine to show that the fak;2n(B; q) and f
c
k;2n(B; q)

satisfy the same recursion, so Theorem 3.3.1 has now been proved for all shifted

Ferrers boards in B2n.

This chapter has presented some of the most recent results in rook theory for

matchings, much of which was developed by Haglund and Remmel in [5]. We now

switch gears and examine some results on the zeros of polynomials associated with

matchings of graphs.
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Chapter 4

Zeros of Rook Polynomials

Over the last few decades, due to the work of Nijenhuis, Haglund, Ono, Wagner,

and others, much has been discovered about the zeros of polynomials that arise in

the study of rook theory. We start this chapter by presenting in Section 4.1 some

of the fundamental theorems and conjectures in this area followed by some recent

results and conjectures in Section 4.2 on the zeros of polynomials associated with

weighted matchings of graphs.

4.1 Fundamental Results and Conjectures

In this section, we need a slightly broader de�nition of rook placements than we did

in previous chapters. Now we will be placing rooks on an n x n array of nonnegative

real numbers, instead of just an array of zeros and ones. We give this new de�nition

below along with de�nitions of rook and hit polynomials. Unless otherwise speci�ed,
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in this chapter A = (aij) will refer to an n x n matrix with nonnegative real entries,

and Jn will stand for the n x n matrix of all ones.

De�nition 4.1.1. A k-element rook placement on an n x n matrix A = (aij) is an

arrangements of k non-attacking rooks on the entries of A (i.e. no two rooks are in

the same row or column). We de�ne the weight of such a rook placement to be the

product of the entries in the squares on which a rook lies, and we de�ne the k-th

rook number, denoted mk(A), to be the sum of the weights over all k-element rook

placements on A. We let m0(A) = 1.

De�nition 4.1.2. For an n x n matrix A = (aij), we de�ne the rook polynomial

of A, denoted M(z;A), to be
nP

k=0

mk(A)z
k, and the hit polynomial of A, denoted

T (z;A), to be
nP

k=0

mk(A)(n� k)!(z � 1)k.

A Ferrers board in this context is a matrix of zeros and ones such that if a square

(i; j) is 1, then all squares to the right and above are also 1. Similarly, a shifted

Ferrers board (known as a threshold graph to graph theorists) is an n x n matrix of

zeros and ones that is weakly decreasing across rows and down columns.

We now present some fundamental results about the zeros of rook and hit poly-

nomials, starting with a theorem proved by Nijenhuis in [8].

Theorem 4.1.3. Let A be an n x n matrix with nonnegative real entries. Then all

of the zeros of the rook polynomial M(z;A) are real.
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In particular, the rook polynomials of any board are real. More recently, Haglund,

Ono, and Wagner went on to prove in [4] an analogous result for the hit polynomials

of Ferrers boards, which does not hold for boards in general.

Theorem 4.1.4. Let A be a Ferrers board. Then all of the zeros of the hit polynomial

T (z;A) are real.

There is an intrinsic interplay between the rook and hit polynomial of a matrix and

its permanent. Recalling that the permanent of an n x n matrix A = (aij), denoted

per(A), is de�ned as
P
�2Sn

a1;�(1)a2;�(2) : : : an;�(n), it is easy to see thatmn(A) = per(A)

and that mk(A) is the sum of all k x k permanental minors of A. Moreover, we see

by expanding per((z�1)A+Jn) in powers of z�1 that per((z�1)A+Jn) = T (z;A).

Since per((z � 1)A + Jn) has real zeros if and only if per(zA + Jn) has real zeros,

Theorem 4.1.4 tells us that for a Ferrers board A, per(zA+ Jn) has only real zeros.

This is a special case of the following conjecture presented in [4].

The Monotone Column Permanent (MCP) Conjecture: Let A be an n x n

matrix with real entries, which weakly increase down columns (i.e. ai;j � ai+1;j).

Then all of the zeros of per(zA + Jn) are real.

As a segue into the next section, which examines the zeros of polynomials asso-

ciated with threshold graphs, we conclude this section with some graph theoretic

terminology and a fundamental result, which was later discovered to yield Nijenhuis'

theorem as a consequence.
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De�nition 4.1.5. An n x n matrix G = (gij) with nonnegative real entries is called

a weighted graph if it is strictly upper triangular. If for all i; j, gij 2 f0; 1g, we call

G a graph.

Sometimes we will express a weighted graph G as a pair (V;E) of vertices and

weighted edges instead of from the matrix perspective. The logic here is that G can

be identi�ed with the graph on n vertices with weight gi;j between vertices i and j.

For example, the board B2n, an upper trinagular matrix of all ones, corresponds to

the complete graph on 2n vertices, K2n. Recall from Section 3.1 that a matching

is a pairwise vertex disjoint subset of the edges of a graph, and a perfect matching

is a matching such that every vertex is the endpoint of some edge in the matching.

We now de�ne some terms associated with matchings of graphs.

De�nition 4.1.6. Let G = (V;E) be a weighted graph. We de�ne the weight of a

matching m of G to be the product of the weights of the edges in m and the k-th

matching number, denotedmatk(G) to be the sum of these weights over all matchings

in G with k edges. We de�ne the matching polynomial of G to be
P

kmatk(G)z
k;

and we let mat0(G) = 1.

For even n, the function matn=2(G) is known as the Hafnian of G and is denoted

Hf(G). This corresponds to the sum over the weights of all perfect matchings in G.

We now give a sample calculation of the matching polynomial of a weighted graph.
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Example 4.1.7. Consider the weighted graph G = (V;E), where V = f1; 2; 3; 4g

and E = ff1; 2g; f1; 3g; f2; 4g; f3; 4gg with weights g1;2 = 7; g1;3 = 3; g2;4 = 5, and

g3;4 = 4. Both the matrix representation and pictorial version of this weighted

graph are given below. The reader can verify that the matching polynomial of G is

1 + (7 + 3 + 5 + 4)z + (7 � 4 + 3 � 5)z2 = 1 + 19z + 43z2.

0
BBBBBBBBBB@

0 7 3 0

0 0 0 5

0 0 0 4

0 0 0 0

1
CCCCCCCCCCA

Figure 4.1: G = (gij)

1 2

34

7

4

3 5

��

��
��
��
��

����

�
�
�
�

Figure 4.2: G = (V;E)

In [6], Heilmann and Lieb showed that the matching polynomial of a simple graph

(i.e. a graph with no cycles) with nonnegative real edge weights has only real zeros.

For bipartite graphs, the matching polynomial reduces to the rook polynomial, so

Theorem 4.1.3 follows from the Heilmann-Lieb theorem. We turn now to some recent

results and conjectures of Haglund regarding the zeros of polynomials associated

with shifted Ferrers boards.
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4.2 Zeros of Polynomials for Threshold Graphs

We begin this section by presenting a \Kn-version" of the hit polynomial for weighted

graphs as presented by Haglund in [2]. In this section, we let n!! represent the prod-

uct of the odd integers less than or equal to n.

De�nition 4.2.1. Let G be a weighted graph on n vertices. We de�ne the Kn-hit

polynomial of G, denoted Q(z;G), to be
P

k�0matk(G)(z � 1)k(n� 2k)!!.

For n even (if odd, just add an isolated vertex to make n even), Q(z;G) = Hf((z�

1)G + Jn), following from the fact that a k-edge matching of Kn can be extended

to a perfect matching of Kn in (n� 2k)!! ways.

Recalling the de�nitions of a corner square and of the shifted Ferrers board

G=(i; j) (see pages 14 and 18), we now arrive at a theorem proved by Haglund in

[2], which yields the subsequent corollary about the zeros of Q(z;G) for a threshold

graph G.

Theorem 4.2.2. Let G be a shifted Ferrers board, (i; j) the right-most corner square

of G, and n an even natural number. Then Hf(G+ zJn) has only real zeros, which

are interlaced by Hf(G=(i; j) + zIn�2).

Corollary 4.2.3. Let G be a threshold graph. Then Q(z;G) has only real zeros.

This corollary turns out to be a special case of a conjecture also presented in [2].

Before we give this conjecture, we need to de�ne the notions of a hook and mono-
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tonicity. The k-th hook of Kn is the set of all squares (i; j) of Kn such that either

i = k or j = k, and in general the k-th hook of a graph G is the set of all squares

that are both in the k-th hook of Kn and also in G. If we travel along a hook of G,

we say we are moving in the positive direction if we are moving upward or to the

left. We now de�ne the notion of monotonicity of an upper triangular matrix with

respect to a graph G.

De�nition 4.2.4. Let W be an upper triangular array of real numbers, G a graph

on n vertices, and h a hook of G. Then we say W is monotone with respect to h if

the values of the corresponding squares in W are weakly increasing as we traverse h

in a positive direction. If for each square (i; j) of G it is the case thatW is monotone

with respect to one of the two hooks of G containing (i; j), then we say that W is

G-monotone.

In light of Corollary 4.2.3 and the MCP conjecture, Haglund posed the following

conjecture about Kn-monotone arrays.

Conjecture 4.2.5. Let W = (wij) be a Kn-monotone array with nonnegative real

entries, where n is an even natural number. Then Hf(zW +Jn) has only real zeros.

Haglund argued in [2] that the special case of Conjecture 4.2.5 where wij 2 f0; 1g

follows from Corollary 4.2.3 by showing that in such instances W is isomorphic to

a threshold graph. Conjecture 4.2.5 has been proved true for n � 5 and at the

time of the writing of this paper is open for n � 6. We conclude this section by
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presenting an even more general conjecture that combines Conjecture 4.2.5 and the

MCP Conjecture.

Conjecture 4.2.6. Let W = (wij) be a G-monotone array, where G is either Kn

or the complete bipartite graph Kn=2;n=2, with n an even natural number. Then the

polynomial

X
PM

Y
(i;j)2PM

(zwij + 1)

has only real zeros, where PM is the set of all perfect matchings of G.
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