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ABSTRACT

Investigations of graph polynomials

Mirkó Visontai

Advisor: James Haglund

This thesis consists of two parts. The first part is a brief introduction to graph

polynomials. We define the matching, rook and hit polynomials, reveal the connec-

tion between them and show necessary conditions that imply that all roots of these

polynomials are real.

In the second part, we focus on the closely related Monotone Column Permanent

(MCP) conjecture of Haglund, Ono, and Wagner [HOW99]. This conjecture is known

to be true for n ≤ 3 [Hag00] and is open for n ≥ 4. We present our following new

results on this conjecture. First, we give an alternative proof for the n = 2 case.

Then, we generalize the MCP conjecture for non-square matrices. Further developing

the idea of the proof used in the n = 2 case, we show that the conjecture holds for

matrices of size n× 2 and 2×m as well. Finally, we investigate a different approach

in attempt to prove the conjecture. We obtain partial results by proving that the

MCP conjecture for n × n matrices implies the MCP conjecture for n ×m matrices

for n ≤ m. We also show a conditional result that if the MCP conjecture is true for

n×n then it is also true for the (n+ 1)× (n+ 1) case under the assumption that the

permanents of certain minors of the matrix have interlacing roots.
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Introduction

Graph polynomials are polynomials assigned to graphs. Interestingly, they also arise

in many areas outside Graph Theory as well. The matching polynomial, for example,

was studied under different names in Combinatorics, Statistical Physics, and Theoret-

ical Chemistry. The matching polynomial – the generating function of the matching

numbers – provides a compact representation and, furthermore, allows us to infer

information about these numbers using tools from Generatingfunctionology, Linear

Algebra, Analysis, and Geometry.

In this thesis, we focus on graph polynomials that have only real roots. Polynomi-

als with only real roots arise in various applications in Control Theory and Computer

Science, but also admit interesting mathematical properties on their own. Newton

noted that the sequence of coefficients of such polynomials form a log-concave (and

hence unimodal) sequence. These polynomials also have strong connections to totally

positive matrices.

Organization

In section 1, we start by introducing graph polynomials. We define the matching, rook

and hit polynomials, and their weighted analogues. We review some classic results

of Heilmann and Lieb [HL72], and Nijenhuis [Nij76] showing that the roots of the

weighted matching polynomials and weighted rook polynomials, respectively, are all

real. Then, we continue with the recent works of Haglund, Ono, and Wagner [HOW99]
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and Haglund [Hag00] which generalize the above results for the hit polynomials of

certain classes of graphs.

In section 2, we continue by exploring possible further generalizations of the above

theorems. In particular, we investigate the Monotone Column Permanent (MCP)

Conjecture of Haglund, Ono, and Wagner [HOW99] that asserts that the hit polyno-

mial of a general class of graphs related to the generalization of Ferrers boards have

only real roots. This conjecture is known to be true for n ≤ 3 [Hag00] and is open

for n ≥ 4.

We prove the following new results on this conjecture. First, we give an alternative

proof of the n = 2 case. Then, we generalize the conjecture for non-square matrices

and further developing the idea used in our proof, we prove the n×2 and 2×m cases

as well. We continue by proving some necessary conditions for the 3 × 3 case. We

conclude with outlining a different approach in attempt to prove the conjecture, and

also prove some new results which provide further evidence that the conjecture holds

for larger matrices.

1 Graph polynomials with real roots

In this section, we introduce the graph polynomials which will be the subject of

our investigation. We start with the matching polynomials of graphs. We state the

Heilmann-Lieb theorem which shows that all roots of the matching polynomials are

real. Then, we define the closely related rook polynomials of boards and state the
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theorem of Nijenhuis, that all roots of the rook polynomial are real. We show the

explicit correspondence, noted by E. Bender, between the rook polynomials of boards

and matching polynomials of graphs, namely that the latter are special cases of the

matching polynomials for bipartite graphs. We also define the hit polynomials of

boards (or equivalently bipartite graphs) and we state a theorem of Haglund, Ono,

and Wagner that shows that the roots of the hit polynomials of the Ferrers boards

are all real. This result generalizes the above theorems for Ferrers boards, because

it implies the roots of their rook polynomials are all real. We also note, however,

that this theorem of Haglund, Ono, and Wagner does not generalize to all bipartite

graphs. In particular, we conclude the section by giving an example of a graph that

has a hit polynomial with complex roots.

1.1 Matching polynomial

Matching polynomials play an important role in Combinatorics. They are related

to various other polynomials such as the chromatic polynomial, Chebyshev polyno-

mials, and Hermite polynomials and they have been extensively studied in the past

decades. We start by providing the basic definition of the matching polynomials and

state the surprising theorem of Heilmann and Lieb that shows that all roots of these

polynomials are real.

Definition 1.1 (Matching polynomial). Let G = (V,E) be a simple, undirected

graph. A k-matching of G is a set of k disjoint edges of E. LetMk(G) denote the set
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of all k-matchings of G and mk = |Mk| denote their number. We define the matching

polynomial of G as the generating polynomial of mk(G):

µ(G, x) =

bn/2c∑
k=0

mk(G)xk .

Here, n = |V | is the number of vertices in G. We adopt the convention that m0(G) =

1. Note, that this polynomial is sometimes called the matching generating polynomial

to disambiguate it from the so-called matching defect polynomial (sometimes also

referred to as the matchings polynomial [God93]). The matching defect polynomial

is usually defined as
∑bn/2c

k=0 mk(G)xn−2k = µ(G, 1
x
)xn.

Often we deal with weighted graphs, graphs where we assign a weight to each

edge. Hence, it is useful to consider the following generalization of the matching

polynomial.

Definition 1.2 (Weighted matching polynomial). Given a graph G and a weight

function w : E → (0,∞), define the weight of a matching M ∈ Mk(G) to be

w(M) =
∏

e∈M w(e). Then, the weighted matching polynomial of G can be written

as (see Figure 1 for an example):

φ(G, x) =

bn/2c∑
k=0

 ∑
M∈Mk(G)

w(M)

xk.

A rather surprising theorem on the location of the roots of weighted matching

polynomials is the following.

Theorem 1.3 (Heilmann-Lieb [HL72]). If G = (V,E) is a simple weighted graph

with nonnegative edge weights, then the roots of φ(G, x) are real.
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Figure 1: A weighted graph G with edge weights a, b, c, d. The weighted matching

polynomial of G is φ(G, x) = (ac+ ad)x2 + (a+ b+ c+ d)x+ 1. By setting a = b =

c = d = 1, we get that the matching polynomial of G is µ(G, x) = 2x2 + 4x+ 1.

We now define interlacing – a property that we will use throughout the rest of

the thesis.

Definition 1.4 (Interlacing). Let f(x) and g(x) denote two polynomials with real

roots of degree n and n − 1, respectively. Denote the roots of f(x) by x1, x2, . . . , xn

and the roots of g(x) by ξ1, ξ2, . . . , ξn−1. We say that g(x) interlaces f(x), and denote

it by g(x) ≺ f(x) if their roots obey the following relation:

x1 ≤ ξ1 ≤ x2 ≤ ξ2 ≤ · · · ≤ ξn−1 ≤ xn .

If f(x) and g(x) are both of degree n, then using the above notation, g(x) ≺ f(x) if

ξ1 ≤ x1 ≤ ξ2 ≤ x2 ≤ · · · ≤ xn−1 ≤ ξn ≤ xn .

(Sometimes this second relation is called left alternating and handled separately, but

for our purposes it is sufficient to handle them together.)

For sake of completeness, we provide a sketch of Heilmann-Lieb’s original proof.
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Sketch of proof of Theorem 1.3. We will prove the version here which uses the as-

sumption that the edge weights are strictly positive. The nonnegative edge weight

version follows from this by applying a continuity argument. The key observation in

the proof is that the matching polynomial of a graph G satisfies the following two-step

recursion, i.e., for any vertex i in G:

φ(G, x) = φ(G− i, x) + x
∑
j∈Γ(i)

w(i, j)φ(G− i− j, x).

Here, G − i denotes the graph obtained by removing the vertex i and its adjacent

edges from G. Γ(i) denotes the set of vertices that are adjacent to vertex i, and

w(i, j) is the positive weight assigned to edge (i, j). In fact, we prove the theorem by

proving the following stronger statement.

1. The roots of φ(G, x) are negative real numbers.

2. For all vertices i ∈ V (G) : φ(G− i, x) ≺ φ(G, x).

We prove this statement by induction on n, the number of vertices in G. The

statement holds trivially for the empty graph and if G contains only a single vertex.

Assume it is true for all subgraphs G′. The second part implies that for any pair of

vertices i, j : φ(G− i− j, x) ≺ φ(G− i, x). Because the weights are positive, and the

roots of φ(G− i− j, x) are negative by the first part of the inductive hypothesis this

also implies that
∑

j∈Γ(i) w(i, j)φ(G− i− j, x) ≺ φ(G− i, x). Now consider the sign of

the value the sum polynomial takes on at the location of the roots of φ(G− i, x) and

as x tends to positive and negative infinity. Due to the interlacing, the sign changes
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at all neighboring positions and we can count bn/2c sign changes. Hence, we can

deduce that φ(G, x) has bn/2c real roots. As φ(G, x) has degree bn/2c, it follows that

it has only real roots. These roots are all negative, since the sign changes occur in the

negative intervals. We are left to show that φ(G − i, x) interlaces φ(G, x). For this,

observe that φ(G − i, x) ≺ x
∑

j∈Γ(i) w(i, j)φ(G − i − j, x) and since f ≺ g implies

that f ≺ f + g as shown in [HOW99] (see also [Wag92]) the statement follows.

1.2 Rook polynomial

We now turn to a related class of polynomials that originates from counting the

number of possible ways of placing non-attacking rooks on a chessboard. As we will

see it later, the rook polynomials are in fact special cases of the matching polynomials.

In Rook Theory, the so-called rooks problem was formulated in the following way: In

how many ways can we place k non-attacking rooks on a (general) chessboard?

In this section, we define the rook polynomials of boards, and their weighted

version. We show the connection to the matching polynomials of graphs and state

the theorem of Nijenhuis, showing that all roots of the weighted rook polynomials

are real. First of all, we define formally what we mean by a generalized chessboard

which we simply call a board.

Definition 1.5 (Board). Let A be an n × m array. We define a board B to be a

subset of squares in A, denoted by B ⊆ A. (See Figure 2 for an example.)

Now we can define the rook polynomials.
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Figure 2: Example of a board B ⊂ A2×3 with four squares.

Definition 1.6 (Rook polynomial). Let A be an n ×m array and B ⊆ A a board.

We say that two rooks are non-attacking if they are not in the same row nor in the

same column. Denote the number of ways k non-attacking rooks can be placed on B

by rk(B). The rook polynomial is the generating polynomial of rk(B):

ρ(B, x) =

min(n,m)∑
k=0

rk(B)xk .

For example, the rook polynomial of the board shown in Figure 2 is 3x2 + 4x+ 1.

Similarly to the matching polynomial, the rook polynomial can also be generalized

to a weighted version. We can associate each square of the board with a weight. The

weight information can be conveniently encoded in a matrix.

Definition 1.7 (Weighted rook polynomial). Let A be an n × m matrix. Instead

of simply counting the number of ways k rooks can be placed, we associate each

placement with a weight. A weight of a placement of rooks is the product of the

entries of A which are under the rooks. We define the (weighted) kth rook number,

rk(A), to be the sum of the weights over all non-attacking placements of k rooks on

board A. The weighted rook polynomial of A is the generating function:

ρ(A, x) =

min(n,m)∑
k=0

rk(A)xk .
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(b) Weighted bipartite graph

Figure 3: Correspondence between a board (a) and a bipartite graph (b). The rook

polynomial of the board is the same as the matching polynomial of the graph, namely:

(ac+ ad+ ae+ bd+ be)x2 + (a+ b+ c+ d+ e)x+ 1.

Note that it is sufficient to define the weighted rook polynomial for n×m matrices

only since since any general weighted board can be represented by putting zeros in

the corresponding position where the square is not part of the board.

E. Bender noted that the rook polynomial can be viewed as a matching polyno-

mial of a complete bipartite graph [Nij76]. Consider the following bijection between

weighted boards and weighted bipartite graphs. Let B be an n×m board and consider

a complete bipartite graph Kn,m with two vertex partitions R and C with cardinalities

n and m, respectively. The partition R will correspond to the rows of the board and

C to the columns. The squares of the board correspond to the edges of the graph.

More precisely, the entry in the ith row and jth column of the board will correspond

to the weight w(i, j), where i ∈ R and j ∈ C. So, ρ(B, x) = µ(Kn,m, x), with the

appropriate weight function, i.e., w(i, j) = Bij. See Figure 3 for an example.

Given this correspondence, the following result of Nijenhuis [Nij76] on the location

of the roots of weighted rook polynomials is in fact a special case of Theorem 1.3.
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Theorem 1.8 (Nijenhuis). If A is a matrix with nonnegative real entries, then all

roots of ρ(A, x) are real.

1.3 Hit polynomial

Another important polynomial in Rook Theory is the hit polynomial. There is a

strong connection between the rook and hit numbers (see Theorem 1.11), and hence

the rook and hit polynomials. As a consequence of this connection and a theorem of

Laguerre (see Theorem 1.14) the following observation was made in [HOW99]:

Proposition 1.9 (Haglund–Ono–Wagner). If all the roots of the hit polynomial of a

bipartite graph are real, then all the roots of its rook polynomials are also real.

Therefore, it is of great interest to investigate for which bipartite graphs (or equiv-

alently, matrices) are all the roots of the hit polynomial real. Since, by proving that

the hit polynomial of a matrix is real, one could obtain a generalization of Nijenhuis’

theorem for a class of graphs (or matrices).

In this section, we define the hit polynomials and show their connection to the

rook polynomials. Then, we consider a class of boards, called Ferrers boards. We

state a theorem of Haglund, Ono, and Wagner that shows that the hit polynomials

of these boards have only real roots. We continue by exploring the boundaries of the

above theorem and show that the theorem of Haglund, Ono, and Wagner does not

extend to all boards (or equivalently bipartite graphs). We give a simple example of

a graph whose hit polynomial has complex roots.
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Definition 1.10 (Hit polynomial). The hit polynomial is the generating polynomial

for the k-hit numbers. The k-hit numbers can be thought of in the following way.

Given a spanning subgraph G of Kn,n, what is the number of perfect matchings in a

Kn,n which contain exactly k edges from G [God93]. Formally, let G be a subgraph

of Kn,n and denote the k-hit number of G by hk(G). Then the hit polynomial of G is

defined as:

τ(G, x) =
n∑
k=0

hk(G)xk .

Analogously to the rook polynomials, we also define the hit polynomial of a bi-

partite graph G ⊆ Kn,n to be the hit polynomial of its corresponding n × n board.

Note that the definition of the hit polynomials can be easily extended to the weighted

case as well. Again, we can use a matrix to encode the weights and the zero weight

represents that there is no edge, and a zero column or row represents an isolated point

in the corresponding graph.

The following theorem of Kaplansky and Riordan [KR46] shows the intricate con-

nection between the rook numbers and hit numbers.

Theorem 1.11 (Kaplansky–Riordan). Let A be a n × n matrix. Then the hit poly-

nomial of A can be written as

τ(A, x) =
n∑
k=0

rk(A)(x− 1)k(n− k)! .

Now we define an important class of boards, called Ferrers boards.

Definition 1.12 (Ferrers board). Let A be an n × n board (or 0 − 1 matrix) with

the property that if aij = 1, then ak` = 1 whenever k ≥ i and ` ≥ j.
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Theorem 1.13 (Haglund–Ono–Wagner). All the roots of the hit polynomial of a

Ferrers boards are real.

Haglund, Ono, and Wagner [HOW99] also showed that, among other results, this

theorem implies Theorem 1.8 for Ferrers boards (see Proposition 1.9). We provide a

proof of the proposition for sake of completeness.

Proof of Proposition 1.9. Note that the hitting polynomial τ(G, x) has only real roots

if and only if τ(G, x + 1) has, and equivalently if and only if τ(G, 1
x+1

) has only real

roots (since the roots are negative, hence nonzero). Since τ(G, 1
x+1

) =
∑n

k=0 rk(A)xkk!

has only real roots so does ρ(G, x) =
∑n

k=0 rk(A)xk by the following theorem.

Theorem 1.14 (Laguerre). If
∑

k akx
k is a polynomial with real roots, then so is∑

k akx
k/k!.

However, as noted in [HOW99], the converse of Laguerre’s theorem in general does

not hold. Here, we show that Theorem 1.13 does not extend to all graphs. Consider

the path graph P5 on five vertices: v1, v2, v3, v4, v5 with edges (v1, v2), (v2, v3), (v3, v4),

and (v4, v5). The rook numbers are: r2(P5) = 3, r1(P5) = 4, and r0(P5) = 1. Note

the rook polynomial ρ(P5, x) = 3x2 + 4x+ 1 = (3x+ 1)(x+ 1) has real roots, however

the hit polynomial τ(P5, x) = 3(x− 1)2 · 0! + 4(x− 1) · 1! + 1 · 2! = 3x2 − 2x+ 1 does

not, since its discriminant is negative, D = 4− 12 < 0.
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2 The Monotone Column Permanent Conjecture

In this section, we will discuss a Monotone Column Permanent (MCP) conjecture

by Haglund, Ono, and Wagner which, if true, would be a generalization of their

result on the hit polynomials of Ferrers boards (see Theorem 1.13). In Rook Theory

terminology, the conjecture would extend the results from Ferrers boards to the so-

called Monotone Column matrices. In contrast to Ferrers boards, the entries in a

Monotone Column matrix are real numbers that are weakly increasing down column.

The conjecture has been shown to be true for n ≤ 3 and for several special cases,

and it is also supported by computational evidence [HOW99, Hag00].

We start this section by showing the connection between the hit polynomials and

permanents. This will allow us to state the conjecture in its permanent form. Then,

we continue by providing an alternative proof for the n = 2 case. We generalize the

conjecture for non-square matrices and prove the n × 2 and 2 × m cases. We also

provide some evidence for the 3× 3 case. Finally, we investigate a different approach

in attempt to prove the conjecture. We obtain partial results by proving that the

MCP conjecture for n × n matrices implies the MCP conjecture for n ×m matrices

for n ≤ m. We also show a conditional result that if the MCP conjecture is true for

n × n, then it is also true for the (n + 1) × (n + 1) case under the assumption that

the permanents of certain minors of the matrix have interlacing roots.

Let us begin with noting an interesting connection, namely the nth rook number,

rn(A) is in fact the permanent of A. Recall the definition of the permanent.
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Definition 2.1 (Permanent). Let A be an n × n matrix. The permanent of A,

denoted by per(A), is defined as

per(A) =
∑
σ∈Sn

a1σ(1)a2σ(2) . . . anσ(n) ,

where Sn denotes the set of all permutations on n letters.

This connection is important because it allows us to rewrite the hit polynomial

using the permanent, as shown in [HOW99]:

per(A(z − 1) + Jn) = τ(A, z) .

Here Jn denotes the matrix of all ones. Now, we can state the conjecture posed by

Haglund, Ono, and Wagner [HOW99] in its permanent form:

Conjecture 2.2 (Monotone Column Permanent (MCP)). Let A be a real n×n matrix

with entries weakly increasing down the columns, i.e., ∀i, j : ai,j ≤ ai+1,j. Then, the

roots of per(zA+ Jn) are real, where Jn is an n× n matrix of all ones.

The MCP conjecture was shown to be true for n ≤ 3 [Hag00] and for the following

special cases [HOW99]: Let A be an n × n Ferrers matrix, i.e., a matrix with real

entries weakly increasing down columns and down rows. If in addition one of the

following conditions holds, then the polynomial per(A+ zJn) has only real roots.

U: aij ∈ {0, 1} for all 1 ≤ i, j ≤ n, or

∏
: There exist real numbers pi for 1 ≤ i ≤ n and qj for 1 ≤ j ≤ n such that aij = piqj

for all 1 ≤ i, j ≤ n, or
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: There exist real numbers pi for 1 ≤ i ≤ n and qj for 1 ≤ j ≤ n such that

aij = pi + qj for all 1 ≤ i, j ≤ n, or

staircase: If a1,n ≤ a2,1, a2,n ≤ a3,1, . . . , an−1,n ≤ an,1.

In the remaining parts of the thesis we describe our new results on the MCP

conjecture. We start with considering the n = 2 case first exhibiting a slightly

different proof than in [HOW99].

2.1 An alternative proof of the MCP conjecture for n = 2

Lemma 2.3. Let A =

 a11 a12

a21 a22

 be a matrix with the weakly increasing column

property, i.e., a11 ≤ a21, a12 ≤ a22. Then, both roots of p(z) = per(A+ zJ2) are real.

Proof. We have

p(z) = (a11 + z)(a22 + z) + (a12 + z)(a21 + z) =

= 2z2 + (a11 + a12 + a21 + a22)z + a11a22 + a12a21.

In order for the roots to be real, p(z) must have a nonnegative discriminant:

D = (a11 + a12 + a21 + a22)2 − 4 · 2 · (a11a22 + a12a21) =

= (a11 − a12 + a21 − a22)2 + 4(a11 − a21)(a12 − a22) ≥ 0.

Note that the inequality holds due to the weakly increasing column property.
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A similar proof was shown in [HOW99]. There, the authors proved the n = 2 case

also by showing that the discriminant is nonnegative. We would like to point out

two differences. Our proof only assumes the weakly increasing property by column.

Furthermore, we can extend it to matrices of size n × 2 and 2 × m. To show this,

first we need to introduce the generalized notion of a permanent of a (not necessarily

square) matrix [Min78]:

Definition 2.4 (Permanent of a non-square matrix). Let A = (aij) be an n × m

matrix with n ≤ m. The permanent of A is defined to be:

per(A) =
∑
π

a1π(1)a2π(2) . . . anπ(n) ,

where the summation extends over all injective functions from {1, . . . , n} to {1, . . . ,m}.

The definition for n > m is analogous.

Note that this definition is a natural generalization of Definition 2.1 because it

maintains the same interpretation in terms of rook numbers (cf. Definitions 1.6, 1.7),

and hence can be naturally extended for hit polynomials, too. We would also like to

point out that due to the monotone column property, the n× 2 and 2×m cases are

quite different. For example, we cannot simply argue about using the symmetry as

we might not have the monotone row property.
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2.2 Proof of the MCP conjecture for matrices of size n × 2

Using the generalized notion of the permanent, we extend the previous result in a

similar fashion to matrices of size n×2 whose entries are weakly increasing by columns.

Lemma 2.5. Let A =



a11 a12

a21 a22

...
...

an,1 an,2


be a matrix with the weakly increasing column

property, i.e., ai,1 ≤ ai+1,1 and ai,2 ≤ ai+1,2 for all 1 ≤ i ≤ n − 1. Then, both roots

of the polynomial p(z) = per(A + zJn,2) are real. Here Jn,2 represents the n× 2 size

matrix of all ones.

Proof. First observe that:

p(z) = n(n− 1)z2 + (n− 1)z
n∑
i=1

(a1,i + a2,i) + per(A) .

The roots of p(z) are real if and only if the discriminant D of p(z) is nonnegative.

By rearranging the terms we get:

D = (n− 1)2

(
n∑
i=1

(ai,1 + ai,2)

)2

− 4n(n− 1)per(A) = (2.1)

= (n− 1)2

(
n∑
i=1

(ai,1 − ai,2)

)2

+ 4(n− 1)
∑
k<`

(ak,1 − a`,1)(ak,2 − a`,2). (2.2)

One can check the equality by comparing the number of terms on each side (see Table

1). Note that the first summand in (2.2) is clearly nonnegative. The second one is

nonnegative due to the weakly increasing assumption. Hence, D ≥ 0.
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Equation (2.1) Equation (2.2)

a2
k,` (n− 1)2 0 (n− 1)2 0

ak,1a`,1 2(n− 1)2 0 2(n− 1)2 0

ak,1ak,2 2(n− 1)2 0 −2(n− 1)2 4(n− 1)2

ak,1a`,2 2(n− 1)2 −4n(n− 1) 2(n− 1)2 −4n(n− 1)

Table 1: The coefficients of each term are displayed to aid the verification of the

rearrangement of terms in Equation (2.1) and (2.2). For the second and fourth row,

we assume k 6= `.

2.3 Proof of the MCP conjecture for matrices of size 2 × m

The other natural generalization of the 2×2 case is to consider matrices of size 2×m.

Recall that this case is not equivalent to the n× 2 case, because we only require the

columns (and not the rows) to be weakly increasing.

Lemma 2.6. Let A =

 a11 a12 . . . a1,m

a21 a22 . . . a2,m

 is a 2 × m matrix with weakly in-

creasing column property, i.e., ∀j : a1j ≤ a2j, where J2,m denotes the 2×m size matrix

of all ones. Then, both roots of the polynomial p(z) = per(zA+ J2,m) are real.

Proof. Observe that the discrimant can be written in the following form:

D = (m− 1)2

(
m∑
j=1

(a1,j + a2,j)

)2

− 4m(m− 1)per(A) =

= (m− 1)
∑
k<`

(
(a1,k + a2,k − a1,` − a2,`)

2 + 4(a1,k − a2,k)(a1,` − a2,`)
)
.

Again, using the weakly increasing property we have that D ≥ 0.
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2.4 The MCP conjecture for matrices of size 3 × 3

A natural next step is to try to continue this approach for 3 × 3 matrices: compute

the discriminant and show that it is nonnegative. This approach, however, seems

difficult as the discriminant of a cubic equation is more complex and, in addition, we

have already more terms in a 3× 3 permanent to begin with. For now, we can prove

the following necessary condition. If a cubic polynomial az3 + bz2 + cz + d has 3 real

roots, then b2 ≥ 3ac. This can be viewed as a consequence of Rolle’s Theorem since

if a cubic polynomial has 3 real roots than its derivative 3az2 + 2bz + c has 2 real

roots, which is equivalent to the above condition.

Lemma 2.7. Let per(A+ zJ3) = az3 + bz2 + cz + d, where A is a 3× 3 matrix with

entries weakly increasing down columns, then b2 ≥ 3ac.

Proof. By the expansion of the permanent we get that: a = 6, b = 2
∑

i

∑
j aij,

and c =
∑

i

∑
j per(Mij), where the summation is over all 2 × 2 minors Mij of the

matrix A. For a 2 × 2 matrix M = (mij) with m11 ≤ m21 and m12 ≤ m22, let us

define posprod(M) = (m11−m21)(m12−m22). Note, this term is nonnegative by the

monotone column property.

Now we can write:

b2 − 3ac = 4

(
3∑
i=1

3∑
j=1

aij

)2

− 18
3∑
i=1

3∑
j=1

per(Mij) =

= 2
∑
i<k

(
3∑
j=1

aij −
3∑
j=1

akj

)2

+ 6
3∑
i=1

3∑
j=1

posprod(Mij) ≥ 0 .
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We follow the similar idea of rearranging the terms as before. Since the terms we

arrive at are all nonnegative, we have that b2 ≥ 3ac.

In order to show that all three roots are real, we would need to show that the

following necessary and sufficient condition holds (using the notation of Lemma 2.7):

D = b2c2 − 4b3d− 4ac3 + 18abcd− 27a2d2 ≥ 0 .

As noted in [HOW99] there is no single condition analogous to discriminants for

polynomials of degree n > 3. There are several other more complicated criteria

involving Sturm sequences, minors of Toeplitz matrices, and determinants which we

do not discuss here.

In the following sections, we present our main results. We consider a different

approach by trying to prove the conjecture in an inductive fashion. We show some

conditional results as a supporting evidence for the MCP conjecture.

2.5 An inductive approach to the MCP conjecture

Lemma 2.8. Assume the MCP holds for n × n matrices. Then, it also holds for

n×m for all m ≥ n.

We will make use of the following lemma by Chudnovsky and Seymour [CS07]

(see also [BHH88] for a stronger version). First, we define the notion of compatibility

and pairwise compatibility of polynomials as in [CS07].
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Definition 2.9 (Compatibility). Let f1(x), f2(x), . . . , fk(x) be polynomials in one

variable with real coefficients. We say that they are compatible if all roots of the

polynomial
∑k

i=1 cifi(x) are real, for arbitrary c1, c2, . . . ck ≥ 0.

Definition 2.10 (Pairwise compatibility). Let f1(x), f2(x), . . . , fk(x) be polynomials

in one variable with real coefficients. We say that they are pairwise compatible if for

all i, j ∈ {1, 2, . . . , k}: fi(x) and fj(x) are compatible.

Lemma 2.11 (Chudnovsky–Seymour). Let f1(x), f2(x), . . . , fk(x) be pairwise com-

patible polynomials with positive leading coefficients. Then, f1(x), f2(x), . . . , fk(x) are

compatible.

Proof of Lemma 2.8. The n = 1 case is trivial, so fix n to be any integer larger than

1. We prove the lemma by induction on m. The m = n case is true by assumption.

Now assume the MCP conjecture holds for n × m matrices, and let A be a matrix

of size n × (m + 1) with the monotone column property. Denote the n × m size

submatrices of A by Ai, where Ai is the submatrix obtained from A by removing

the ith column, and let pi(z) = per(zJn,m + Ai), for i = {1, 2, . . . ,m + 1}. By the

induction hypothesis p1(z), p2(z), . . . , pm+1(z) have only real roots. We will show that

p1(z), p2(z), . . . , pm+1(z) are pairwise compatible.

Consider the polynomials pi(z) and pj(z), for some i, j. The permanent function

is invariant of permuting the columns of the matrix, hence we can arrange Ai and Aj

in a form that they agree on their first m− 1 columns, which we denote by B. Then

by denoting the columns in which the two matrices differ by vi and vj, respectively,
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and using the Ai = B|vi notation, it is easy to see that:

cipi(z) + cjpj(z) = ciper(zJn,m +B|vi) + cjper(zJn,m +B|vj) = 2per(zJn,m +B|w) ,

where w = (civi+cjvj)/2. Since vi and vj are monotone columns and ci, cj ≥ 0, w is a

monotone column as well. Note that B|w is a matrix of size n×m with the monotone

column property, so by the induction hypothesis the polynomial per(zJ + B|w) and

hence cipi(z)+cjpj(z) have only real roots. The choice of i, j was arbitrary, therefore,

p1(z), p2(z), . . . , pm+1(z) are pairwise compatible.

Since each pi(z) is monic, we can apply Lemma 2.11. We get that the polynomial

per(zJ + A) =
1

m− n+ 1

m+1∑
i=1

pi(z)

has only real roots.

Corollary 2.12. Using the result of R. Mayer [May] for the 3× 3 case we have that

the MCP conjecture is true for 3×m matrices (for all m ≥ 3).

Remark 2.13. In the proof of Lemma 2.8 we strongly relied on the monotone column

property. The same proof would not work for n ×m case with n > m, since we do

not necessarily have the monotone row property. For example, consider the following

matrix:

A =


−1 −2

0 1

3 2

 .
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Both per

 z − 1 z − 2

z z + 1

 = 2z2− 2z− 1 and per

 z z + 1

z + 3 z + 2

 = 2z2 + 6z+ 3

have real roots, but their sum 4z2 + 4z + 2 = (2z + 1)2 + 1 has no real roots.

In order to prove the MCP conjecture in an inductive fashion, we would need

another lemma to complement Lemma 2.8. We would need to show that the n ×m

case with n < m implies the m×m one. Next, we prove a slightly different statement.

2.6 A conditional result for the MCP conjecture

Here, we prove a conditional result which relies on the assumption that the perma-

nents of certain minors of the matrix have interlacing roots. We note that in [HOW99]

a similar idea was used to prove the conjecture for the special cases mentioned in the

beginning of the section 2 (see page 14).

Lemma 2.14. Let A be an n×n matrix with the weakly increasing column property.

Denote the (n− 1)× (n− 1) size minors of A by A11, A12, . . . , Ann, where Aij is the

matrix obtained by removing the ith row and jth column from A. Assume that for all

1 ≤ i ≤ n, the polynomials pi(z) = per(zJn−1 + Ai,n) have only real roots and that

they interlace, i.e., ∀i < j : pi(z) ≺ pj(z). Then, per(zJn + A) has only real roots.

We will use Lemma 2.11 and the following theorem of Wang and Yeh [WY05].

Theorem 2.15 (Wang–Yeh). Let f(x) and g(x) be two polynomials whose leading

coefficients have the same sign. Suppose f(x) and g(x) have only real roots, and

g ≺ f . If ad ≤ bc, then F (x) = (ax+ b)f(x) + (cx+ d)g(x) has only real roots.
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Proof of Lemma 2.14. Given an n× n matrix A with the monotone column propery,

let pi(z) = per(zJn−1+Ai,n), for all 1 ≤ i ≤ n. We also define qi(z) = (z+ai,n)pi(z), so

that
∑n

i=1 qi(z) = per(zJn +A). This corresponds to the expansion of the permanent

along the last column.

We show that qi(z) and qj(z) are compatible, for 1 ≤ i < j ≤ n. For any α, β ≥ 0,

let

Fij(z) = αqj(z) + βqi(z) = (αz + αaj.n)pj(z) + (βz + βai,n)pi(z) .

We have α · βai,n ≤ αaj,n · β by the monotone column property of A. We also have

that pi(z) and pj(z) have real roots and pi(z) ≺ pj(z) by assumption, so we can apply

Theorem 2.15 and conclude that Fij(z) has only real roots. Since for all i < j we

get that qi(z) and qj(z) are compatible by Lemma 2.11 q1(z), q2(z), . . . , qn(z) are also

compatible. Hence, all roots of per(zJn + A) =
∑n

i=1 qi(z) are real.
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