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1 Preliminaries

1.1 Permutations

Let [n] = {1, 2, 3, . . . , n} be the set of the first n positive integers. A permutation π is

a bijection from [n] to [n]. We will express permutations in one-line notation, that is,

π = π1π2 · · · πn, where πi = π(i), as opposed to cycle notation or two-line notation.

For example, the permutation π = (32)(145) in cycle notation will be written as

π = 43251. We use Sn to denote the set of permutations of length n. We let | · |

denote the size of a set. For example, |Sn| = n!.

A multiset permutation π is an ordering of the multiset {1m1 , 2m2 , . . . , nmn}, where

mi is the number of times i appears in the set. Let R(m1,m2, . . . ,mn) denote the set

of multiset permutations of {1m1 , 2m2 , . . . , nmn}. Also, let Ak = m1 +m2 + . . .+mk.

For example, 312232141 ∈ R(3, 3, 2, 1) and A4 = 9.

1.2 Permutation statistics

A permutation statistic is a function from Sn to the non-negative integers. Before

defining some of the important statistics used in this paper, a few other definitions

are required. Note that while the following statistics are defined on permutations,

they can naturally be extended to multiset permutations without needing to change

the definition at all.

A descent in a permutation is an entry followed by a smaller entry. The descent
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set of a permutation π, denoted Des(π), is defined by

Des(π) = {i : πi > πi+1}.

The descent number of π, denoted des(π), is defined to be the number of descents:

des(π) = |Des(π)|.

Finally, a descent top is the larger entry in a descent, and a descent bottom is the

smaller entry in a descent. For the example π = 43251, we have Des(π) = {1, 2, 4},

and des(π) = 3. The descent tops of π are 4, 3, 5, and the descent bottoms are 3, 2, 1.

An inversion in a permutation is a pair of entries, not necessarily adjacent, which

appear in decreasing order. The inversion number of π, denoted inv(π), is the num-

ber of inversions in π. Continuing with the above example, the inversions of π are

{43, 42, 41, 32, 31, 21, 51}, so inv(π) = 7.

Another way of recording inversions which will be useful in later definitions is

the inversion sequence, (ai). This keeps track of the number of times entry πi is the

second entry in an inversion. Formally,

ai = |{j : j < i and πj > πi }|.

For example, the inversion sequence for 43251 is (0, 1, 2, 0, 4).

One statistic we use in this paper is the major index, named after Major Percy

MacMahon, who introduced it in [Mac]. The major index of a permutation π, denoted

maj(π), is the sum of the indices of the descents of π. In other words,

maj(π) =
∑

i∈Des(π)

i.
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Continuing with the above example, maj(43251) = 1 + 2 + 4 = 7.

1.3 Marked permutations

A marked permutation is a permutation with some subset of its descents marked. Let

D̂es(π) denote the indices of the marked descents, so D̂es(π) ⊆ Des(π). Let d̂es(π) =

|D̂es(π)|. We use a > sign to denote the marked descents when writing a marked

permutation. For example, 4>325>1 is a marked permutation with D̂es(π) = {1, 4}

and d̂es(π) = 2. Let Ŝn denote the set of marked permutations of length n.

The inversion number and major index statistics can be extended to Ŝn. The

marked inversion number, denoted minv, is defined by

minv(π) = inv(π)−
∑

i∈D̂es(π)

(ai + 1). (1.1)

(note that inv(π) refers to the inversion number of the underlying unmarked permu-

tation). Equivalently,

minv(π) =
∑

i/∈D̂es(π)

ai − d̂es(π). (1.2)

To see this equivalence, note that inv is the sum of all the ai’s, and so subtracting

ai + 1 for every i ∈ D̂es(π) cancels out these ai’s and subtracts one for every element

of D̂es(π).

The marked major index, denoted mmaj, is defined by

mmaj(π) = maj(π)−
∑

i∈D̂es(π)

|{j : j ∈ Des(π) and j ≤ i}|. (1.3)
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In words, marked major index is defined as follows: compute the major index for the

underlying permutation, and then for each marked descent, subtract the number of

descents weakly preceding that descent (i.e. including the marked descent itself). For

example,

π = 85>274>3>16

has Des(π) = {1, 2, 4, 5, 6}, and D̂es(π) = {2, 5, 6} so

mmaj(π) = (1 + 2 + 4 + 5 + 6)− (2 + 4 + 5) = 7.

Note that the notion of a descent extends naturally to multiset permutations (it is

still just the index of an entry which is followed by a strictly smaller entry), so we can

define a marked multiset permutation to be a multiset permutation with some subset

of its descents marked. Let R̂(m1,m2, . . . ,mn) denote the set of marked multiset

permutations of {1m1 , 2m2 , . . . , nmn}. For example,

π = 3>12232>141 ∈ R̂(3, 3, 2, 1).

In this example, Des(π) = {1, 5, 6, 8} and D̂es(π) = {1, 6}. Now, the definition of

mmaj for marked multiset permutations is the same as in (1.3). So in this example,

mmaj(π) = 1 + 5 + 6 + 8− (1 + 3) = 16.

The definitions for inversions and inversion sequence also carry over to multi-

set permutations. Thus, minv for marked multiset permutations is defined as in

(1.1) and (1.2). Continuing the above example, the inversion sequence for π is
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(0, 1, 1, 1, 0, 2, 5, 0, 6). It follows (using (1.2)) that

minv(π) = (1 + 1 + 1 + 0 + 5 + 0 + 6)− 2 = 12.



6

2 MacMahon’s Theorem

In this section, we state and give several proofs of MacMahon’s Theorem, which says

that inv and maj have the same distribution on Sn. More generally, any statistic

which has this distribution is said to be mahonian. MacMahon first introduced the

major index and showed it had the same distribution as the inversion number [Mac].

Here we present bijective constructions given by Carlitz [C], Foata [F], and Rawlings

[R].

2.1 Carlitz’s Proof

We state MacMahon’s theorem and give a bijective proof due to Carlitz [C].

Theorem 2.1. (MacMahon) The statistics maj and inv are equidistributed on the

set of permutations of length n. That is,

∑
π∈Sn

qinv(π) =
∑
π∈Sn

qmaj(π). (2.1)

We break up the proof into two lemmas which will be useful as we will use a similar

method in the generalization that follows in the next section. In these lemmas, we

think of a permutation as being built recursively by inserting n into a permutation of

length n− 1 and then considering the effect this has on inversion number and major

index.

Lemma 2.2. (Inversion Insertion) For π ∈ Sn−1 and i ∈ {0, 1, . . . , n − 1}, there is

exactly one location where one can insert n that increases the inversion number by i.
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Proof. Note that n creates a new inversion with every element to its right, and creates

no inversions with any element to its left, and does not affect any existing inversions.

Therefore, to increase the number of inversions by i, insert n so that it has i elements

to its right.

Lemma 2.3. (Major Index Insertion) For π ∈ Sn−1 and for each i ∈ {0, 1, . . . , n−1},

there is exactly one location where one can insert n that increases the major index by

i.

Proof. Note that there are n possible spaces between existing entries of π (including

the space before the first entry and the space after the last entry) where one can

insert n. Classify these spaces as follows.

• Ascent spaces are spaces between a pair of entries which are in increasing order

along with the space before the first entry.

• Descent spaces are spaces between a pair of entries which are in decreasing order

along with the space after the last entry.

Let des(π) = k be the number of descents in π. Then there are k + 1 descent

spaces, and hence n− k− 1 ascent spaces. Label the descent spaces from right to left

0, 1, 2, . . . , k. Then label the ascent spaces from left to right by k+ 1, k+ 2, . . . , n−1.

For example, if π = 74236581, then the spaces are numbered as follows.

5

7
4

4
3

2
6

3
7

6
2

5
8

8
1

1
0
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We claim that the label for a space gives the increase in major index from inserting

n into that space.

First, consider inserting n into a descent space. Note that this does not increase

the number of descents because the descent formed by n and the entry following n is

replacing the descent that already existed at that position. This increments (by one)

the index of every descent at or to the right of the insertion point. So the effect on

maj is an increase by the number of descent spaces to the right of the insertion space.

Then by the way we have labeled the descent spaces, the increase in maj is the same

as the label of the insertion space.

Second, consider inserting n into an ascent space. Here, n both creates a new

descent and increases the index of each descent to its right. So the contribution to

maj is the number of entries to the left of, and including, the insertion space plus the

number of descents to the right of the insertion space. This is the same as the label

of the ascent space, so we are done.

Proof. (of Theorem 2.1) We give a recursive bijection ϕ from Sn to Sn such that

maj(π) = inv(ϕ(π)). Given π ∈ Sn, let σ be the permutation which results from

deleting n, and let i = maj(π) − maj(σ) be the resulting change in major index.

Recursively compute ϕ(σ), and then insert n so that it increases the inversion number

of ϕ(σ) by i (i.e., so that n has i entries to its right). By the previous lemmas this is

well-defined and bijective.
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2.2 Foata’s bijection

In this section we present a bijection φ due to Foata [F] which takes major index

to inversion number. This bijection is also recursive in nature, and although it is

more complex than the bijection given in Section 2.1, it can be composed with other

bijections to give an involution on permutations which interchanges maj and inv,

as done by Foata and Schützenberger [FS]. This shows the joint equidistribution of

major index and inversion number. That is,

∑
π∈Sn

qmaj(π)tinv(π) =
∑
π∈Sn

qinv(π)tmaj(π). (2.2)

The bijection is defined as follows. Suppose π = π1π2 · · · πn is a permutation

written in one-line notation. If n ≤ 2, then φ(π) = π. Let φ(k) = φ(π1π2 · · · πk) be

the result of applying the bijection to the first k entries of π.

Assume we have computed φ(n−1) recursively. Then append πn to the end. If

πn−1 < πn, then put a bar after every element of φ(n−1) which is less than πn. Other-

wise, if πn−1 > πn, then put a bar after every element of φ(n−1) which is greater than

πn. Either way, this partitions the elements of φ(n−1) into blocks. For each block,

take the rightmost element of the block and move it to the beginning of the block.

Then erase the bars.
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As an example, let π = 3417625. Stepping through the process gives

φ(2) = 34

φ(3) = 3|4|1→ 341

φ(4) = 3|4|1|7→ 3417

φ(5) = 3417|6→ 73416

φ(6) = 7|3|4|16|2→ 734612

φ(7) = 73|4|61|2|5→ 3741625.

Therefore, φ(3417625) = 3741625. One can check that maj(3417625) = inv(3741625),

as desired.

2.3 Rawlings’ proof

Rawlings [R] defined a permutation statistic on Sn called the r-major index, denoted

r -maj, which interpolates between maj and inv as r varies from 1 to n. First, define

the set of r-descents, denoted r -Des, and r-inversions, denoted r -Inv, as follows:

r -Des(π) = {i : πi ≥ πi+1 + r}.

r -Inv(π) = {(i, j) : i < j and r > πi − πj > 0}.
(2.3)

Now, r -maj is defined by

r -maj(π) = |r -Inv(π)|+
∑

i∈r -Des(π)

i+ . (2.4)

Note that r -Des is the set of descents where the descent top and bottom differ

by at least r. Conversely, r -Inv is the set of inversions where the larger element and
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smaller element differ by less than r. Notice that when r = 1, 1 -Des is the set of

(ordinary) descents and 1 -Inv is empty, hence 1 -maj = maj. And when r = n, n -Des

is empty and n -Inv is the entire set of inversions, and so n -maj = inv on Sn.

As an example, consider the permutation π = 6437521. We have that 2 -Des(π) =

{1, 4, 5}, since these are the indices of the descents whose top and bottom differ by

at least 2. We find that 2 -Inv(π) = {(6, 5), (4, 3), (3, 2), (2, 1)}, since these are the

inversions of π which differ by less than 2. Therefore, 2 -maj(π) = 4+(1+4+5) = 14.

Rawlings [R] showed bijectively that r -maj has the same distribution on Sn for

every r.

Theorem 2.4. For every 1 ≤ r, s ≤ n,

∑
π∈Sn

qr -maj(π) =
∑
π∈Sn

qs -maj(π). (2.5)

Proof. We give Rawlings’ construction, which is a generalization of Carlitz’s con-

struction given above, but we omit the proof that it is bijective (it is similar to the

proofs of Lemmas 2.2 and 2.3). For a particular r and s, we describe the mapping

Γrs : Sn → Sn such that r -maj(π) = s -maj(Γrs(π)).

Given π ∈ Sn, let σ ∈ Sn−1 be the result of deleting n from π. Let

i = r -maj(π)− r -maj(σ)

be the resulting change in r -maj. Then recursively compute Γrs(σ), and reinsert n

so that the resulting increase in s -maj is i.
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To determine the increase in s -maj from inserting n in a given space, identify

the spaces where inserting n would not create a new s-descent, and label these from

right to left starting at 0. Continue labeling the remaining spaces (those which do

create a new s-descent) from left to right. For example, we have the following possible

increases in 4 -maj from inserting 7 into the various spaces of 652341:

3

6
2

5
4

2
5

3
1

4
6

1
0

.

Thus, after recursively computing Γrs(σ), we can label the spaces as above to deter-

mine the (unique) correct location to reinsert n to increase s -maj by i.

As an example of the mapping Γrs, consider again the permutation π = 6437521,

and suppose r = 2 and s = 4. First, we keep deleting the largest element of the

permutation, keeping track of the effect on 2 -maj.

1. 6437521→ 643521; change to 2 -maj is 5.

2. 643521→ 43521; change to 2 -maj is 3.

3. 43521→ 4321; change to 2 -maj is 3.

4. 4321→ 321; change to 2 -maj is 1.

5. 321→ 21; change to 2 -maj is 1.

6. 21→ 1; change to 2 -maj is 1.

Now, we build Γ24(π) by inserting the next larger element into the position which

increases 4 -maj by the required amount.

1. 1→ 21 increases 4 -maj by 1.

2. 21→ 231 increases 4 -maj by 1.
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3. 231→ 2341 increases 4 -maj by 1.

4. 2341→ 52341 increases 4 -maj by 3.

5. 52341→ 652341 increases 4 -maj by 3.

6. 652341→ 6527341 increases 4 -maj by 5.

Thus, Γ24(6437521) = 6527341.
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3 Generalizations of MacMahon’s Theorem

In this section we give the generalization of MacMahon’s theorem to marked permu-

tations, and then to marked multiset permutations.

3.1 Marked Permutations

The origin of marked permutations and the marked inversion and major index statis-

tics came about in the course of proving the following conjecture of Haglund:

∑
π∈Sn

qmaj(π)

des(π)∏
i=1

(
1 +

z

qi

)
=
∑
π∈Sn

qinv(π)
des(π)∏
i=1

(
1 +

z

qai+1

)
. (3.1)

Here, as before, (ai) is the inversion sequence defined by

ai = #{j : j < i and πj > πi }.

Note that by setting z = 0, we recover (2.1). Recall that d̂es(π) denotes the

number of marked descents in π. Then the left hand side of (3.1) can be written

∑
π∈Ŝn

qmmaj(π)zd̂es(π).

To see this, interpret the ith factor in the product on the left as a choice: either

mark the ith descent of π, or leave the descent unmarked. A marked descent then

contributes a factor of z and divides by a factor of q for every descent weakly before

it, which agrees with how mmaj is defined.

Similarly, the right hand side of (3.1) can be written

∑
π∈Ŝn

qminv(π)zd̂es(π).
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Again, think of the ith factor in the product as a choice to mark or leave unmarked

the ith descent. Choosing to mark the ith descent contributes a factor of z and

divides by ai + 1 factors of q, which agrees with the definition of minv.

Thus, proving (3.1) is equivalent to finding a bijection φ : Ŝn → Ŝn such that

d̂es(φ(π)) = d̂es(π) and minv(φ(π)) = mmaj(π).

Define φ recursively as follows.

1. Given a marked permutation π̂ ∈ Ŝn, let σ denote the (underlying) permutation

which results from deleting n from π.

2. Let k = maj(π) − maj(σ) (i.e. k is the difference in maj of the underlying

permutations).

3. If n created a new descent in π, then take every marked descent weakly to the

left of n and move it left by one. Otherwise (if n did not create a new descent

in π), take every marked descent among the first k descents and move it left

by one. If the leftmost descent is marked and gets bumped, then this mark

disappears.

4. Now, delete n from π̂. If n was a marked descent top, then the mark remains

in this space (which must still be a descent, or else the mark would have gotten

shifted to the left in the previous step without another mark to replace it).

5. Record the change in mmaj, say i, which results and whether a mark disap-

peared in the previous step.
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6. Find φ(σ) recursively and then insert n to increase minv by i and mark the

newly created descent if a mark disappeared in the previous step.

This mapping can be defined more explicitly by repeatedly stripping out the

largest element of π, making the appropriate shifts in marks, and keeping track of the

change in mmaj and whether a mark was removed at each step. Then we build up

φ(π) with minv(φ(π)) = mmaj(π) by repeatedly inserting the next larger element into

the space which gives the prescribed increase in minv and marking the newly formed

descent (if required). We demonstrate the mapping on the marked permutation

π = 85>274>3>16.

Removing 8 gives σ = 5>274>3>16. Note that

k = maj(π)−maj(σ) = 5,

but since 8 created a new descent, and all the marks are to the right of 8, nothing
gets bumped. The decrease in mmaj is 2, and no mark was lost. Recording this first
step and each of the subsequent steps gives:

1. 5>274>3>16, change: 2, no lost mark.

2. 524>3>16, change: 2, lost mark.

3. 524>3>1, change: 0, no lost mark.

4. 24>3>1, change: 1, no lost mark.

5. 23>1, change: 1, lost mark.

6. 21, change: 0, lost mark.

7. 1, change: 1, no lost mark.

Now, we build φ(π) according to the necessary increases in minv and marks:

1. 1→ 21, change: 1, no new mark.
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2. 21→ 23>1, change: 0, new mark.

3. 23>1→ 4>23>1, change: 1, new mark.

4. 4>23>1→ 4>253>1, change: 1, no new mark.

5. 4>253>1→ 4>253>16, change: 0, no new mark.

6. 4>253>16→ 4>27>53>16, change: 2, new mark.

7. 4>27>53>16→ 4>27>583>16, change: 2, no new mark.

So φ(85>274>3>16) = 4>27>583>16.

Theorem 3.1. φ is a bijection from Ŝn to Ŝn which fixes number of marks and takes

mmaj to minv.

Proof. The mapping φ is the same as the mapping defined in the next section when

restricted to marked permutations. So the proof that it is correct follows from the

proof of Theorem 3.2.

3.2 Marked Multiset Permutations

We now turn to the generalization of MacMahon’s theorem to marked multiset per-

mutations. The statement can be expressed purely in terms of multiset permutations,

as in (3.1):

∑
π∈R(m1,...,mn)

qmaj(π)

des(π)∏
i=1

(
1 +

z

qi

)
=

∑
π∈R(m1,...,mn)

qinv(π)
des(π)∏
i=1

(
1 +

z

qai+1

)
. (3.2)

As mentioned in Section 1.3, the definitions of marked inversion number and marked

major index are the same for marked multiset permutations as for marked permuta-
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tions. So (3.2) can be expressed equivalently as

∑
π∈R̂(m1,...,mn)

qmmaj(π)zd̂es(π) =
∑

π∈R̂(m1,...,mn)

qminv(π)zd̂es(π). (3.3)

We require some notation and terminology before we can define the bijection which

will prove (3.3). In a multiset permutation σ ∈ R(m1, . . . ,mn−1), a LR position

is a space where inserting an n would create a new descent. Recall that we let

An−1 = m1 +m2 + . . .+mn−1 be the length of σ. Note that there are An−1 − des(σ)

LR positions. In the following example, the LR positions (where inserting 5 would

create a new descent) are indicated with a square bracket:

31 2 2 321 41.

A RL position is a space where inserting an n would not create a new descent. σ

has des(σ) + 1 RL positions (each of the existing descents of σ along with the space

all the way to the right of σ). Note that once an n is inserted into a LR position,

then the space to its left becomes a RL position. So, in the following example where

some 5’s have already been inserted, the following are RL positions (where inserting

one or more 5’s would not create a new descent):

3 1 52 523 2 1 54 1 .

We recursively build a multiset permutation π ∈ R(m1, . . . ,mn) by inserting mn

n’s into σ ∈ R(m1, . . . ,mn−1). We break the insertion into two stages and record the

insertion as follows. First, we insert some n’s into some of the LR positions. Record
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this insertion with a 0-1 sequence where the jth entry is a 1 if an n was inserted into

the jth LR space counting from the right (for technical reasons) and a 0 if not. Call

this sequence τLR. Suppose i n’s were inserted in this stage so that τLR consists of i

1’s and An−1 − des(σ)− i 0’s.

In the second stage, we insert the remaining mn − i n’s into the des(σ) + i + 1

RL positions. Note that several n’s may be inserted into the same RL position. This

can be thought of as the classic balls-in-bins problem, where the RL positions are

the bins (counted from right to left, for technical reasons) and the n’s are the balls.

We record this as a sequence, τRL, of 0’s and 1’s, where the 1’s serve as the dividers

between RL positions and the 0’s represent the n’s going into that RL position. Note

that τRL consists of mn− i 0’s and des(σ) + i 1’s (we require one less divider than the

number of bins).

For example, inserting six 5’s into the above permutation might give

315552523251541.

The first stage is inserting a 5 into the second, third, and fifth LR positions (and

recording it with τLR, which records these from right to left):

31
5

2
5

2 321
5

41 τLR = 10110.

The second stage is inserting 5’s into the indicated RL positions (again, recording

these with τRL from right to left):

3 1
55

52 523 2
5

1 54 1 τRL = 1110111001.
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We will think of a marked multiset permutation π̂ ∈ R̂(m1, . . . ,mn) to be a pair

π ∈ R(m1, . . . ,mn) (the underlying multiset permutation) and a 1-2 sequence τD, the

descent mark sequence, where the jth entry is a 2 if the jth descent of π̂ is marked,

and 1 otherwise.

With these definitions in place, the mapping φ : R̂(m1, . . . ,mn)→ R̂(m1, . . . ,mn)

is defined recursively as follows. It is a technical construction which resulted from

parsing a purely algebraic proof by Remmel and Wilson [RW1].

1. Given π̂ ∈ R̂(m1, . . . ,mn) = (π, τD), as defined above. Let σ be the multiset

permutation obtained by deleting the mn n’s from π, and τLR and τRL (as defined

above) are the insertion sequences which are used to build π from σ.

2. Form a sequence τC of length mn+des(σ) as follows. Begin with τRL and replace

the 1’s with the entries of τD. Then consider the subsequence consisting of 0’s

and 1’s. Leaving the 2’s in their current locations, perform a reverse complement

on the subsequence of 0’s and 1’s (that is, reverse the order of them and replace

1’s with 0’s and 0’s with 1’s).

3. Form a sequence τA by concatenating τLR and τC .

4. Let β1 be the subsequence of 0’s and 1’s in τA.

5. Let β2 be τC where we have replaced any 0’s with 1’s.

6. Use the last des(σ) entries of β2 as the descent mark sequence for σ̂, then discard

these entries and call the result β∗2 .
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7. Combine β1 and β∗2 in a sequence γ by replacing the 1’s in β1 by the entries of

the reverse of β∗2 .

8. Form the sequence γM from the subsequence of 0’s and 2’s in γ.

9. Form the sequence γU by replacing all the 2’s with 0’s in γ.

10. Recursively compute φ(σ̂).

11. Insert n’s with a mark using γM as an indicator sequence. That is, go from left

to right through the possible insertion spaces and if the corresponding entry of

γM is a 2, then insert an n with a mark. If the entry is a 0, then do not insert

anything in that space.

12. Insert n’s without a mark according to γU . Here, interpret the 0’s as dividers

and the 1’s as the n’s which go in a certain space, from left to right. That is,

the number of 1’s between the jth and (j+ 1)th 0 is the number of n’s to insert

in the (j + 1)th possible insertion space.

As an example, we demonstrate each above step on the permutation

π̂ = 31555>2523>25>15>4>1.

1. We have
π = 315552523251541 and τD = 1212222.

As above,
σ = 312232141 τLR = 10110 τRL = 1110111001.

Note also that des(σ) = 4 and m5 = 6.
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2. Replacing the 1’s in τRL with the entries of τD gives

1210222002.

The 0-1 subsequence is 11000, whose reverse complement is 11100. Replacing
the 0-1 subsequence with its reverse complement gives

τC = 1211222002.

3. τA = τLR · τC = 101101211222002.

4. The 0-1 subsequence from τA gives β1 = 1011011100.

5. Replacing the 0’s with 1’s in τC gives β2 = 1211222112.

6. The final des(σ) = 4 entries of β2 are 2112, so using this as the descent mark
sequence for σ̂, we find that

σ̂ = 3>1223214>1.

Discarding these entries gives β∗2 = 121122.

7. Reversing β2 gives 221121 and replacing the 1’s in β1 with this sequence gives
γ = 2021012100.

8. The subsequence of 0’s and 2’s of γ gives γM = 2020200.

9. Replacing the 2’s with 0’s in γ gives γU = 0001010100.

10. Recursively computing φ(σ̂) (these steps omitted) gives

φ(σ̂) = 4>1321322>1.

11. Inserting n’s with marks according to γM (that is, into the first, third, and fifth
possible spaces) gives

5>

4>1 3
5>

2 1
5>

3 2 2>1 −→ 5>4>135>215>322>1.

12. Inserting n’s without marks according to γU gives

5>4>1 3 5>2
5

1
5

5>3
5

2 2>1 −→ 5>4>135>25155>3522>1.

Theorem 3.2. The above mapping φ is a bijection from R̂(m1, . . . ,mn) to itself which

takes mmaj to minv.
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Proof. To see that φ is a bijection, we note that each of the above steps is reversible.

In other words, given γU , γM , and σ̂, we can work our way back through each step of

the construction to recover π̂.

Beginning with γU and γM , we can replace the subsequence of 0’s in γU with γM

to obtain γ. Replacing the 2’s in γ with 1’s gives β1. Reversing the 1-2 subsequence

in γ recovers the first mn entries of β2 (that is, β∗2). The remaining entries of β2 are

formed by the descent mark sequence of σ̂.

The first An−1 − des(σ) entries of β1 form τLR. Taking the remaining portion of

β1 and replacing the subsequence of 1’s in β2 with these entries recovers τC .

Take the reverse complement of the 0-1 subsequence of τC . Then the 1-2 subse-

quence of this gives τD, and replacing the 1-2 subsequence with all 1’s recovers τRL.

Finally, τLR and τRL are used to insert n’s into σ, which recovers π. And τD records

the markings of π̂. Thus, φ is a bijection.

To see that φ takes mmaj to minv, we begin by relating maj(π) to maj(σ). This

was studied in [HLR]. Let i = des(π) − des(σ) (equivalently, i is the number of

n’s inserted into LR positions which is also the number of 1’s in τLR). The possible

increases from inserting n into an LR position are {des(σ) + 1, des(σ) + 2, . . . , An−1}.

At most one n can be inserted into any LR position. Note also that each n inserted

into an LR position also increments the index of every subsequent n inserted into an

LR position (hence adds one to maj for every n inserted into an LR position to its

right). Thus, the minimum increase in maj, which results from inserting the i n’s
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into the leftmost LR positions, is

(des(σ) + 1) + (des(σ) + 2) + . . .+ (des(σ) + i) + (0 + 1 + 2 + . . .+ i− 1)

= i · des(σ) + 1 + 2 + . . .+ i+

(
i

2

)
= i · des(σ) +

(
i+ 1

2

)
+

(
i

2

)
= i · des(σ) + i2

= i(des(σ) + i)

= i des(π),

by our definition of i. When an n is moved to an LR position further right, its

contribution to maj increases by one for every LR space to the right by which it moves.

This means that the additional contribution to maj which results from spreading the

n’s further right is recorded by inv(τLR), since an inversion in τLR comes from a 1

being moved left past a 0, which is equivalent to an n being inserted one space further

to the right (since τLR records insertions into LR spaces from right to left).

Recall that inserting i n’s into LR positions increases the number of RL posi-

tions to des(σ) + i + 1. So the possible contributions to maj are (from right to left)

{0, 1, . . . , des(σ)+i}. Recall that by the construction of τRL (which uses 1’s to indicate

dividers between RL positions and 0’s to indicate n’s going into an RL position), the

number of 1’s to the left of a 0 corresponds to which RL position (from right to left)

that n is inserted. And the RL position into which an n is inserted corresponds to its

contribution to maj. Thus, inv(τRL) records the contribution to maj from inserting
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mn − i n’s into RL positions according to τRL. In total, we have

maj(π) = maj(σ) + i des(π) + inv(τLR) + inv(τRL) (3.4)

Now, we consider mmaj(π̂), so we must subtract from maj(π) the number of

descents weakly to the left of each marked descent. Let k be the number of marked

descents of π̂. Then the decrease from marking descents comes from adding up k

decreases from the set {1, 2, . . . , des(π)}. Then by a similar calculation to the above,

the maximum decrease (from choosing to mark the k rightmost descents) is given by

des(π) + (des(π)− 1) + . . .+ (des(π)− (k − 1)) = k des(π)−
(
k

2

)
.

Each time we move a marked descent to the left by one, it decreases the loss to mmaj

by one. Recall that τD records marked descents as 2’s and non-marked descents as

1’s from left to right. So moving a marked descent to the left by one is equivalent to

moving a 2 to the left of a 1 in τD. Therefore, inv(τD) records how much we need to

subtract from the total decrease to mmaj due to marked descents. In other words,

mmaj(π̂) = maj(π)− (k des(π)−
(
k

2

)
− inv(τD)). (3.5)

Therefore, combining (3.4) and (3.5) we find that

mmaj(π̂) = maj(σ)+ i des(π)+inv(τLR)+inv(τRL)−k des(π)+

(
k

2

)
+inv(τD). (3.6)

Next, we make a few observations about the various slicing and dicing operations

on the various sequences defined in the course of the mapping, and how the inversion

numbers relate to one another. Sometimes we will be interested in only the inversions
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between, say, the 2’s in a sequence and the 0’s in a sequence. We refer to these as

the 2-0 inversions, and similarly for other pairs of entries. We also briefly refer to

the coinversions of a sequence, which are a pair of entries in increasing order.

First, we show that

inv(τC) = inv(τRL) + inv(τD). (3.7)

Recall that τC was formed by replacing the 1’s in τRL with the entries of τD and

then reverse complementing the 0-1 subsequence of the result. Note that reverse

complementing the 0-1 subsequence does not change the inversion number, so we can

consider τC before we apply the reverse complement. The inversions in τC between

2 or 1 and 0 come from the same positions as the inversions of τRL (since some of

the 1’s in τRL became 2’s but otherwise nothing changed). The inversions between

2 and 1 are the inversions of τD. This accounts for all of the inversions of τC , hence

establishes (3.7).

The next sequence in the construction is τA. This is just the concatenation of τLR

and τC , and so inversions of τA are the inversions of τLR, the inversions of τC , and

any new inversions formed between the two. Since τLR is a 0-1 sequence, we get new

inversions between any 1 from τLR and any 0 from τC . The number of 1’s in τLR was

denoted i, and the number of 0’s in τC is des(π)− k. This shows

inv(τA) = inv(τLR) + inv(τC) + i(des(π)− k). (3.8)

Now we look at β1 and β2. Recall that β1 is the 0-1 subsequence of τA, which is

the concatenation of τLR and τC . Therefore, the inversions of β1 are the 1-0 inversions
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of τLR (namely, all the inversions of τLR since τLR is a 0-1 sequence), the 1-0 inversions

of τC , and the 1-0 inversions between the two (which we counted above as part of

(3.8)). This gives

inv(β1) = inv(τLR) + |{1-0 inversions in τC}|+ i(des(π)− k). (3.9)

Recalling that β2 is the same as τC with all the 0’s changed to 1’s, we see that the

inversions in β2 are the same as the inversions of τC , except we lose the 1-0 inversions

(the 2-0 inversions get converted into 2-1 inversions so we do not lose them). Thus

inv(β2) = inv(τC)− |{1-0 inversions in τC}|. (3.10)

Adding together (3.9) and (3.10) (cancelling the 1-0 inversions of τC) and using

(3.7), we find that

inv(β1) + inv(β2) = inv(τLR) + i(des(π)− k) + inv(τC)

= inv(τLR) + i(des(π)− k) + inv(τRL) + inv(τD).

(3.11)

Combining this with (3.6) gives

mmaj(π̂) = maj(σ) + inv(β1) + inv(β2)− k des(σ) +

(
k

2

)
. (3.12)

Now, let τD(σ) be the final des(σ) entries of β2 (since these entries form the descent

mark sequence for σ̂), and recall that β∗2 denotes the result of discarding these entries

from β2. Note that, similar to the calculation in (3.8), we have

inv(β2) = inv(β∗2) + inv(τD(σ)) + |{2’s in β∗2}| · |{1’s in τD(σ)}|. (3.13)
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Let j be the number of 2’s in β∗2 . Since β2 had k 2’s total, it follows that τD(σ) has

k − j 2’s and hence des(σ)− (k − j) 1’s. Thus (3.13) can be written

inv(β2) = inv(β∗2) + inv(τD(σ)) + j(des(σ)− k + j) (3.14)

Making this replacement in (3.12) gives

mmaj(π̂) = maj(σ)+inv(β1)+inv(β∗2)+inv(τD(σ))+j(des(σ)−k+j)−k des(σ)+

(
k

2

)
.

(3.15)

Notice that k − j is the number of 2’s in τD(σ), hence it is the number of marked

descents in σ̂. This means we can rewrite (3.5) in terms of σ, which gives

mmaj(σ̂) = maj(σ)− (k − j) des(σ) +

(
k − j

2

)
+ inv(τD(σ)).

= maj(σ)− k des(σ) + j des(σ) +

(
k − j

2

)
+ inv(τD(σ)).

(3.16)

Combining (3.15) and (3.16) gives

mmaj(π̂) = mmaj(σ̂)−
(
k − j

2

)
+ inv(β1) + inv(β∗2) +

(
k

2

)
− jk + j2. (3.17)

Expanding and simplifying shows(
k

2

)
−
(
k − j

2

)
− jk + j2 =

k(k − 1)− (k − j)(k − j − 1)− 2jk + 2j2

2

=
k2 − k − k2 + 2jk − j2 − j + k − 2jk + 2j2

2

=
j2 − j

2

=

(
j

2

)
.

So we find that

mmaj(π̂) = mmaj(σ̂) + inv(β1) + inv(β∗2) +

(
j

2

)
. (3.18)
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Now, we relate the inversions in β1 and β∗2 with γ and then with γM and γU .

Recall that γM is the 0-2 subseqence of γ and γU is γ where the 2’s have been

replaced by 0’s. So the inversions of γM are the 2-0 inversions of γ. The inversions of

γU are the inversions of γ excluding the 2-0 and 2-1 inversions, and including the 1-2

coinversions (since a 1-2 coinversion becomes a 1-0 inversion when the 2’s become 0’s

in γU). Therefore,

inv(γM) + inv(γU) = |{2-0 invs in γ}|+ inv(γ)− |{2-0 invs in γ}|

− |{2-1 invs in γ}|+ |{1-2 coinvs in γ}|

= inv(γ)− |{2-1 invs in γ}|+ |{1-2 coinvs in γ}|.

(3.19)

Now, recall that γ is β1 with its 1’s replaced by the reverse of β∗2 . So the 1-2 coinver-

sions in γ are precisely the 2-1 inversions in β∗2 (which are the only inversions in β∗2

since it is a 1-2 sequence). So

|{1-2 coinvs in γ}| = inv(β∗2). (3.20)

Also, the inversions of β1 become 2-0 and 1-0 inversions in γ, so

inv(γ)− |{2-1 invs in γ}| = |{2-0 invs in γ}|+ |{1-0 invs in γ}|

= inv(β1).

(3.21)

Putting together (3.19), (3.20), and (3.21), we find that

inv(γM) + inv(γU) = inv(β1) + inv(β∗2). (3.22)
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Finally, making this replacement in (3.18), we find that

mmaj(π̂) = mmaj(σ̂) + inv(γU) + inv(γM) +

(
j

2

)
= minv(φ(σ̂)) + inv(γU) + inv(γM) +

(
j

2

)
,

(3.23)

by induction.

According to the construction, after recursively finding φ(σ̂), we insert mn n’s into

φ(σ̂) first using γM to indicate where the marked n’s should go, and then using γU to

indicate where the unmarked n’s should go. Inserting an n with a mark increases minv

by 1 less than the number of elements to its right which are not marked descent tops.

Note that in γM , every element of the sequence corresponds to a valid possible place

to insert a marked n. But for every element of σ̂ that is not a marked descent top

(other than the final element), there is a valid space to insert a marked n immediately

following it. So the effect on minv is to add the number of elements to the right of

each 2 in γM . This includes the inv(γM) inversions of γM , as well as all the 2-2

occurences, which are counted by
(
j
2

)
.

The effect of inserting an n without a mark increases minv by the number of

elements to its right which are not marked descent tops. Note that in γU , the 0’s

serve as dividers between possible spaces for unmarked n’s. A possible space for an

unmarked n comes right after an element which is not a marked descent top. Thus,

a 0 to the right of a 1 in γU corresponds to an element which is not a marked descent

top to the right of an n, and so it follows that the increase in minv due to the insertion

of unmarked n’s is inv(γU).
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Thus, the overall increase in minv from inserting n’s according to γM and γU is

inv(γU) + inv(γM) +

(
j

2

)
,

and so combining this with (3.23) shows that

mmaj(π̂) = minv(φ(σ̂)) + inv(γU) + inv(γM) +

(
j

2

)
= minv(φ(π̂)),

(3.24)

as desired.
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