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Abstract

It would be very desirable to have a combinatorial description for By, (q,t),
the bigraded characters of the type B analog of the ¢, t-Catalan polynomial. It
is known that B, (1,t) = > .o %%, where &, is the set of “shifted” lattice
paths consisting of unit North and East steps. In this thesis, we study a broader
class of objects by increasing the length of the bottom of the shifted paths to
k, in the hope of finding a uniform combinatorial description for them all.

We here state the assumptions for this broader class By, (g,t) and give a
candidate description of By, (¢, t) as a positive linear combination of slp-strings
for n = 2,3, and a combinatorial description for n = 2.

For general n, k, we then state and prove a recurrence relation for By, 1,(¢,1/q)
as a positive linear combination of slo-strings, and finally give a recurrence re-

lation involving Catalan numbers of type A.
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1 Introduction to q,t-Catalan numbers

The (type A) g, t-Catalan polynomial C),(q,t) has three main interpretations. In this
section we introduce the original analytic definition given by Garsia and Haiman, the
algebraic interpretation of the ¢,¢ - Catalan numbers as a bigraded Hilbert Series,
and the pure combinatorial description proved by Garsia and Haglund. Then we will
introduce the ¢, t-Fuss-Catalan numbers for complex reflection groups presented by

Stump, and a few results on the specialization of the type B ¢,t-Catalan numbers

Bn(g,t).

1.1 Catalan number and two ¢-analogs

Let C, = 25 (®*) denote the n-th Catalan number. One of the objects counted by
the Catalan numbers is the number of Dyck paths in D,,, defined as follows (a list of

other objects counted by the Catalan numbers could be found in [13]):

Definition 1.1. A Dyck path is a sequence of North N(0,1) and East E(1,0) steps in
the first quadrant of the xy-plane, starting at the origin (0,0), ending at (n,n), and

never go below the diagonal y = 2. We let D,, denote the set of all such paths.

There are two natural g-analogs of C,. The first was studied by MacMahon [12].
Given \ € D,, let o()\) be the element of a linear list of the multiset {0™1™} resulting
from the following algorithm: (1) Initialize o to the empty string. (2) Start at (0,0),

move along A and add a 0 to the end of o()\) every time a N step is encountered,



and add a 1 to the end of o(\) every time an E step is encountered. Then the first

g-analogs of C,, was given as follows:

Theorem 1.2. (MacMahon)

D G ——— [2"} ’
o=t m+1g | n],

where mayj is the major-index statistic defined by maj(o) =5, . i, and as is cus-
0i>0i41

tomary [klg = (1 —¢")/(1 —q), [klg! = [g[2]q -~ [Klg, [¥]q = [nlg!/([Klg![n — Kg}).

The second natural g-analog of C,, was studied by Carlitz and Riordan [4]. Given
A € Dy, let a;(\) denote the number of complete squares, in the i-th row from the
bottom of A\, which are to the right of A and to the left of the line y = . We refer to
a;(\) as the length of the i-th row of \.

Let

area() = Z a;(\)

i
be the area statistic of X (see Figure 1 as an example).

Then the second ¢-analogs of C,, was given as follows:

Theorem 1.3. (Carlitz and Riordan)

Define Cy(q) = > \ep, N | then
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Figure 1: A Dyck path, with row lengths on the right. The area statistic is 14+ 1 +
2+3+2=09.

and

n

Co(q) =Y d" ' Crl(9)Cril(q), n>1.
k=1

1.2 Analytic definition of (type A) ¢,t Catalan polynomial
by Garsia and Haiman

The ¢, t-Catalan polynomial C),(¢,t) was originally introduced in a paper by A.M.
Garsia and M. Haiman in [7] analytically (see (1.1) below), as a sum over rational
functions of ¢, ¢, which arise when applying the Macdonald polynomial v operator
to the nth elementary symmetric function. This analytic definition was partially
motivated by an algebraic description suggested by Haiman [11] as the bigraded sign

character of the space of diagonal harmonics.

Definition 1.4. (Garsia and Haiman)



fe— — — <

Figure 2: Arm, leg, co-arm and co-leg.

The ¢, t-Catalan sequence is defined by setting

t2 Zz l(l‘)q2 zz a(x) (1 _ t)(l _ q) Hx¢(070) (1 o qa/(m)tl’(a:)) Z:C qa/(aj)tl’(m)
Hx(qa(x) _ tl(x)—l—l)(tl(a:) _ qa(x)—i—l) )

(1.1)

Crlg,t) =Y
pkn

where the sum is over all partitions p of n, and all products and sums in the ptt
summand are over the cells  of u. For a given cell z, in the Ferrers diagram of p,
the leg I(x), the arm a(x), the co-leg I'(x), and the co-arm o'(z) of x are defined to be
respectively the numbers of squares above, to the right of, below, and to the left of

x, with the diagram oriented in the French manner as shown in Figure 2.

This Cy(q,t) is a bivariate “g-analog” of the familiar Catalan numbers C, =

= (®*) . Making use of the theory of Macdonald polynomials, the paper established

that the specialization C,(1,¢q) and q(g)Cn(q, 1/q) reduce to well-known g-analogs of

the Catalan numbers, stated as follows.

Proposition 1.5. C,(q) = C,(1,q9) = Cn(q,1) reduces to the Carlitz-Riodan [4] q-



Catalan numbers:

quck Crork(g) = D ¢,

AED,,
which q-counts Dyck paths by area.

Proposition 1.6. D,(q) = q(;)C’n(q, 1/q) reduces to MacMahon [12] q-Catalan num-

bers:

D) = iy || = X e

AED,

which q-counts Dyck words by the major index.

1.3 ¢,t-Catalan numbers as a bigraded Hilbert Series

In [10], M. Haiman introduced the following definition as a bigraded Hilbert Series.

Beginning with the polynomial ring
(C[XTH Yn] = C[l’l, Y1, axn7yn]a

recall the definition of bigraded Hilbert series:

Given any subspace W C C[X,,Y,], the bigraded Hilbert series of W is defined as

H(W;q,t Z ¢ dim(W ),
4,70



where the subspaces W) consist of those elements of W of bi-homogeneous degree
i in the z variables and j in the y variables, so W = @; j>oW ().

Let the symmetric group S, which is the reflection group of type A,,_1, act diag-
onally by permuting the coordinates in x and y simultaneously amongst themselves,
ie.

Up($1a Yt, - s T, yn) = p(xa(l)a Yo(1)s " s La(n)> ya(n))'

A polynomial p € C[X,,Y,] is alternating, or an alternate, if

o(p) =sgn(p), Vo €S,.

Let W€ be the subspace of alternating elements in W, and

HWSq,t) = > t'g dim(WeE),
i,j>0

Now let I be the ideal generated by all S,-invariant polynomials without constant

term: I = (3", afy¥ Vh+k > 0), consider the quotient ring
DR, = C[X,,, Y,/ 1.

Also define the space of diagonal harmonics DH,, by

Nn == {f(Xn’Yn) :p(aXn’ayn)f(Xna Yn) = OaVP(Xm Yn) S I},



where p(0X,,dY,) denotes the differential operator obtained by substituting for the
variables z1,y1, -+, n, yn the corresponding partial derivative operators 0;,,0y,, -,
Oz,» Oy,

Many of the properties of DH,, and RH,, carry over to two sets of variables. For
example DH,, is a finite dimensional vector space which is isomorphic to DR,. One
of several conjectures Haiman proved of a combinatorial nature concerning DH,, is
that its subspace DHE of S,-alternating elements — that is, its isotypic component
corresponding to the sign character ¢ of S — has dimension equal to the Catalan

number C,,.

Definition 1.7. (Haiman)

Taking into account the grading, Haiman defined a Hilbert polynomial

Dn(t,q) = H(DHg;q,t) = Y t"¢" dim(DHS)p k-
h,k>0

Haiman later showed that the rational function C,(q,t) defined above is in fact

equal to the bigraded Hilbert series defined above:

Theorem 1.8. (Haiman)

Cn(q,t) = Dn(q,t) = H(DH;;q,t).



1.4 Pure combinatorics definitions

A pure combinatorial description was later conjectured by Haglund in 2000 [8] after
a prolonged study of tables of C),(¢,t). It was then proved by Garsia and Haglund [5]
[6].

This combinatorial formula for C,(q,t) involves a new statistic on Dyck paths

called bounce.

Definition 1.9. Given )\ € D,,, define the bounce path of X to be the path described
by the following algorithm: (1) Start at (0,0) and travel North along A. (2) When
encountering the beginning of an E step, turn East and travel straight until hitting
the diagonal y = z. (3) Next turn North and travel straight up until hitting the path
A, then proceed as in step (2). (4) Continue in this way until you arrive at (n,n).
The “bouncing ball” will strike the diagonal at places (0,0), (j1,71), (42, 72)s -+, (Jp—

1,75 — 1), (b, 7) = (n,n). We define the bounce statistic bounce()) to be the sum
b—1
bounce(\) = Zn — Ji-
i=1

An example is shown in Figure 3.
The following theorem is proved by Garsia and Haglund [5] [6]:

Theorem 1.10. (Garsia and Haglund)

Cn(q,t) — Z qbounce()\)tarea()\)'

AeDy,



(R R Y
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1
1

1
1,
(

Figure 3: The bounce path (dotted line) of a Dyck path (solid) line. The bounce
statistic equals 9 —2+9—-4+9—-6=7+5+3 =15.

There is another pair of statistics for the ¢, ¢t-Catalan discovered by M. Haiman. It
involves pairing area with a different statistic we call “dinv”, for “diagonal inversion”

or “d-inversion”.
Definition 1.11. Let A € D,,. Let
dinv(\) = [{(¢,4) 11 <i<j<mn,a; =a;}|
+{(,7) : 1 <i<j<n,a=a;+1}|

be the “diagonal inversion” or “d-inversion” statistics, where a; the length of the i-th

row from the bottom.

In words, dinv()) is the number of pairs of rows of A of the same length, or which
differ by one in length, with the longer row below the shorter, as shown in Figure 4.

Then we have the following theorem and corollary:
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Figure 4: the inversion pairs (4, ) are (3,4),(3,5),(3,7),(4,5),(4,7), (5,7) (correspond-
ing to pairs of rows of the same length) and (6,7) (corresponding to rows which differ
by one in length), thus dinv = 7.

Theorem 1.12.

Z qdinv()\)tarea()\) _ Z qbounce(k)tarea()\)'
XeDy, XeDy,

Corollary 1.13.

C’n(q,t) _ Z qdinv()\)ta'rea(k)‘
XDy,

1.5 ¢, t-Fuss-Catalan numbers for complex reflection groups

As introduced in section 1.3, C,(q,t) can be defined as a bigraded Hilbert series
of a module associated to the symmetric group S,. Stump [14] generalized this
construction to finite complex reflection groups and exhibit some nice conjectured
algebraic and combinatorial properties of these polynomials in ¢ and ¢.

Generalize the concept for polynomials to be alternating to any finite complex
reflection group in the following way: let V' be an n-dimensional complex vector space

and let W c GL(V) be a finite complex reflection group acting on V. Definitions on



11
complex reflection groups can be found in [3].
Define the diagonal action of W on C[X,,,Y,,] by “doubling up” the contragredient
action w(p) := pow™! of W on V* = Hom(V,C) diagonally.
Let W be a complex reflection group acting on a complex vector space of dimension

n. We call a polynomial p € C[X,,Y,] alternating if

det(w)w(p) =p, VYwe W.

Let I <C[X,,Y,] be the ideal generated by all alternating polynomials and define the

W-module M .= "/ < X,,,Y,, > I"™.

Definition 1.14. (Stump)

The ¢, t-Fu-Catalan numbers associated to W are defined as

Cat™ (W, q,t) := H(M™; g, 1) = > dim(My)g't.
,7>0
Remark 1.15. For W being the complex reflection group of type A,_; - which is
the symmetric group S, - the definition of alternating polynomials reduces to the
one given in section 1.3, and the definition of ¢, ¢-FuB-Catalan numbers associated to
W =8, is reduces to definition 1.7. Later on we will call this W = S,, case C,(q,t)

the type-A ¢,t-Catalan numbers.
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(=44 44

0,0

Figure 5: A shifted Dyck path in & with area = 6
1.6 Type B analog of ¢, t-Fuf3-Catalan numbers

Define By (q,t) = Cat(l)(WBn,q, 1) to be the Type B analog of the ¢, #Fufl-Catalan
numbers. It would be very desirable to have a combinatorial description for the
bigraded characters of the type B analog B, (q,t), as well as for other root systems.
There is currently no known way to define them analytically or combinatorially. There
are, however, some studies on the specialization B, (1,q) and ¢"*Bp(q,1/q).

Stump has conjectured in [14] that B, (1,q) g-counts the area statistic for Catalan

paths of type B and established an analogous recurrence.

Definition 1.16. A type B Catalan path (or a “shifted Dyck path”) of length n,
denoted as &,, is a lattice paths of 2n steps, either north or east, that starts at
some point on the anti-diagonal y = —z, ends at (n,n) and stays above the diagonal
x =y. For such a path \, we define area()\) to be the number of boxes in the region
confined by the path, the diagonal y = z and the anti-diagonal y = —z, not counting
the halfboxes at the diagonal y = x but counting the halfboxes at the anti-diagonal

Y= —2x.

If Conjecture 1.17 is correct, the following propositions are comparable to propo-
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sition 1.5.

Conjecture 1.17. (Stump)

Bu(1,q) = Bu(q,1) = Y ¢™*W.
Ae€En

Proposition 1.18. (Stump)

B.(1,q) satisfies the following recurrence involving Catalan numbers of type A:

n—1

Bn(17q) = Cn(L q) + Zq2k+1Bk(17 Q)Cnfk<17 q)
k=0

Also, similar to proposition 1.6, we have the following conjecture by Haiman [9]:

Conjecture 1.19. (Haiman)
2n
q" Bu(a. 1/61)—[ } :
n q2

1.7 Schur polynomials and slo-strings

Recall the definition of Schur polynomials:
Definition 1.20. Given a partition A = (A1, \g, -+, \,), where \y > Xy > -+ > A,

and each ); is a non-negative integer, the Schur polynomials are defined as the ratio

55 (2 ) A2 +n—1 o fn—2,... An+0) (T1, T2, -, T)
Alx1, o, ... = .
’ ’ T a(n—l,n—Z,...,O) (fEl, Z2, ... 7$N>
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where
A+n—1 A +n—1 A+n—1
x] x5 U
x1\2+"_2 $§\2+”_2 co.ppetnT2
A0 4n—1,..2) (T1, T2, .., 2,) = det
" " "

Specifically, in the case of n =2, we have

Sae(@1) = (ax,4150(a0)/(a10(g, 1))

= ((gMH1h2 — g2t FL) (g — t)

= (gt (M — et (g — ).

Note that such a Schur polynomial can be written in the form (gt)™(¢* —t*)/(q—1).
We say a polynomial of this form is an sly-string. To simplify, we use the following

notation given by [14]: Let

(klgt = (¢" —t%)/(q — 1).

Remark 1.21. Note that under this notation,

[k]q,l = [k]Lq = [k]q
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and

3/\1,)\2 (q7 t) = (qt))\Q [Al - AQ + 1](1»7«"

As a corollary of the result stated in [2], we have B,(q,t) is a positive coefficient

linear combination of Schur polynomials. Hence we have the following proposition:

Proposition 1.22. B,(q,t) is a positive coefficient linear combination of sla-strings.
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2 Set-up: Problem statement and basic assump-

tions to B, x(q,1t)

In this section we will state the motivation and formally define the assumptions for
the broader class of polynomials B,, 1(q,t) that we will study.

Recall the open problem that is stated by Stump in [14]:

Open Problem 2.1. Are there statistics gstat and tstat on objects counted by Cat™ (W)

which generalize area and bounce on Catalan paths D' such that

C’at(m)(VV, g, t) = Z @tat V) tstat(N) 9
A

We still have no candidate for the type B version of dinv (or perhaps a type B

version of bounce) to match with area to generate B, (q,t) = >\ c¢. gastat(d) garea(d)

2.1 Shifted Dyck path with base k and area statistics

By observation, if you increase the length of the bottom of the shifted paths to k, as
shown in Figure 6, then the total number of paths seems to be the binomial coefficient
<2”+nk_1>. It might make sense to study this broader class of objects, in the hope of
finding a uniform combinatorial description for them all, perhaps via an undiscovered
recurrence relation. Formally, we define the shifted Dyck path with base k& and the

area statistics for such a path as follows:
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©.0)

k=4

Figure 6: A shifted Dyck path with base k = 4, length n = 4, area = 13

Definition 2.2. A “shifted Dyck path” with base k of length n, denoted as &, , is
a lattice path of 2n + k — 1 steps, either north or east, that starts at some point on
the anti-diagonal y = 1 — k — z, ends at (n,n) and stays above the diagonal z = y.
For such a path A\, we define area(\) to be the number of boxes in the region confined
by the path, the diagonal y = z and the anti-diagonal y = 1 — k — z, not counting
the halfboxes at the diagonal y = x but counting the halfboxes at the anti-diagonal

y=1—k—=x.

2.2 q, t polynomials B, ;(q,t)

Our goal would be trying to find ¢,t polynomials B, x(q,t) for the shifted paths with
base k, where By, 1(q,t) = By(q,1).
We will try to find a candidate description of B, x(g,t) as a positive linear com-

bination of siy-strings, based on the following two assumptions on the specialization

By, x(1,t) and B, x(q,1/q):

Assumption 2.3.

(2.1)

n(ntl— 2n+k—1
"B (g, 1/q) = [ } :
q2

n



Assumption 2.4.

nk 1 t Z tarea.

TEEN k

Remark 2.5. Suppose we want a positive linear combination of sls-strings:

Bn,k(‘]? t) = Z(qt)mi [Zi]%t'

%

Note that
(¢-1/9)"Ug1/q = llg1/q
= -aH/a-q") -
= ¢ "l
and

(L-1)" U1 = t"[l]e-

We can see that B, (g, 1/q) gives which terms of /; there are in the sum of (g, t)

and B, (1,t) gives us an idea of the “coefficients” (qt)™ for each [l;]4.

18

(2.2)

i [li]%h
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3 n =2 Byy(q,t) as a positive linear combination
of sly-strings

In this section we will calculate Bs ;(¢,1/q) and By j(1,t) according to the assumptions,
and write them as positive linear combination of sls-strings, respectively. Then we will
give a candidate description of Bs j(g,t) as a positive linear combination of slp-strings,

and give a candidate combinatorics description for this proposed B (g, ).

3.1 Calculation of By (q,1/q)

Note that by (2.1),

k+3
***?By 1 (q,1/q) = [ } :
q2

2

hence

Ba(a.1/0) = (["5°] )/

= (1= (@)X = (")/(1 = ¢*)(1 = (¢*)*)g**?).
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e When £k is odd,

Bay(q,1/q) =q 22k +2)2[(k +3)/2]
=q 22k + 3] 2 + ¢* 2k — 12 + - + ¢*[3] 2)
= g~ CHITRE 4 3]0 + ¢~ CRDHRE — 1] 0 + - + ¢33

= 2k + 341/ + 2k — Ug1/g + -+ Mg1/g

(3.1)
e When £ is even,
B2,k(Q7 1/Q) = q_Qk_Z[k + 3]q2 [(k + 2)/2]q4
= q 2 2([2k + 3] 2 + ¢*[2k — 12 + -+ + ¢ F2[1] 2)
_ qf(2k+3)+1[2]€ + 3](12 + q7(2k71)+1[2k _ 1]q2 NI q71+1[1]q2
= [2k + 3]q,l/q + [2k - 1](1,1/(1 + e [S]q,l/Q'
(3.2)

3.2 Calculation of By j(1,1)

The shifted Dyck path can start from (1 — &,0), (—=k,1) or (—k — 1,2).

(-k-1,2) 2,2)

KD

(1-k, 0) 0, 0)

Figure 7: n = 2
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case 1: starting from (—k —1,2). Apparently, the only path here is taking every

step East.

Z parea t2k+2 )

we&y i, start point =(—k—1,2)

case 2: starting from (—k,1). There are k + 1 choices to take the step North.

> e — R (1t 42 o ) = Rk 4 2,
we&y i, start point =(—k,1)

case 3: starting from (1 — k,2). There are k choices to take the first step North,

and then the situation reduces to one in case 2.

> e — b= 4 1), 4+ P72 (k] + - - -+ t0[2),.
we&y i, start point =(1—k,0)
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From the area statistics, we can conclude that

By i(1,t) =

Dimey, 1
2tk 4 20+ T R A 1 PR+ 202
22 4 R [k 4 2], + (t 7 R R])) + (P2 4+ R Rk —1),)
e (89 +t1]y).
2k + 3] + t(t* K] 4+ P2 [k — 1), + - - t0[1],)
[2k + 3]s + t[2k — 1]y + 3(tF3[k — 2]y + - - - t°[1]y)

[2k + 3], +t[2k — 1] + 32k — 5] --- +tF[1)y 2tk

2k + 3], + t[2k — 1]; + t3[2k — 5] - + t*71[3], 2] k.

3.3 A candidate description of Bs(q,t) as a positive linear

combination of slo-strings

By the results of By (1,t) and B

sum of slp-strings:

BQ,kJ(q> t) =

a1/q0 there is a unique way of writing No x(g,t) as a

2k +3lge +(at)[2k — g + (qt)°[2k — 5lq,
—|—(qt)5[2k - 9]11715 +--t (qt)k[l]q,t 2 Jf k
[2]45 + 3]q,t +(qt) [2]‘3 - 1]q,t + (qt)3[2k: - 5]q,t

+(qt)°12k — g+ -+ (at)" (3l 2|k
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thlk + 2] | P k+ 1] | P2k | oo t1[3]¢ | t°[2);

{2k+2 1 0 0 0 0
2h+1 1 0 0 0 0
2k 1 0 0 0 0
2k — 1 1 1 0 0 0
2k — 2 1 1 0 0 0
2k — 3 1 1 1 0 0
th 1 1 0 0
th—1 0 1 0 0
th—2 0 0 1 0 0
t3 0 0 0 1 0
t2 0 0 0 1 0
tt 0 0 0 1 1
t0 0 0 0 0 1

3.4 A candidate combinatorics description for this proposed

BQJ{:(Q; t)

To try to give a pure combinatorics description to this Bsy(g,t), we want to decide
the power of each ¢5'#t1¢5%3%2 of each shifted Dyck path with base k = 4 in a reasonable
way.

Suppose we want the second power to be the area statistic. We consider each
group of paths in the cases stated in the calculation of By (1,1).

As shown in the chart above, it is natural to see that when you add up all 1-terms
in the first column, and then travel diagonally taking the last item in every next
columns till the last column (which are those marked red), we will get [2k + 3];.

Visually, we call that the “first layer” since those are the terms in the left and
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bottom most in the chart. Similarly, we get the“second layer” as the terms marked
blue. Those terms add up to t[2k — 1];. Continue this grouping process until we hit
the inner-most layer.

In comparison to the candidate Bjj(q,t), we let any path corresponding to the
term ¢ in the first layer [2k + 3]; to be the corresponding term in [2k + 3],+, which is
PEr2ig

Similarly, we let any path corresponding to the term ¢2/=3¢ in the j-th layer t2/=3[2k —

(45 — 7)]: to be the corresponding term in (gt)%=3[2k — (45 — 7)],.+, which is

(qt)Qj—3tiq2k—(4j—7)—1—i _ PR32,

Note that (2k +2—i)+i=1i and (2k — 25 — i+ 3) + (25 +i — 3) = 2k, we have

q2k+27areatarea path in “first layer”

g2k—areagarea gtherwise.

An example for k = 4 is as follows:
Now we use the language of the shifted Dyck path to describe those paths ”in
the first layer”. Those in the first column are the paths in case 1 and case 2, which

are those starting from (—k —1,2) and (—k, 1), and the last element of each following

columns are those with the last two steps NE. (i.e. those paths that pass through



t4[6]; t3[5]; t2[4]; t1[3]; t0[2];
th tl()
| qt?
t8 q2t8
7P (q)t = qt”
t6 q4t6 (qt)qt5 — q2t6
I q5t5 (qt)q2t4 — q3t5 (qt)3t2 —_ q3t5
tt ] ¢°t" | (at)’t’ = ¢'t* | (at)’qt = ¢*t*
t* q't’ (at)q't* = ¢ | (qt)’¢* = ¢’
t? ¢°t? (at)g’t = ¢°t°
t ¢t (at)g® = 't
tO ql()

(1,1).) Hence

g?Ft2mareagarea path passes through (—k —1,2), (—k,1) or (1,1)

q

The example of n = 4 is shown in the Appendices.

2k— areaarea

otherwise.

25
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4 n =3: Bsji(q,t) as a positive linear combination
of sly-strings

In this section we will state and prove the recurrence relation of Bsj(g,1/¢q) and
Bs i(1,t) written as a positive linear combination of sly-strings according to the as-
sumptions, respectively. Before each formal proof, we will give an example with a
small k£ to help understanding. Finally, at the end of this section, we will give a

candidate description of Bsj(g,t) as a positive linear combination of slp-strings.

4.1 Recurrence relation of B;;(q,1/q)

Note that by (2.1),

k+5
By (0, 1/q>={ } ,
q2

3

Hence

Bii(a.1/) = (|"5°] )/(a™+)

=(1- (q2)k+5)(1 — (q2)k+4)(1 — (q2)k+3)/((1 _ q2)(1 _ (q2)2)(1 _ (q2)3)q3k+6).

We now simplify this formula and write it as a sum of sly-strings. The main result of

this part is the recurrence relation stated as follows:

Theorem 4.1. B;(q,1/q) follows the following recursive form:
(1)

B3,1(Q7 1/Q) = [10]q,1/q + [G]q,l/q + [4]q,1/q-



(2) Suppose Bz, = Y _[xilq1/q, then

B3,k+1 (‘L 1/Q) = Z[mz + 3]q,l/q + R3,k+1 (‘L 1/Q)7

)

where Rs i1 15 additional terms for k> 1 as follows:

[Ugisq+ Blgrg+-+k+3lg1 k=2

[G]q,l/q + [lo]q,l/q +oo [k + 3]q,l/q k=3
R3141(q,1/q) =

[B]q,l/q + [7](],1/(] + e + [k + 3}q,1/q k = 0

[4]q,1/q + [8]6171/61 +oF [kt 3}q,l/q k=1

mod 4

mod 4

mod 4

mod 4
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We will prove the theorem by induction. We will give an example for £ = 4 to

help understand the frame of the proof, and the formal proof will be included in the

Appendices.

Example 4.2. Suppose we have that the relation holds for k¥ = 1 through k = 3, which

gives

BS,l(Qv 1/Q) = [10]q,1/q + [6](1,1/61 + [4]%1/(1’

BS,Q(Qa 1/Q) = [13](1,1/(1 + [g]q,l/q + [ﬂq,l/q + [5](1,1/(1 + [Hq.l/qa

BB,3<Q7 1/Q) = [16]q,1/q + [12]q,l/q + [lo]q,l/q + [8]q,l/q —+ [4]q,1/q + [G}QJ/Q'
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Now we want to prove that the relation holds for k =4, i.e.

B3,4(Qa 1/q) = [19}q,1/q + [15]q,1/q =+ [13]q,1/q + [11]q,1/q + [9]q,1/q =+ [ﬂq,l/q =+ [7](1,1/(1 + [3](171/(1-
(4.1)
As a notation, we let the right hand side of (4.1) be Bj ,(¢,1/q).

Note that we have

(a2 VEH5Y (1 (g2VEH4) (1 — (g2 +3
Bs (g, 1/q) = (1(1(11)2)(1)_((1q2§g)31_(()121)3)((1q:>,k)+6 )

_ (=(1/@*)* ) ((1/9)*)* ) (A~ ((1/9)*)"*?)
(1=(1/9)*)(1=((1/)*)*)(1=((1/9)*)*)(1/q)3++C >

which means that both Bs4(g,1/¢) and Bj 4(g,1/q) have the same coefficients for ¢™
and (1/¢)™ for any m € N*. Hence we only need to prove that Bs4(q,1/q) — B3 4(¢,1/q)

has coefficient 0 for any ¢™, m € N*, which is equivalent to

(¢"®)Bsa(q:1/q) — ¢"° By 4(q,1/¢) =0 mod ¢'.

Below we list every term of ¢'*Bj ,(¢,1/q).
Also note that according to assumption, ¢'°Bs3(q, 1/q) is as follows: As shown in

the blue part of the graph above,

q"[

m]qvl/q = qls[m + 3]q,1/q mod ¢'®
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|

q"*[3],

|

"7,

|

"7,

|

¢'"[13], 1 | a1 | ¢°[9),

o

q'*[15],

o

q'*[19],

ql()

q12

q14

q16

q18
q20

q22

q24

q26
q28
q30
q32
q34

q36

q10
q12

q14
q16
q18
q20

q22
q24
q26
q28
q30




for m = 16,12,10,8,6,4. Hence we only need to prove that

q"*B3.4(g,1/q) = ¢"°B33(¢,1/q) + ¢"*R3.4(q,1/q)

= q15BS,3(Qa 1/C_I) + q18[7]q,1/q + q18[3]q,1/q mod q18-

Note that
(1= =¢") (1 ¢
¢ Paala. 1/ = (1-¢)(1—gH(1—g5) ’
(1 =¢" -¢"M(1-¢")
A (O
Hence

(1—¢"(1 —¢')

18 15 12
q “Bs34(q,1/q) —q°Bs3(q,1/q) = q .

From the previous calculation we know that

(1-¢"(01—¢")
(1-¢*)(1—q*)q

Bss(q,1/q) =

hence

2 [13]%1/(1 + [9]q71/q + [5]q,1/q + [1]%1/(1’

30

(4.2)

(4.3)

¢"®*Bs4(¢,1/9) — 4"°Bs3(¢.1/9) = ¢"*(¢"*[13]41/q + ¢ *[941 /¢ + € Blg1/q + @2 g1/q)-

Also note that

0" Rs4(q,1/q) = "*(°[Tg1 /g + A Bly1/9):
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so we have

q*®B3.4(q,1/q) — ¢*°Bs3(q,1/q) — R3.4(q,1/q)
= ¢"(¢"[13]g1/q + ¢20g1/q + €2 Blg1/q + a2 Mg/ — Cl7g1/q — ©CBlg1/q)

= q12(q12[13]q,1/q - q6[7}q,1/q) + q12(q12 [g]q,l/q - qﬁ[?’]q,l/q) + q12(q12[5]q,1/q + q12[1]q,1/q)'

Note that

131/ — ®lTgayg =1+ +¢*+* =1+ +¢*+---¢"*) =0 mod ¢°,

q"*Og1/q —Blgryg ="+ +* ="+ + ) =0 mod ¢°,
q12[5]q71/q + qu[l]q,l/q — qS + ql(] + q12 + q16 + q18 + q12 =0 mod q67
hence

q"B3.4(g,1/q) — ¢"°B33(¢,1/q) — R34(q,1/q) =0 mod ¢'®,

which proves (4.2).

4.2 Area statistic and Bs;(1,1)

The shifted Dyck path can start from (1 — &,0), (—k,1), (—=k —1,2) or (—k —2,3).

(-k-2,3) (3,3)

(~k1,2)

(1-K, 0) 0, 0)

Figure 8: n = 3
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Case 1: starting from (—k —2,3). Apparently, the only path here is taking every

step East.

Z parea 753164—6 ]

Tregs’kw
start point =(—k—2,3)

Case 2: starting from (—k,1). There are k + 1 choices to take the step North.

Z area t2k+2(1 Lt +2 4+ 4 tk+3) = t2k+2[k + 4]t

7r€53’k,
start point =(—k—1,2)

Case 3 starting from (k,1). There are k + 1 choices to take the first step North,

and then the situation reduces to one in case 2.

> e — 2R e 3], + 12K [k 4 2], + - - + tF[2);.

71'6537]6,
start point =(—k,1)

Case 4 starting from (1 — k,0). There are k choices to take the first step North,

and then the situation reduces to one in case 3.

> mempy, = MR 2 M 1+ 102])
start point =(1—k,0)
FtE2 (PR 4+ 1y + P2 ] + -+ t0[2]y)
4 O3], + t02])
= 2Rk 4 2y + 2R 31204 [k + 1] 4 t2F 53] [K]:

+ oo K] [3] + tO[K][2):
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Hence by adding them up together we have

By p(L,t) = D ores,
= 22k + 5]y 4+ t* Tk + 3] + 2P 2 [k + 2 + t2F33]y[k + 1),
ARO[ k] + -+ ¢ [+ 1e[3] + Ok + 1]e[2),

= R0 4 5, 4 (O I k4 — ) + €Ok + 1e[2)s.

4.3 Recurrence relation of B;(1,1)

We now simplify this formula and write it as a sum of sly-strings. The main result of

this part is the recurrence relation stated and proved as follows:

Theorem 4.3. B;(1,t) follows the following recursive form:
(1) Bsa(1,)

B31(1,t) = [10]; + t[6]; + t[4];.

(2) Suppose Bs(1,t) = . t™i[z;];, then

B3 i1 (1,t) = > t™[; + 3]y + Ra s (1,),

(2



where Rsy, is additional terms for k > 2 as follows:

thlk + 3] + tF Tk — 1)

th [k + 3], + tF Tk — 1],

Rg,k(l,t) =

th [k + 3], + t* Tk — 1],

th [k + 3], + tF Lk — 1]

—|—tk+3 [k‘ — 5]t

k—4

3
4_.. ._% t 2

[5]e + 17 [

+tF T3 [k — 5],

3k—=5
2

3k—9
ot 0], + 75 [6),

+tk+H3[k — 5],

3k—2

e T [Tt (3],

+tk+3[k — 5],

3k—T7 3k—3

ot 8t 2

[4]:
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mod 4

mod 4

mod 4

mod 4

We will prove the theorem by induction. Again, we will first give an example for

k = 6 to help understand the frame of the proof, and the formal proof will be included

in the Appendices.

Ezample 4.4. As a notation, we let B, (1,¢) be the right hand side of the recursive
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form. Then

Bjy(1,t) = Bsa(1,t) = [10]; + t[6]; + t[4];,
By o(1,t) = [13]¢ + t[9); + t[7]; + t*[5]: + t*[1];,
B 3(1,t) = [16]; + t[12]; + t[10]; + ¢*[8]; + t3[4], + ¢°[6],,
By, (1,t) = [19] + #[15]; + t[13] + *[11]; + £[9]¢ + £2[7)¢ + £1[7]; + °[3], (4.4)
By 5(1,t) = [22]; + t[18]; + t[16]; + t*[14]; + £2[12]; + t3[10]; + ¢*[10];
+[6]; + (8] + °[4],

Byg(1,t) = [25]; + [21]; + t[19]; + 2[17]; + t3[15]; + t3[13]; + ¢*[13],

+5[9] + t3[11] + tO[7)¢ + tO[9]; + £7[5])¢ + t°[1];.

Now we prove Bsg(1,t) = Bs4(1,t) by induction. Suppose that Bsx(1,t) = B (1,t)

for k=1,2,3,4,5. Now

Bé}G(lat)iBéﬁ(l,t): (1+t+t2)(t22+t't18+t‘t16+t2‘t14+t3't12+t3't10

A+t 104 g5 g6 4 5 18 4ttt 4 1[9), + ¢7 5] + O[1],

Bys(1,t) = By (1,t) = (L4t + )10 4ttt t13 2 41 44719 443 47
+th T+ 5 #3) + £°(8]; + tO[4],
= (L4t 4+ )"0+ttt 13 42t 4139 413 4T

AT 03 1010ttt + £7[5] + tO[1s,
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hence

B g(1,t) — By 5(1,t) — *(By5(1,t) — By 4(1,1))
= t5[9); + t7[5) + tO[1]; — t3(£2[5]¢ + t°[1):)
= (5]9]; — £35],) + (¢7[5)c — tO[1],) + £°[1], (4.5)
= Ottt AT 3 10 P
= t5[9) +t7 — 12,

On the other hand, we have

Bya(Lt) = 11009], + () + 17[20u[6le + *[3)[5)e + £3(41e[4), + 1[31[3):
{5)e[2

Bys(Lt) = (10, + (8], + (20, (7] + T[3lu[6]e + 7 [4)[5)e + (5], [4)
4[6]e[3]e + [6)e[2]

Byo(L,t) = 4[11], + £3(9], + 111 (20[8)e + £2[30[7): + T [4)e[6], + £°[50:[5)e

+3[6]¢[4]e + ¢[7]e[3]e + [7]e[2]:-
Then
Bsg(1,t) — B3s(1,t) = t2(¢12 1 410 — ¢ — 1) ¢ (110 + 49 + 48 — ¢t — 1)

920 (12 + B4 tT —t — 1)+ 3B (O 5+t —t 1)

+t[6): (#° + 2+ 3 —t — 1) + #[7),[3]; + (1 + 2).
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Bss(1,t) — Baa(1,t) = tO@M 410+ 89—t — 1) + (2 + 8 +t7 —t — 1)
TR (B + O+ —t—1)+ -+ [P+t + 3 -t — 1)
+t[6]¢[3]¢ + (1 + t).

Hence

Bs(1,t) — Bss(1,t) — t3(Bss(1,t) — Bs4(1,t))
= (=D 4+t 2] + -+ 13[5]y) Ft[6): (> +t* + 13—t — 1)
O+t =3 -2 —t)[3], — (LB —tO)(1 + 1)
= A+t 1)+ = 1) + 72 - 1) + 2 = 1) + £2(t° — 1))
+(t* 4 265 + 3t0 + 37 + 3¢5 + 3¢9 + 2010 - 1 — ¢ — 262 — 263 — 24 — 245 — 240 —¢7)
+(t+ 202 + 3% + 201 417 — 1% — 269 — 2410 —¢M) 4 (15 417 — 13 —19)
— (t14+t13+t11+t10+t9—t7ft6ftsftélft?’)+(t4+t5+2t6+3t7+t8+t3)
= MBS g 10 g9 g8 g 27 446

= 19[9]; + 17 —t'2.

Comparing with (4.5) we have

Bsg(1,t) — Bss(1,t) — t3(Bss(1,t) — B3 a(1,t))

= Bé,G(l’t) - Bé,f)(l?t) - t3(B§,5(17t) - Bé74(1,t)).

Note that B3 x(1,t) = By, (1,t) for k=4 and 5, so we can conclude that

Bsg(1,t) = By 4(1,1).
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4.4 A candidate description of B;s;(gq,t) as a positive linear
combination of slo-strings

By the conjectures above, we can give a candidate description of Bs(g,t) as a sum

of sly-strings as follows:

Theorem 4.5. Bj;(q,t) follows the following recursive form:
(1)

B3,1(g:t) = [10]g, + (¢)[6]g,¢ + (qt)[4]q,-

(2) Suppose Bsy(q,t) = ,(qt)™ [xi]qs, then

By kra(a,t) = D (at)™ i+ 3lgs + Rapi1(g, 1),

(2

where Rsy, is a sum of additional terms for k > 2 given as follows:

(at)*[k + Bl + (@) k= Ugz +(at)"**[k = 5lga

)

3k

bt @ Mk

I
O

mod 4

(at)*[k + Bt + (@) k — gz +(at)"*3[k — 5lgs

3k—5

+---+(qt) 2 [6lgt k=3 mod4

R3,k(Q7t) =
(at)*[k + Bl + (at)**' [k — g +(at)"**[k = 5lgs

)

3k—2

+---+(qt) 2 [3]g¢ k=0 mod4

(qt)k[k + 3]q,t + (qt)k+1[k - 1]qt +(qt)k+3[k - 5}q,t

)

3k—3

+--4(qt) 2 [4gt k=1 mod4
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5 Writing B, ;(q,1/q) as a sum of sly-strings for all

n, k

In this section we will derive a recurrence relation for B, x(¢,1/¢q) as a sum of sis-

strings for all n, k.

5.1 Recurrence relation

Recall the given assumption (2.1)

n

n(ntk— 2n+k—1
DB (g,1/q) = [ } :
q2

Note that by [1] Theorem 3.4, we have

Now we define a new notation in this section:

Definition 5.1. Define the rational function

Under this notation we have B, x(q,1/q) = Fnnik—1(¢%).

(5.1)
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Using (5.2), we have

Fn,m(q2) = [m;l—n]qQ qg "

_ 2j ]+n 1 —nm
Z] Oq |: i|q2q

m j+n—1 —(n—1)j —nm+(n j
=y, [J+ } g i gmnm ()

n—1

= Z;”ZO q—nm+(n+1)jpn717j(q2).

Then by
m—1
nm 1 q —n n+1)JF 1,j(q2)7

Jj=0

we have the following recurrence relation:

Theorem 5.2.

Fpm(@®) = ¢ "Fpm-1(a*) + ¢" Foo1m(¢®)  Yn,m > 1.

5.2 Recurrence relation as a sum of sly-strings.

Now we try to write F, (¢?) as a sum of sly-strings. We will first state the recurrence

relation, and then give a sketch of the proof of the relation.

Theorem 5.3. F,,,(q?) follows the following recursive form.:

(1)

FO,m(qz) = Fn,O(QQ) = [1}q,1/q7 Vn,m > 0.
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(2) Suppose that

Fn,m—l(qz) = Z [xi]q,l/q+ Z [xj]%l/q

1, <n 9,Ti>n

and
anl,m(qQ) = Z [yj]q71/q+ Z [y.j]%l/Q’
Jyi<m Jyyji>m
then
Fn,m(q2) =A+B- C,
where
A= Z [zi +nlg1/q + Z [z +ng1/q5
4, <N i,zi>n
B = Z [y] - m]q,l/qa
and

C = Z [n—xi]q’l/q.

5,2 <N
It is easy to check that the case of k = 2 ((3.1) and (3.1)) and k = 3 (Theorem
4.1) are special cases of Theorem 5.3.

Here are a few examples according to the theorem:
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Ezxample 5.4.

Fon(a®) = Fao(a®) = [Ug1/qs

Fim(?) = [m+1g1/

Fpi(g?) =01+ 2g1/q 2= 1g1/g — 12— Ugr/q = Blg1/g>

Foa(q®) = [342lg1/q + 324174 = Blgasg + [Ug1/g0

Bs(@®) =[B+2g1/+ 1 +2g17+ 14 =3lg1/0 = 2= Ugi/q = [Tlg1/q + Blase:
F31(¢?) =01+ Blga/g + B =1g1/q — B = g1/q = [4lg,1/9>

F3o(q*) =[4+3lg1/q+ 10— 2g1/q = [Tg1/q + Blg1/g

F33(¢*) = [7+3lg1/q + B +3lg1/q + 7= 3lg1/q = [101g.1/g + [6]g.1/q + 4174,
Fui(¢®) =0+451/q+[4—1g10— 14— g1/ = Blgi/g

Fio(@®) =[B+4g1/q+ 7= 2g1/+ 83— 2170 = 9g1/q + Blg1/q + [Lg1/g
Fus(@®) =19+4g1/q+B+4g1/q+ 144417+ 10 =341/ +[6 =341/ + 4 —3lg1/g

—[4 =g/ = 3lg1/q + Olgsq + [7](171/(1 + Blg1/q + [Mg/q
Now we give the sketch of the proof of Theorem 5.3.

Proof. (Sketch)

Similar to the proof of Theorem 4.1, we Let F}, , (¢%) be the rational function of ¢
defined by the initial values and recurrence relation of Theorem 5.3, and try to prove
that F . (¢*) = Fum(¢?) for all n,m > 0. Note that since both F} , (¢%) and F,m(¢*)
can be written as a sum of sly-strings (and hence so can F,,(¢*) — F}, ,,(¢%)), it is

sufficient to prove that F, ,,(¢%) — F;L,m(qz) is a polynomial with constant term 0.
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We prove this by induction. It is easy to show that Fy,,(¢?) —Fé’m(qQ) =0, Fr0(q?) —
F} 4(¢*) = 0. Now we suppose that we have F,;(¢*) = F, ,(¢*) for all a +b < m +n,
and our goal is to prove that F,, m(¢?) — F},,,(¢%) is a polynomial with constant term
0.

Let X = Fm-1(¢?), Y = Fy_1.m(¢?), and A, B,C be as defined in Theorem 4.1.
Then F,(¢%) = ¢ "X +q™Y, Foo1m(¢?) = A+ B —C.

(1) We first prove that ("X + C) — A is a polynomial with constant term 0.

As a notation, let

X = Z [ilg,1/q + Z [T5]g,1/¢ = X1+ Xo,

1,T; <N 4,T; 2N

A= Z [zi +1g1/q + Z [T; +nlg1/g = A1 + Aa.

6,2, <n 4,Ti 2N

(1a) Consider each sly—string [z;] in Xo = [2i]q,1/¢- In this case we can prove

,Ti>n

that ¢~ "[xig,1/q — [zi + 1)1/ 18 @ polynomial with constant term 0. Hence

qinXQ — Ay (53)

is a polynomial with constant term 0.
(1b) For the sly—string [z;] in X1 ==, . _, [%ilg1/q: ¢ "[2ilq1/4 has only the terms
of [x; +nly1/q for ¢ of all I < —(n — ;), while [n — 2], 1/, has the terms of [z; +n], 1/,

or ¢ of all —(n — ;) <1 <0. This give ¢ "[ilg1/q + [0 — @ilg1/q — [T + 11/ IS a
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polynomial with constant term 0. Hence

q_nXl +C - A (54)

is a polynomial with constant term 0. By (5.3) + (5.4) we have (¢7"X +C) - Ais a

polynomial with constant term 0.

(2) Next we prove that ¢™Y — B is a polynomial with constant term 0.

Let

Y= Z [Wilg1/q + Z [Yilg1/q = Y1+ Ya.

j7ngm Jyi>m
(2a) For each sly-string [y;]g.1/4 in Y1 = Zj7ngm[?/j]q,1/qa q"™[y;jlq.1 /4 itself is a polynomial
with constant term 0. Hence

"N (5.5)

is a polynomial with constant term 0.

<2b) For each slg—string [yj]q,l/q in Yy = Zj,yj>m[yj]q,l/q7 qm[yj]q,l/q - [yj - m]q,l/q is

a polynomial with constant term 0. Hence

q"Ys — B (5.6)

is a polynomial with constant term 0. By (5.5) + (5.6) we have ¢™Y — B is a polynomial

with constant term 0.



Now by (1) and (2), we have

"X +C—A+q"Y — B=Fou(d®) — Fl o (d)

is a polynomial with constant term 0, and the proof is completed.

45
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6 Breaking down the area statistic

6.1 A recurrence relation involving C,(q,t)

For the second assumption

Bn,k(q;t) _ Z tarea(ﬂ')7

€€ &

we want to find a way to calculate the area statistic and rewrite as a sum of siy-
strings. There are different ways to break down the problem. Base on the result of
the recursive form of Bs,k(1,t) and By, x(q,1/¢) in Section 5 and 6, one possible way
is to break down the problem as following.

Lets look at an example of & ¢ first:

Example 6.1. We write the area statistic as the sum of the following:
(1) Set of paths X: path never touches the diagonal y = x except at the endpoint

(4,4). Then the path is in the following region (Figure 9, wide line), which gives that

Z jarea _ 44 Z parea(m) _ t4B4,5(1’ t).

TeX €€y, 5

(2) Set of paths Y,,(m = 0,1,2,3) passing through (m,m) but not (a,a) for any

m < a < k. For example, Y; is in the following region (Figure 10). As shown in the
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Figure 9: Path never touch y = x except the endpoint.

Figure 10: Path last touching diagonal at (1,1).

graph, we can conclude that

Z 7fatrea(ﬂ) _ t4—1—i( Z tarea(ﬂ))( Z 7fatrea(ﬁ)) _ t4_1_iBz',6(1, t)04727i(1, t).

TEY; €€ 6 TEDy_o9_;

Adding (1) and (2), we have

B476(1,t) = t4B475(1, t) + tSCQ(l,t) + tzBLﬁ(l,t)Cl(l,t) + thﬁ(l,t) + Bg,ﬁ(l,t).

Generally, we can conclude the following:

Theorem 6.2. for any n,> 2,k > 1,

n—1

Bpi(1,8) = "By o1 (Lt) + Y "7 B (1, £)Crai(1,1),
=0

where Cp(q,t) is the Type A analog of the q,t-Catalan numbers. Especially, we define

C_l(l,t) = Co(l,t) =1 and BO,k(lat) = 1, Bmo(l,t) = Bn_l’g(l,t).
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6.2 Future work

It is still unknown on how to write the relation in the form of slo-strings. For n = 2,3,
as shown in the previous sections, the power m in the slp-strings (¢t)™[X],+ preserves
the A part of the recurrence relation in Theorem 5.3, which leads to the (1) part
breaking down in this section, and further suggests that the “inheritance path” should
have the same second statistics as the “parent path”. However, this may not hold for
larger n.

Also note that for B, x(¢,1/q), the way of writing it as a sum of sly-strings is
unique. But for large n and k, there may be multiple ways to write B, x(1,t) as a
sum of sls-strings. Hopefully, we may later find a consistent form of the recurrence
relation and would be able to find the second statistics from the correspondence in
the proof of the relation.

Some more results for of higher n are listed in the Appendices.
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A Example of combinatorics description of B 4(q, t)

Example A.1. For n = 2,k = 4, the count of each path is shown as follows:

| ] o \

¢10 qt’ g*t®
o o

¢t q't? ¢t
|

¢°t!
o o

qt’ ¢>tb ¢>td
o |

q't* qt’

B Formal proofs of the recurrence relation of n = 3

B.1 Formal proof of the recurrence relation of B;;(q,1/q)

Proof. Prove by induction.
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¢t g't* ¢’
|
¢t
] ] |
¢t q¢°t? q¢°t
o
q't q"

=" +¢" +2¢° +3¢ +3¢+3¢  +3¢3+2¢° +q¢ T +q¢?

= [10]q,1/q =+ [G]q,l/q + [4]11,1/‘1'

(2) Suppose that the relation holds for k¥ < j. Now we prove that it also hold for
k=3j(i=2).

Suppose B3 ;-1 = Y ;[2ilg1/4- As a notation, we let

B i(q,1/q) =Y [ri+ 3lg1/q + Raj(a.1/0).

1



o1

Note that Bj ;(¢,1/q) is a sum of slp-strings, and that we have

o 2VEHBY (1 (02 Yk (1 (o2 k+3
BS,k(Qa 1/q) = (1(fzq)2)(1)_((1q2§(2])31_(()121)3)((1q3k)+6 )

_ (=((1/@*)* ) (A ((1/9)*)* ) (A= ((1/9)*)"*?)
(1-(1/9)*)(1-((1/9)*)*)(1=((1/9)*)*) (1 /q)*:+6 >

which gives that both Bs j(¢,1/q) and Bj ;(g,1/q) has the same coefficients for ¢™ and
(1/¢)™ for any m € N*. Hence we only need to prove that Bs j(g,1/q) — B3 ;(¢,1/q) has

coefficient 0 for any ¢, m € N*, which is equivalent to

(¢¥7°)Bsj(q,1/q) = ¢**°B4 j(q,1/q) mod ¢¥°.

Now we consider B3 ;_1(q,1/q).

Case (a) j=0,1,2 mod 4

Recall
¢ By 1(a,1/a) =D ¢ Pl
and
Bi;(a.1/q) = ) [wi+3lq1/q + Raj(a,1/9).
Comparing

3J+3[ 3jtd—wi q3‘7+6*mi 4t q3J+I¢ + q3J+2+:L“¢

q Tilg1/q = 4
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and

¢+ [z; + 3g1/q = G IO Ly it | B8t
we have
30z 4 3g1/q — q3j+3[$i]q,1/q _ AR 3O L 6 B8
Note that j —1 =1,2,3 mod 4, which gives all z; > 3. Hence 3j +4 + z; > 35 + 6, and
346

q3j+6 [z; + 3]q,1/q - q3j+3 [fi]q,l/q =0 modg

Hence we only need to prove that

g7 *°By(g,1/q) = ¢¥ B3 j-1(4,1/9) + 47 *° Ry j(g,1/q) mod ¢ *°. (B.1)
Note that
. 25410\ 2j48Y\(1_ 2j+6
OBy (0. 1)) = i

. 2548\ (1 2546\ (1_ ,2j+4
3By (g, 1/q) = LTS0S,

hence

4 ' ) 1— q2j+8)(1 _ q2j+6)
3]+6B . 1 o 3]+3B o 1 — 2j+4(
q 34(0:1/q0) — q 3-1(¢,1/9) = ¢ (D)
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From the previous calculation we know that

(1 _ q2j+8)(1 _ q2j+6> . '
BQ,jJrl (qa 1/Q) = (1 — q2)(1 — q4)q2j+4 = [2] +5]q,1/q+[2]+1]q,1/q+‘ : ‘+[1]q,1/q(0r [3]q,1/q)7

hence

¢*"Bs (¢, 1/9)—¢* " B3 j_1(q, 1/q) = ¢¥ T (a¥ 25 45] g1 /g -+ T g1 /q(0r [B41/9)-

Case (al) j =0 mod 4

q3j+6R3,j(q, 1/q) = %4 (g+2[j + 3lgijgt+ -+ g/ t? Blg,1/4)-

We have

¢**% Bsj(q,1/q9) — ¢**3B3j(q,1/9) — R3,(q,1/q)
=gt (P25 + 5lg1/q + qt[25 + Ugijg+-+ q2j+4[1]q,1/q
— [+ 3lg1q = — @ Blg1/9)
= ¢ (P25 + 51 — P 4 3lg1se) + AT TH25 + gasg — P — Ugayg)

+eoet (q2j+4[j + 5]q,l/q - qj+2[3]q,1/q) + q2j+4(q2j+4[j + 1]q,l/q +--+ q2j+4[1]q,1/q)‘

Note that

24810 L3l /g = 14074t g (L¢P =0 mod ¢,
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q2j+4[2j I 1}q71/q . qj+2[] _ 1]q’1/q _ q4 + q6 . +q4j+4 _ (q4 +q6 4. qQJ) =0 mod qj+2,

P45l — Bl =+ T (P @) =0 mod ¢

Also note that

q2j+4[x]q71/q =0 mod ¢*?,

for any # < j + 1. Hence we can conclude that

q7*°Bsj(q,1/q) — ¢¥*° By j1(¢,1/q) — R35(¢,1/g) =0 mod ¢**°,

which proves (B.1).

Similarly, we can prove the cases (a2) and (a3).

Case (a2) j=1 mod 4

a*°Rs j(q,1/q) = ¥ (25 + Blga/q -+ [4g1/9)-
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We have

47 *°Bs(9,1/9) — ¢ B3 (¢, 1/9) — Ra (4, 1/q)
= ¢ (GT2) + 5lgsg + A2+ Ugasg + o+ 67 Blaas
AR PRV PRV
= T (GIT25 + 5100 — &0 + Blg1sg) + 4T @25+ Ugngg — U — Ugas)

bt (q2j+4[j + G]q,l/q _ qj+2[4]q71/q) + q2j+4(q2j+4[j + 2]q71/q 4+t q2j+4[3]q71/q).

Note that

G 2545] g1 /=0 P liH3lg1sg = 144"+ =14+ - 7)) =0 mod ¢/,

q2j+4[2j + 1Lz,l/tz - qj+2[j - 1]q,l/q = q4 =+ q6 s q4j+4 - <q4 + q6 +o q2j) =0 mod qj+2’

q2j+4[j+6]q,1/q_qj+2 [4]41/q = ¢+ T (T T T =0 mod 7

Also note that

¢ alg1/g =0 mod ¢+,

for any x < j + 2. Hence we can conclude that

¢7*°Bs(¢,1/9) — ¢¥*° B3 j-1(9:1/q) — R3,5(¢,1/¢) =0 mod ¢,
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which proves (B.1).

Case (a3) j =2 mod 4

¢ Rs5(a,1/q) = ¢ @+ Blgyg + o+ P Ugsg)-

We have

¢¥*°Bs 5(¢,1/q) — ¢ Bs j(¢,1/q) — Rs (¢, 1/q)
= ¢ @T25 + 5l 1gg + 02T Ugayg + -+ 07 Mg
— 4310 — = @ Ugayg)
= ¢ @25 + 51y — @20+ Blgasg) + @7THGTT2T + Ugayg — Pl — Ugyg)

b (T 430 — P W) + TG = gy + o+ P g 0)-

Note that

T2 45100l H3lg /g = 1407+ TP (1P g g7 =0 mod ¢/,

25+ Ugasg— Pl = Ugyg=a"+¢" -+ = (" + ¢+ ¢¥) =0 mod ¢,

P 431 — PP g1 = PP A T — (12 =0 mod ¢



Also note that

q2j+4[x]q71/q =0 mod ¢*?,

for any # < j — 1. Hence we can conclude that

q7*°Bsj(q,1/q) = ¢¥*° By j1(¢,1/q) — R35(¢,1/g) =0 mod ¢**°,

which proves (B.1).

Case (b) j =3 mod 4
This case is slightly different from (a).

Comparing

3j+3 3j+4—x; 3j+6—x; 37+x; 37+2+x;
qj [ J +qﬂ +...+q1 +qj

Tilg,1/q = 4

and

q3j+6[x¢ + 3](171/(] — q3j+4—zi + q3j+6—zi RS q3j+6+cci + q3j+8+xz"

we have

q3j+6 [z; + 3]%1/(1 _ q3j+3[xi]q71/q _ q3j+4+zi + q3j+6+1'i 4t q3j+6+:v¢ + q3j+8+x¢'

Note that j —1 =2 mod 4, which gives that o = 1 and all other x; > 3.

57
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For those z; > 3, 3j + 4+ z; > 3j + 6, and

q3j+6[:z:l- + 3]q71/q — ¢33 [:Ei]q’l/q =0 mod ¢*¥*5.

For zg =1,

q3j+6[4]q,1/q - q3j+3[1]q71/q =¢’*° mod ¢¥*°.

Hence we need to prove that

¢*"%B3;(¢,1/a) = ¥ By j-1(a,1/9) + ¢ **(Rs 5, 1/q) + 1/q) mod ¢¥*°.  (B.2)

Note that [2l,,1/, = ¢ + 1/q. By letting Ry ;(.1/q) = Rs;(¢,1/a) + [2lg1/q0 (B.2) is

equivalent to

¢ °B3,i(¢,1/q) = ¢V By j-1(a, 1/a) + ¢’ *°(Ry ;(a. 1/q) mod ¢¥ 0. (B.3)

Now the proof is similar to case (a):

47 *%B3i(9,1/9) — ¢ B3 j1(q:1/9) = ¢7 (@725 + 5lgajg + - + 7 Bl

q3j+6Rg,j(q7 1/q) = q2j+4(qj+2[j + 3}q,l/q +ot qj+2 [6]1171/11 + qj+2[2]‘171/q)'
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We have

¢*"°Bs(q,1/q) — ¢¥**Bs j(¢,1/q) — R} j(q,1/q)
= 7 @2) + 5l asq + 07T+ Ugasg + o+ 77 Blaasg
— ¢+ 3y~ — @ 2lg1sg)
= G2 + Bl /g — @20+ 3lgasg) + 25 + gy — ¢ = Ug/g)

et (q2j+4[j =+ 4]q,l/q - qj+2 [2]q71/q) + q2j+4(q2j+4[j]q,l/q +oF q2j+4[3]q,1/q)'

Note that

G2 4501/q= 0" P lH3]g /g = 14+ -+ (1467 +¢"+ - ¢ =0 mod ¢/F?,

q2j+4[2j + 1Lz,l/tz - qj+2[j - 1]q,l/q = q4 =+ q6 s q4j+4 - <q4 + q6 +- q2j) =0 mod qj+2’

T+ g — PR = T I 4+ T = (T ) =0 mod g2

Also note that

254

q T]g1/q =0 mod ¢,

for any x < j + 2. Hence we can conclude that

¢7*°Bs(g,1/9) — ¢¥ B3 j1(9:1/q) — Ry ;(¢,1/¢) =0 mod ¢,
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which proves (B.3).

And now we’ve completed the proof. n

B.2 Formal proof of the recurrence relation of Bs;(1,t)

Proof. Prove by induction.

(1) First, prove the relation holds for k = 1:

Bs1(1,t) = t4[6]; + t3[4]: + t[2]¢[3]: + [2]4[2]:

= [10]; + ¢[6]¢ + ¢[4];.

(2) Suppose that the relation holds for k¥ < j. Now we prove that it also hold for
k=j+1(>1).

Suppose B3 (1,t) =3, t™[zk;]t. As a notation, we let

By (L) = t™ g + 3l + Ry ppa (1,1).
1€SK

Now we have Bs(1,t) = B} . (1,t) for all £ = 1,2,---,j. Our goal is to prove that
B3,j+1(17t) = Bé,jﬂ(la t).

First,

By (Lt) = By j(Lt) = (L+t+ %) (Ceq, ™ [xjlt) + Ra g (L),
Bé,j(L t) - Bé,j—l(lv t) - (1 +i+ tz)(Ziesj,l g [xj—lﬂ]t) + R3,j(17 t)

= (L4t + 1) (X eq, 1™ g — 3]e) + Ra(1,1),
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where
tk[k‘]t + tk'H[/{ _ 4]15 +tk+3[k, _ 8]1&
3k— 3k
+-+t 2 2i+t2[-2 k=2 mod4
th k], + 5Pk — 4] +tF3k - 8],
] +...+tMT_9[7]t+t3k2_5[3]t k=3 mod4
R37k(1,t) =
th [k, + t* Tk — 4], +tFT3k — 8],
_|_..._|_t3k2_6[4]t k=0 mod4
th [k], + 5 [k — 4]+ 5k - 8]
ot B+t 2 (1 k=1 mod 4.
\
Hence

By (1,1) = By j(1,0) = t3(By ;(1,t) — By j_1(1,t)) = Ra i (L,1) — 2Ry (1, 1)). (B.4)

Case (a): When j =2 mod 4, (B.4) will be

TG+ 4] — 3 9 [j]e) + (2[5 — 82 - TG — 4]y) + (] — 4], — £ - 735 — 8],)

3j—2 3j—4

b (6] — 3£ 2 — £ £ -2,

_ (t2j+4 423 i t2 4 tj—i—l) + (t2j+1 42 3 tj+2) + (t2j—1 L $2m2 i ts tj+4)
3j

G (FT T T g T (12 g

= T[j 4], — 292 4 132,
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Similarly, we have

Case (b): When j =3 mod 4, (B.4) will be

G+ Al = 7 [jle) + (@2 [ — 2 0T — dly) + (T — Al — 7 05— 8]y

3j—5 3j+1

2 [Bl) +t 2 (3]

3j—3

_|__|_(t 2 [7]t_t3.t

A o A o e o e I (A o A o A S CA I S (A S S VAR S A

3j+9 3j+7 3j 3j+5 3j+3 3j+1

+o+ (T2 +t 2 H §l+t#)+(t 2 4t 2 +t2)

— tj+1[j + 4] — 1202 4 4i+2,

Case (c¢): When j =0 mod 4, (B.4) will be

(G + 4l — - 8 [jl) + (2[5l — €0 7P — A]y) + (FF[j — 4] — 7 75 — 8]y

3j—4

R (t 2 [S]t —t3-t#[4]t)+t7[4]t

(t2j+4 23 2 tj-l—l) + (t2j+1 2 s tj+2) + (tQj—l L $2m2 g ts tj+4)
o (EFFHS B T ) (18 2 L Y

= tIHj + 4] — tPF2 4 P12,
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Case (d): When j =1 mod 4, (B.4) will be

G+ Al =2 P[]) + @2l — ¢ T = 4l) + (T — 4l — 87 3] - 8]y

3;—3 3j+3
2

+o (2 [B]t—t3-t z [1]¢) + ¢ [1]¢

(t2]+4+t2]+3+tj+2+tj+l)+(t2]+1+t2j+t]+3 +tj+2)+(t2j71+t2j72+tj+5+tj+4)

3j+7 3j+5 3j+1 3j—1
2 2 2

5 + (¢

3j+3
2

A (

— tj+1[j + 4]1} _ t2j+2 + tj+2‘

Hence to sum up, we have

Bj q(1,t) = By ;(1,t) — t?’(Bg’j(l,t) — B3, 4(1,t) = I + 4], — P2 420 (BL5)

Now on the other hand, we have

Bsj1(1,t) = 2 +4]s + 771 + 2] + 9320 [ + 1] + 53] 5]
H AL — g + -+ 1 [51e[3] + tO[]e[2]:,
Bsj(1,t) = t2F2[j 4+ 5], + t2 1 + 3], + t2 7 2)[j + 2]¢ + ¥ 3[3][5 4 1]
+2 Ay [fle 4 -+t G+ 23] + 015 4 14 (2],
Byjri(1,t) = 945 + 6], + 735 + 4]y + 2] [5 + 3] + 3L [5 + 2],

A 4 e+ - + 15 + 20[3]e + £ + 20e[2]e.
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Then

Bsj1(1,t) — Bs,;(L,1)

— t2j+2(tj+7 4 tj+6 4 tj+5 —t— 1) 4 t2j+1(tj+5 4 tj+4 4 tj+3 —t— 1)
P P G R s S i I T (A A A A
[+ 1+t 13—t — 1) F e[+ 23] + (1 4 1),

By j(1,t) — Bz j-1(1,1)

— t2](t.7+6 + t]+5 + tj+4 —t— 1) + t2j—1(tj+4 + tj+3 + tj+2 —t— 1)

+t2j73[2]t(tj+3 + tj+2 4 tj+1 —t— 1) 4.

Ft[ile (8 + 4 13—t — 1)+ t[j + 1]¢[3]e + /(1 +1).

Hence

Bsj+1(1,t) = Bsj(1,t) — t*(Bsj(1,t) — Bsj-1(1,1))
= (=D I 2 2 4 B) )+ (P -t 1)

— (A 3 42— )[3], — (T3 — ) (1 4+ 1)
= (1+)¥ @2 1)+t 12 - 1) +tP 3@ 1) -+ 31 — 1))

—(14t)(t[f + 1]¢) + [3]e(t ] + 1]y — 7T — 943 1 4[3]y) — 9+ — 713 742 g+
= (P + e =772 = [l — L+ ) ([ + Le) + (L + ) (¢ + 2]e)

_pH g g2y
= (A 4 1]y — 22 — B[]+ (L4 £)(9+2) + (B)[j + 2]y — 694 — (43 4 42 4 g+
= AL 1] — (202 4 g g i | gt | it

= tj+1[j +4]; — $20+2 4 4+2,
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Comparing with (B.5) we have

Bsj+1(1,t) — Bs ;(1,t) — t3(Bs ;(1,t) — By j—1(1,1))

= B, (1,t) = By ;(1,¢) = t3(B5 ;(1,8) — By ;1 (1,1)).

Note that Bs ;(1,t) = B3 ;(1,¢) and Bs ;_1(1,t) = By ;_4(1,), so we can conclude that

B37j+1(1’ t) = Bé,j—l—l(lv t).

And now we’ve completed the proof. O

C Some more results on writing B, ;(¢,?) as a sum
of sly-strings
The following conjecture in By (g, t) is checked by python from k = 1 through £ = 100.

Conjecture C.1. By (q,t) follows the following recursive form:

We define Byo(q,t) = Bsa(q,t). Then for k > 1, suppose that

Biaca(at) = Y (@) laidge+ 3 (a) ;]

1,2,<4 t,x; >4

and

B3 kt1(q:t) = Z () [yjlq + Z ()" [yl g0,

juys<k+4—1 Gy >hta—1
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then

B4,k(q7t) =A + B7

where

A= Z (qt)“ s + 4]gs + Z (qt)* i + 4lg,ts

1, <n 1, >N

B= > ()" y; — (k44— 1))y + (gt) %0 1 1],,
5,y >k+4—1,y;#k+6,5#50

where jo is the index such that B}, is the largest among all 5; of the set of j satisfying
yj =k + 4.
Following are a few examples:

Ezample C.2. Byi(q,t).

Recall that

Bsa(q,t) = [13]qs + (at) [ + (at)[T]ge + (at)*[5lg.e + (at)*[Uge,

hence

A =13+ 4ge + (@)[9 + g + (@)[7 + 4lge + (a)?[5 + 4l + (a8)°[1 + g,

B = (qt)[13 — g + (qt) "9 — g + (¢) >[5 — 4.

B4’1(q, t) = A+ B
= [17)ge + (@)[13]g + (@)[11]gs + (a)2[O]ge + (@) g + (@) Blge  (C-1)

"‘(qt)z (Bl + (qt)gﬂ []g,t-
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Ezample C.3. Bya(q,t).

Recall that

Bs3(q,t) = [16]q,¢ + (qt)[12]4,¢ + (qt)[10]4 + (qt)Q[S]q,t + (qt)3[6]q,t + (qt)3[4]q,ta

hence

A= N7+ 45+ (g) 13 +4]gs + (gt) 11 + 4]gr + (qt)?[9 + 4 gt + (qt)[9 + 4] gt
+(gt)?[5 + 4lge + (qt)*[5 + 4lge + (qt)*[1 + 4 g -

B = (qt)’[16 = 5lgs + (qt)*[12 = 5lq + (gt)*F'[10 — 5]g¢ + (qt)* (6 — 5]

B472(q, t) = A4+ B
= [21]qe + (@) 17l + (gt)[15],e + (t)?[13]qe + (at)[13]gs + (g8)°[9gt

+(qt)2[9]q,t + (qt)4[5]q,t + (qt)Q[H]q,t + (qt)3[7]q,t + (qt)3[5]q,t(qt)5+lmq,t-
(C.2)

Examples for n =5 are listed below.

Ezxample C.4. Recall that

Bua(q,t) = [21g¢ + (¢t)[17)qs + (qt)[15]qe + (at)?[13]q. + (at)[13]q,¢ + (qt)* (g,

+(qt)2[9]q,t + (qt)4[5]q,t + (qt>2[11]q,t + (qt)3[7]q,t + (qt)3[5]q,t(qt)6[l]q,t-

If we still use the notation of A and B as in the n = 4 case, then with what we derived
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in B, 1(¢,1/q) we have the solution that

Bsa(q,t) = A+ B, (C.3)

where

A= [26]5 + (qt)[22]4 + (q1)[20]q,¢ + (q1)?[18]g,0 + (qt)[18]g0 + (qt)*[14] 4
+(qt)2[14]q,t + (qt)4[10]q7t + (qt)2[16]q,t + (qt)3[12]q,t + (qt)3[10]q,t(qt)6[6]q,tv
B = (qt)[16]gs + (at)*[12)q + (qt)?[10]q,e + (qt)°* [8] gt + (at)* T [8]qe + (qt)** [4l gyt

+H(at)* T 6lg.e + (at) ' 2g
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