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ABSTRACT
ON DECOMPOSITION OF THE PRODUCT OF DEMAZURE ATOMS AND DEMAZURE

CHARACTERS

Anna, Ying Pun

James Haglund

This thesis studies the properties of Demazure atoms and characters using linear operators and
also tableaux-combinatorics. It proves the atom-positivity property of the product of a dominating
monomial and an atom, which was an open problem. Furthermore, it provides a combinatorial
proof to the key-positivity property of the product of a dominating monomial and a key using
skyline fillings, an algebraic proof to the key-positivity property of the product of a Schur function
and a key using linear operator and verifies the first open case for the conjecture of key-positivity

of the product of two keys using linear operators and polytopes.
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Introduction

Macdonald [9] defined a family of non-symmetric polynomials, called non-symmetric Macdonald

polynomials,
{E,(21,...,%n;¢,t)|y is a weak composition with n parts,n € N}
which shares many properties with the family of symmetric Macdonald polynomials [§]
{Px(z1,...,Zn;q,t)|\ is a partition with n parts,n € N}.

Haglund, Haiman and Loehr [2] obtained a combinatorial formula for E,(X;q,t) where X =
(z1,...,2n), using fillings of augmented diagram of shape v, called skyline fillings, satisfying certain
constraints.

Marshall[10] studied the family of non-symmetric Macdonald polynomials using another notation

Eﬂ,(xl, ce @ Q1) = Ex(g, ..., 21 é, %) In particular, by setting ¢ = ¢t = 0 in Ev, one can ob-
tain Demazure atoms (first studied by Lascoux and Schiitzenberger[6]) A, = E, (1, ...,%,;0,0) =
E5(2y,...,21;00,00). Similarly, one can obtain Demazure characters (key polynomials) by setting
g=t=0in E,, i.e, Ky = Ey(x1,...,2,;0,0) = Ey(xn,...,xl;oo,oo). The set of all Demazure

atoms forms a basis for the polynomial ring, as does the set of all key polynomials.

Haglund, Luoto, Mason, Remmel and van Willigenburg [3], [4] further studied the combinatorial
formulas for Demazure atoms and Demazure characters given by the skyline fillings and obtained
results which generalized those for Schur functions like the Pieri Rule, the Robinson-Schensted-

Knuth (RSK) algorithm, and the Littlewood-Richardson (LR) rule.



It is a classical result in Algebraic Geometry that the product of two Schubert polynomials can
be written as a positive sum of Schubert polynomials. A representation theoretic proof is also given
recently by using Kraskiewicz-Pragacz modules [13]. However a combinatorial proof of the positivity
property of Schubert polynomials has long been open.

Since every Schubert polynomial is a positive sum of key polynomials [7], the product of two
Schubert polynomials is a positive sum of product of two key polynomials. This suggests one to
study the product of two key polynomials. It is known that the product of two key polynomials is not
key-positive in general. However, it is still a conjecture that whether the product is atom-positive.
This provides a possible approach to a combinatorial proof of the positivity property of Schubert
polynomials by trying to recombine the atoms into keys and hence into Schubert polynomials.

Also, since key polynomials are positive sum of atoms [6], one can study the atom-positivity
properties of the products between atoms and keys or even atoms and atoms to try to prove the
conjecture by recombining the atoms back to keys. In this thesis, we prove that the product of
a dominating monomial and an atom is always atom positive and that the product of a dominat-
ing monomial and a key is always key positive (and hence atom-positive) by using the insertions
introduced in [I1] and [3].

In we will give a brief summary on notations and some results in symmetric groups.
We will introduce Demazure atoms and Demazure keys in by first defining them using
linear operators and then define them using semi-standard augmented fillings. We will then study
some properties of atoms and characters using both definitions. We also study some properties
among the linear operators and obtain certain useful identities for the proofs in later Chapters.

In we will set up the tools, namely, words and recording tableaux, that we need to
prove the main results of this thesis in the first 2 sections in the chapter and give the proof in[Section]
[3:3] We then give alternative proofs to known results, namely, the key-positivity of the product of a
dominating monomial and a key in using results in Section 6 of [3] and the key-positivity

of the product of a Schur function and a key in



We will check the first open case of the conjecture of the key-positivity of the product of two key
polynomials in We first introduce a geometric interpretation of Demazure atoms and
characters in We then verify the key-positivity of the product of every pair of keys in

this open case in [Section 4.2,

We will give a brief summary of the materials from [3] that we use in[Section 3.4|in the [Appendix]




Chapter 1

Symmetric group S,

This chapter gives a brief summary of the terminologies, notations, lemmas and theorems that will
be used in later chapters.

Let [n] = {1,...,n} be the set of all positive integers not greater than n. Let S,, be the group of
all permutations on [n], i.e. S, = {0 : [n] — [n]|o is bijective} with identity id such that id(j) = j
for all j € [n], and the group product is defined as the composition of functions, that is, for all

01,09 € Sp, 0102(j) = o1(02(j4)) for all j € [n].

Definition 1.1. Let n be a positive integer and 1 < k < n. A cycle of length k, denoted as

(a1,a9, - ,ax), where ay,as,...,a; are k distinct integers in [n], is a permutation o € S,, such that

ola;)) =a41 forl<i<k

olar) = a1

o(j) =17 if j # a; for any 1 < j <k



Example 1. Let k =3 and n =5 , then the 3-cycle (2,5,3) represents the permutation

c: 1—1
25
32

44

Note that (2,5,3), (5,3,2) and (3,2,5) are all treated as the same cycle.

We say cycles C1 = (aq,...,a,) and Cy = (by,...,by) are disjoint if {a1,...,a,.}N{b1,..., b} =

(). For example, (2,5,3) and (1) are disjoint cycles while (2,5,3) and (1,2) are not.

Definition 1.2. A cycle of length 2 is called a transposition (or a reflection). In particular, for
any positive integer n, we call s; = (i,i+1) € S, a simple transposition (or a simple reflection) for

1<i<n—-1.

Proposition 1.1. The simple transpositions in S, for any integer n > 1 satisfy the following

relations:

(i) s?zidforlﬁiﬁn—?

(i) s;85 = sjs; forli—j|>1

(iil) $:8i418i = Sit18:Si41 = (4,01 +2) for 1 <i<n-—2.
Theorem 1.2. Every permutation is a product of disjoint cycles.

Theorem 1.3. Let n > 1 be an integer. The permutation group S, is generated by simple transpo-
sitions, that is ,

Sn = <81,82, .. .7Sn,1>.



Proof. For any k-cycle, we have (a,as,...,a;) = (a1,ax)(ar,ak—1) - - - (a1, az). Also, for 3 < j <k,
(a1,a;) = (aj—-1,a;)(a1,aj-1)(aj—1,a;). Hence every cycle can be written as a product of simple
transpositions.

As a result, by every permutation is a product of simple transpositions and thus

Sn:<81,82,...,8n_1>. D

There are several ways to represent a permutation o € S,:

—_

. Two-line notation: o :=

3. Product of disjoint cycles: This follows by
4. Product of simple transpositions: This follows by

Example 2. Consider the permutation o in[Ezample 1, we can write it as:

1 2 3 4 5
1. Two-line notation: o :=
1 5 2 4 3

2. One-line notation: o = 1,5,2,4,3
3. Product of disjoint cycles: o = (1)(4)(2,5,3).
4. Product of simple transpositions: o = (3,4)(4,5)(3,4)(2,3) = s3548352.

From now on, we will use one-line notation to represent a permutation, i.e.

unless stated otherwise.
Note that applying a transposition s; on the left of a permutation o means interchanging i and
i+1 in the one-line notation of ¢ while applying s; on the right interchanges entries (i) and o(i+1)

in the one line notation of o.



By every permutation o can be written as a product of simple transpositions.

Hence we can find a decomposition with the shortest length (that is, with the smallest number of

transpositions). For o # id, we call such a decomposition a reduced decomposition of o.

Definition 1.3. Let n > 2 be an integer and o € Sp,\{id}. Let 0 = s;,8i, -+ 8s, be a reduced

decomposition of o. We call i1is . . .10, a reduced word of o.
Lemma 1.4. FEvery consecutive substring of a reduced word is also a reduced word.

Proof. Let iyiy...1; be a reduced word. If there is a consecutive substring with length m(> 2),

say 4p41...%4m which is not reduced, then I(s; . i ., " Si.,,,) < m implying that there ex-

ist j1,...,J¢ where t = I(s4,,,Si, 0" 5i,,,,) such that s; , s; -8, = 8j8j, -5j. Then
S8iySiy ** + Sip, can be written as a product of kK —m + t simple transpositions by replacing

Siy418ip40 """ Sipom DY Sj,8j, -85, which contradicts the fact that ¢14s...4 is reduced since k —
m+t <k. O

Definition 1.4. Let n be any positive integer and a permutation o € S,\{id}. Define the length
of o, denoted as l(c), as the number of simple transpositions in a reduced decomposition. Define

I(id) = 0.

Note that reduced decomposition of a permutation is not unique. For instance, s1s38283 =
81528359 = S35152583. By Tit’s Theorem, any reduced word can be obtained by applying a sequence

of braid relations (i.e. item (iil) in [Proposition 1.1) on any other reduced word representing the

same permutation.

Definition 1.5. Let n be a positive integer and o € S, be a permutation. The pair (i,j) is called

an inversion of o if i < j and o(i) > o(j). Denote inv(c) as the number of inversions of o.

Lemma 1.5. Let n > 2 be an integer. For any permutation o € S,, and a simple transposition s; (



1<i<n-—1), we have

-1 if (07(i +1),071(d)) is an inversion pair of o
inv(s;0) —inv(o) =

1 else
Proof. Let {z,y} = {o~1(i),071(i + 1)} where x < y.

Note that o(w) = s;0(w) for w € [n)]\{z,y}. Also if o(w) > ¢, then as w # z,y, o(w) # i+1 and
hence o(w) > ¢+ 1 > 4. As a result, either s;jo(w) =o(w) >i+1>iori+1>1i>0o(w)=s;0(w)
for w # x,y. This means that any pair of inversion (ji,j2) of o, where {j1,j2} # {z,y}, is also an
inversion in s;o. Hence the only difference between inv(s;o) and inv(o) comes from the pair (z,y).

Since (z,y) is an inversion in exactly one of o and s;o, we have

-1 if (67(i +1),07 (7)) is an inversion pair of &
inv(s;o) —inv(o) =
1 else
O
Proposition 1.6. Let 0 = s;, 5, . ..s;, (not necessarily reduced). Then k = inv(o) (mod 2).
Proof. By we have
inv(s;, Sip .- 8i,) = inv(8iy8i5...8;,)+1 (mod 2)
= inv(si38i, .--8,) +2 (mod 2)
= inv(s;)+k—1 (mod 2)
= k (mod2)
and hence k = inv(c) (mod 2). O

Lemma 1.7. Let n > 1 be an integer and o € S, be a permutation. Let s; be a transposition in

Sn, where 1 <i<n—1. Then |l(s;0) —l(0)] = 1.



Proof. By [Theorem 1.3| and [Definition 1.4} we can write o as a product of l(c) simple transposi-

tions. Hence by we have (o) = inv(o) (mod 2). Similarly, I(s;0) = inv(s;o) (mod 2).

Therefore, I(s;0) — (o) = inv(s;0) — inv(c) =1 (mod 2) and we get I(s;0) # (o).

Let s;0 = s;,8i, " Siy, ,, Pe a reduced decomposition. If I(s;0) < (o) — 1, then o = s;(s;0) =
8iSiySiy ** Siy,,,, and hence l(0) < I(s;o) + 1 <(0) —1+ 1 =(c) which leads to a contradiction.
As a result, I(s;0) > l(0) — 1. Together with the fact that I(s;0) < (o) + 1 and I(s;0) # (o), we

have |l(s;0) —l(0)] = 1. O

Lemma 1.8. Let n > 1 be an integer and o € Sy,. l(s;0) = (o) — 1 if and only if there exists a

reduced decomposition Sy, Sy, ... Sy, such that ry =i.

Proof. If o has a reduced decomposition s, Sy, . .. 571009 such that r; = 4, then

— .. — o2 _
$i0 = $iSpy Sy - Spy gy = SiSry o Sy = Sry .- Spy,

by fitem (i) in Proposition 1.1L By we know that s, ...sy is reduced and hence

l(sijo) =1(0) — 1.

If i(s;0) = l(0) — 1, then consider a reduced decomposition of s;o, say s;oc = s;, S Siyy 1

by [item (i) in Proposition 1.1} applying s; on both sides gives o = s;s;, -+ si,,,_, With exactly

I(o) transpositions, which implies s;s;, " Siyyy_, 18 a reduced decomposition of 0. Hence o has a

decomposition with s; as the leftmost simple transposition. O
Proposition 1.9. (o) = inv(o) for any permutation o.

Proof. We first consider o~1(1). If ¢=1(1) # 1, then all the integers before 1 in o,

ie. o(1),...,0(c71(1)—1), are all larger than 1, and hence (r,o~1(1)) are inversions of o for all 1 <
r < 0~1(1). So by interchanging 1 with o(¢~*(1)—1), and then with o(¢~*(1)—2) until with o(1), we
can put 1 to the leftmost of the new o (the sigma after interchanging 1 with the ¢=1(1) —1 integers).

Indeed, by the procedure described above is exactly applying transpositions on the

right of o, resulting in a new permutation, call it o(!) = O85-1(1)~186-1(1)—2 """ S1-



Note that each of the above procedure of moving 1 to the front decreases the the number of
inversions by exactly 1.

We then use the same procedure by moving 2 to the second leftmost position of o) by applying
0(1)71(2) — 1 simple transpositions on the right of ') and get o(?).

Continue this process until we get the o(®~1) which has no inversion, i.e. o1 = id. Since
each time we apply the interchanging procedure, we are actually applying a simple transposition
on the right and also decrease the number of inversion by exactly 1, we have performed exactly

inv(o) interchanging procedures from o to id. As a result, we get os;, s, - = 1d and hence

* S (o)

0 = iy " Sip- (This also proves Theorem 1.3) which implies (o) < inv(o).
Let s, -+ sp,,, be a reduced decomposition of o. By we know inv(sy, -+ 8p,,,) <

nv(sy, -+ 8py,,) +1 < <inv(sy,,,) + (o) — 1 =1(c) and hence we get inv(c) < (o).

As a result, I(o) = inv(o). O
Note that n,n — 1,--- ,1 has the longest length in S,, as it has the maximum number (namely,
n
) of inversions.
2
Corollary 1.10. Let 0o =n,n—1,---,1. Then for any i € [n — 1], there is a reduced word of o

starting with i.

Proof. Let i € [n—1]. Since |l(s;0) —Il(0)| =1 and I(c) > I(s;0) as o has the longest length among

all permutations in S, we have I(s;0) = [(0) — 1. Hence result follows by O

There are several equivalent definitions of Bruhat order on S;, and we will use the reduced word

definition. See [I] for further discussion.

Definition 1.6. Let n be a positive integer. Define a partial ordering < on S, such that o < v
if and only if there exists a reduced word of o which is a substring (not necessarily consecutive) of

some reduced word of 7.

10



Lemma 1.11. Let k > 2 be a positive integer and iyis .. .1 be a reduced word. Let o' = s;,---$;,

and 0 = s;,0'. Then {7|T <o} = {s5,7, 7]y < o, 1(ss,7) = 1() + 1}.

Proof. First note that as i1is ... 7 is reduced, by 19 ...1; is a reduced word of o’. Hence
o' <o.

Consider v such that v < ¢’ such that {(s;;7) = I(7) + 1.

Since v < ¢’ and ¢’ < o, we have v < o. Also, v < ¢’ implies v has a reduced word which
is a substring of s ... %k, say i, ir, -‘-irzm where 2 < r; <71y < -+ < 71yy) < k. Then 55,7 =
Sir iy Sipy " Siny which is reduced as I(s;,y) = I(y) + 1. Hence s;,7 < o (as iyir, iy, 18 2
substring of i1is ... ig).

We thus have {7|7 <o} D {s;, 7,7y < o', l(si,y) =1(7y) + 1}

Now consider 7 such that 7 < 0. Let 7,4, .. Sy () be a reduced word of 7, where 1 < j; <
Jo < o < iy < k. If g1 # 1 for any reduced word of 7, then by l(s;y7) #U(1) — L.
By [Lemma 1.7} I(s;,7) = I(7) + 1. Also, 2 < j1 < jo < -+ < ji(y) < k implies 7 < o', As a result,
7 <0’ and I(s;,7) = (1) + 1 if j1 # 1 for any reduced word ij,ij, ... ,(r) of 7.

If j4 = 1, then we can write 7 = s;, 7/ where 7/ = Sijy Sizy -+ Sijm) which is also a reduced
decomposition by Since 1 = j; < ja, we have 7/ < o’. Also I(7') = I(¢) — 1 which
implies I(s;,7') = (o) = I(7') + 1. Hence 7 = s;, 7" where 7/ < o', l(s;,7) =1(7') +1if j; = 1 for

some reduced word ij, 45, ... 1, (r) of T.

Therefore {77 < o} C {ss,7, 7|y < 0',1(s5,77) = l(7) + 1} and result follows.

11



Chapter 2

Demazure atoms and characters

2.1 Linear operators

Let P be the polynomial ring Z[x1, xa, .. .| and S be the permutation group of the positive integers,

acting on P by permuting the indices of the variables. For any positive integer i, define linear

operators
1—s;
0; - v
Ti — Ti+1
T = aﬂ?i
91‘ = l‘i+1ai

where s; is the elementary transposition (¢,7 + 1) and 1 is the identity element in Su.

Note that for f € P, (x; — z;11) is a factor of (1 —s;)f and hence 9;f € P. Therefore, ;f,0;f € P.

Example 3. Let i =2 and consider the monomials x3x5x3, x3x3 and r1232%, we have

5.4 5.4 5.4 5. 4
121503 — So(xiw5Ts 20573 — XXX . .
1 a) 5‘2(x5x4:173) = 2172 (173 ): 172 L 3 = x5(x3x3+x21:2+z2x3)
12 To — T3 To — I3 12 273 3

b) mo(2dx5as) = 82332(1‘?333333) = Oo(x3ahws) = 23 (2523 + J;‘;’xg + m%xg + xgxg)

c) Ox(xSxias) = w30s(xfwyws) = a8 (w323 + 232 + 1o3)

12



3,.2 3,.2 3,2 _ 3.2
TyTy — Sp(ayTy) | aywy — 1) 3
Dy (x3a2) = L3 = =—x{(xo+
> (2173) p— pr— [ (22 + x3)
T (2323) = Ogzo(2iad) = Oa(2im23) = —2 2013
02 (2173) = 2300 (a723) = —a] (213 + 23)
O (nadal) = 12303 — so(z12323) _ 12373 — r10373 _0
T9 — I3 T2 — T3

7r2(:v1x§m§) = agxg(mlmgxg) = ag(mwgmg) = xlac%x%

O2(z12523) = 1309(712523) =0

13



Proposition 2.1. For any positive integer i, we have

1. T = Gi + 1,'
2. 7'('7;91' = 07;71'2','
3. 5;0; = —0;8; = 04, 8™ = Wy, T8 = —0i%iy1, 8i6; = x:0;, 0355 = —0;;

4. 81'81' = 0, 8i77i = 9181 = O, m@i = —81'91‘ = 8i,'
5. T Ty = Ty, 9191 = 791', 7ri9i = 91'7'(1‘ = 0

Proof. Let f € P. Then

xif — si(xif)
Ti — Tj41
Tif —wig18:f
T — Tj41
Tip1f —wipasif + (i —xi) f
Ty — Ti41

:$i+1f_8i(f) +f
Ti — Ti41

=2i10if + f

mf =0wif =

@:;+1)f

and hence m; = 0; + 1.

By item 1, we have 7T1‘91' = (02 + 1)91 = 9,91 + 02 = 9,(01 + 1) = 917‘(’1‘7 pI‘OViIlg item 2.
f—sif sif —sisif _ sif—f _ f-sif

5:0;f = Sz'( ) = =0;f.
LTj — Ti41 Tit1 — T4 Tit1 — X4 Ti — Tj41
Disif — sif =si(sif) _ f=sif _ _o,f.
Ti — Ti41 T — Ti41
simif = 8;(0iwi f) = 8:0;(x; f) = Oi(wif) = mi f.
TS f = 0i(zi8i f) = 0i8i (w1 f) = =0 f.
Slezf = Si(xi+18if) = xisiaif = xl&f
isif = xi10i8if = —xi10;f = =0, f.
Hence, si8,» = 6¢,8¢Si = —8i,8¢ﬂ'i = T;,T;S; = —8Z-xi+17si9i = xl@i, Hisi = —Hi and item 3

follows.

14



By item 3, 8181]” =

O0if —s5:0;f _ Oif —Oif _

0.

Ti — Tit1 Ti — Tit1
Hence O;m; f = 0;0;x:;f =0 and 6,0;f = x;,410;0; f = 0.

Then 7;0;f = (1 +0;)0if = 0; f + 0;0;f = O; f.

Also, 0;0;f = 0i(m; — 1)f = Oimif — O0if = =0, f.

As a result, 0;0; = 0;m; = 0,0; =0, m;0; = 0;, 0;0; = —0;, proving item 4.

Now by item 4, we have

mimif = (mi0;)(xi f) = Oi(wi f) = mif,

0i0if = (2i1100)0if = 241(0:0;) f = —wi410,f = —0;f,

Furthermore, m;6;f = (6; + 1)0;f = 0,0, f + 0, f = 0 and item 5 follows.

PI‘OpOSitiOH 2.2. 81»8]- = 8j8i, Ty = Ty and 07,9] = 9j01 fO’I“ |Z —]| >

Proof. Let f € P and i,j € N such that |[¢ — j| > 2. Then

0; f — s;0;
0:0; f = 9if —si0;f
Ti — Tit1
Since s;s; = s;5;, we have
J—s;f sif —sisjf  sif —sjsif
Siajf = S; = =
Tj — Tj41 Tj — Tj41 Tj — Tj41

Hence

0:0; f

Similarly 0;0; f =

9;f — 05(sif)

Lj — Ti4+1
9;(f = sif)
Li — Tit1

(f —sif) = s;(f —sif)
(zj — xj1)(i — Tig1)
f—sf— ij - Sisjf

(i — zip1)(xj — xj41)

f—sif—sif —sjsaf  f—sif —s;f—sis;f

(zj —wjpr) (@ —zig1)

15

(zi — wia) (25 — 2541)

o

8j Sif.



Thus (9183 = GJ(‘“)Z

— S Tif — TS i f — S:x;
Note that z;0;f = z; f =5/ = if Z@is;f = if = 552if
Tj — Tj41 Tj — Tj+1 Tj — Tj41

= 8jxif, that iS, .Z‘iaj = aja:i.
Similarly, z;0; = Oix;.

Hence we have

7T¢7ij = 8i$iajl'jf = 81<9szme = ajazxzxjf = Bjala:]xzf = 8jxj6ixif = 7Tj71'if.

0i9j = (7'('7; - 1)(77']' — 1) :71'1'7'(]' — T —7Tj + 1 :7'(']'7('7; — T —’/Tj -|—]. = (’/Tj — 1)(’/T1 — ].) = QJGZ

O

Proposition 2.3. For any positive integer i, linear operators 9;,m; and 0; satisfy the braid relation.

That is, 0;0;410; = 0i410;0;41, Timip1m; = Ty MiTiq1 and 0;0;,110; = 0;110,0;11.

Proof. Let f € P and i € N.

0041 f
o Oiyrf — 8i0i1 f
Ti — Tit1
f=sif  sif —sisiaaf
Ti+1l — Ti42 Ti — Ti42

Ti — Ti4+1
(-Ti - $i+2)(f - 3i+1f) - ($i+1 - $i+2)8if + ($i+1 - $i+2)8i5i+1f
(Tit1 — Tiv2) (@i — i) (¥ — Tiy1)

16



Hence we have

0;0;410; f

(i — 2i42) (O f — 514100 f) — (Tig1 — Tig2)Si0if + (Tig1 — Tig2)5iSiy10i f
(Tit1 — Tip2)(Ti — Tite)(Ti — Tit1)
(»Ti - $i+2)5¢f - (xz - $i+2)8i+15if - ($i+1 - $i+2)3if + ($i+1 - $¢+2)Si8i+13if

($i+1 - $i+2)($i - $i+2)(fﬂi - $i+1)
(xi - $i+1)5if - (fﬂz - $i+2)8i+15if + (Cﬂz‘-s-l - $i+2)5i8i+18if
($i+1 - $i+2)(33i - 3Ui+2)(33i - $i+1)
f=sif—sip1f +sip18.f +8isit1f — siSit15if
($i+1 - $i+2)(33i - $i+2)(l’i - l‘i+1)
(1 —si)(d —si+1)(1 — 55)
(Tit1 — Tiv2)(Ti — Tiy2) (T — ig1)”

Also, we have

5i+10;0i41 f

(@i = @ig1) it f — f) = @iv2 — Tit1) (Si18i f — siv18i8it1f)
(ZL’1'+2 - 171:+1)(=’177: - Iv;+1)(177: - $¢+2)

(@it1 — @) (Sit1f — f) = @iv1 — Tig2) (Si18if — Siv18i8it1f)
(i1 — wipo)(w — 2ig1)(Ti — Tig2)

which implies

0i0i41f — 5i410:0i41 f

(@ipr — Tiqo)(f — 8if — siq1f + sip1sif + sisi1f — siv18:8i11f)
(ig1 — Tig2) (@i — Tig1) (@i — Tig2)

and thus

0p100iar f = w1f — 8i410:0; 41 f

Ti+1 — Li+2
(f = sif —sigaf +sip1sif +sisip1 f — sip1sisip1f)
(Tit1 — Tip2) (@i — Tit1) (i — Tiyo)
Tit1 — Ti+2
. f=sif —siprf +siq18if +sisigp1f — siv1sisivaf
= = 0;0;110; f
(Tit1 — Tip2)(Ti — Tiv1)(Ti — Tito)

(Tiv1 — Tiy2)

17



as S§§Sj418; = Si415iSi41-

As a result, we get

(1 —si)(d —si11)(1 — 5:)
($i+1 - $i+2)($i - $i+2)($i - $i+1)7“
1+ 8841+ 84181 — 8i — Sit1 — 8iSi4+18;
($i+1 - $¢+2)($i - ﬂfi+2)($i - 30i+1)
(I —sip)(1 = si)(1 — si41)

= = 0;110;0;41.
(Ii+1 - $i+2)(93¢ - I¢+2)($z‘ - fUH-l) R

0i0i410; =

Next we Pprove mim; 41Ty = T4 17541

;[ — Silx; X — 8; x;
Zf 1( 7/f)7 7rl+1f — 8l+11}1+1f — 7z+1f 7,+1( l+1f)
Tj — Ti41 Tit1 — Ti4-2

mif = Oixif =

and hence

TiTit1 f

i1 f — si(zimig f)
Ti — Ti41
Tit1f — siv1(Tit1 f) ( Iz’+1f—8z‘+1(ﬂfi+1f)>
ZT; — S\ X
Ti41 — Ti42

LTi41 — Ti42

Li — Tit1
g1 — sip1 (@i f)  si(@iwipa f) — sisivi (@i f)
. Tit1l — Ti42 T — Ti42
- Tj = Tit1

(ICz' - $i+2)!ﬂiﬂfi+1f — Si+1 ((wz - $i+1)$i$z‘+1f)
(g1 — wipo)(ws — Tig2)(Ti — Tiq1)

si(@s = wig2)ziwinn f) = sisiva (= @) Tivig f)

(@it1 — Tit2) (T — Tiv2) (@i — i)
(1—s;) ((a:i — Tig2) g1 [ — Siv1 ((zi — $i+1)xi$i+1f))

($i+1 - ﬂ%+2)($i - $i+2)(ﬂ% - SC¢+1)

18



and

So

Since

Tip1Ti f

Tip1mi f — Sip1(@ip1mi f)
Tit1 — Tiq2

- zif — si(@if)

3

. 1(33 1Iif — Si(xif)>
— 5i g e
Ti — Tj41 ‘ ’ LTj — Ti41

Ti+1 — Ti42
vivie1f — si(@f)  sim(@iwia f) — sivisi(@if)
Ti — Ti41 Tj — Tj42

Tit+1 — Ti42
(zi — zir2)Timig1 [ — si((Tig1 — Tig2)2? f)
(i — @ip1)(Ti — Tig2)(Tig1 — Tit2)
Siv1 (@ — zig2)zimign f) — siv18i ((Tig1 — ip2)22f)
a (xz - l‘i+1)($i - $i+2)(l‘z‘+1 - $i+2)
(1—sit1) ((Ii — zipa) i1 f — si((wig1 — Iz‘+2)%2f))

(331‘ - 9Ci+1)($i - $¢+2)(9Ci+1 - $i+2)

i1 f
(1—s4) ((ﬂfz — Tig2)TiTip1 i f — Sig1 (2 — $i+1)$i$i+17ﬁ'f))

(«ri+1 - Ii+2)(17z' - l'i+2)(17i - $i+1)

(1—s5) ((xi — Ti2)Ti i1 f — Sig1 (T — Tig1)TiTig

xz’i - Si(xif))>

i — LTi41

(Ii+1 - Iz‘+2)(iﬂi - Ii+2)(xz‘ - Iz‘+1)
vif — si(wif)
Ti — Tit1
(iL’i+1 - $i+2)(l”i - $i+2)($i - Iz‘+1)

(1—s) ((xz — Ti42)TiTit1 — 2T (Tisip1 f — Si+1si(ﬂfif)))

vif — si(xif)

S; ((xl — Ti42)TiTit1 — X;Tiq2 ($¢Si+1f - 3i+18i($z‘f))>

Ti — Tit1
si(xif) —zif
(g1 — $i+2)$i$i+1% — Ti+1Ti42 (-Ti+15i5i+lf - 815¢+18¢($¢f))
i+1 — &4
xif — si(zif
(I¢+1 - $i+2)¢ﬂi+1}7;(1) — Ti41Ti42 (I¢+151’Si+1f - 5151+15¢(Iif))7
i Litl
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we have

vif —si(xif)

(1I—s;) ((xz — T4 2)TiTiq1 i

— XiTi42 ($¢Si+1f - 3i+1si(xif))>
= $i$i+1($if - Sz(xzf)) - x?$i+23i+1f

+xiTir2siv15i(xif) + x?+1xi+23i5i+1f — Tip12i425i5i+15:(2i f)

= (1= 8 — Siq1+ SiSit1 + Si418i — $i8i418i) (T Tis1 f)

(1 — 8i — Sit1 + SiSip1 + Siy18; — 8iSiy18:)(@iwiq1 f)

and hence m;7; if =
nd hence ity 7:f (Tiv1 — i) (@i — Tig2)(Ti — Tig1)

Tit1MiTit1f
(1 - 5i+1) ((ZEz - Ii+2)$i$i+17fi+1f - Si((xi-H - Ii+2)xfﬁi+1f))

(@i — @ip1)(Ti — Tig2) (Tig1 — Tig2)

(1 - 5i+1) ((xz - $i+2)$i$i+17fi+1f - Si((fCiH - $i+2)$i
- Tit1 — Ti42
(wi - $i+1)($i - $i+2)($i+1 - 9Ci+2)
(1= sit1) ((fz‘ — i) f — si(@f (i f — 8i+1($i+1f))))

(i — i) (@5 — Tigo)(@ig1 — Tiya)

2 Tit1] — Sz‘+1(ffi+1f)))

Since

Si+1 ((501 — Tig2)TiTip1Tip1 f — 8 (%2 ($i+1f - 8i+1(fﬂi+1f)))>

$i+1(Tit1f) — @ip1 f
Tit2 — Tit1
Tiv1f — Siv1(Tit1f)
Tit1 — Tit2

= (351 - $¢+1)$i$i+2

— Si+15; (112 (Ii+1f - Sz’+1(sz‘+1f)))

= (CCz - $i+1)~’6z‘Iz’+2

— 5i415; (%2 (zip1f — 5z’+1($1+1f)))7

20



we have

(1 - 3i+1) ((xz - $i+2)$i$i+17ﬁ+1f — 5 (%2 ($i+1f - 5i+1(xi+1f))))
= @} (w1 f = siv1 (@i f) = si(@fwiia f) + si (2] sip1(wiga f))
+55418; (xf (zip1 f — Si+1(xi+1f))>
= (1 —5; — Sit1+ 5i8i41 + Sip15i — Sip15:5i41) (@2 Tiy1 f)

(1= 8 — Sit1 + SiSit1 + Si418i — Sit18i8i+1) (@241 f)

and hence 7; T =
nd hence Ti1 i1 f (i — zip1) (T — Tig)(Tit1 — Tito)

Now $;5;415; = Si+15;Si+1 implies m;m;17m; = 417 mi+1 and result follows.

By item 1. and 5. of [Proposition 2.1} we have

0;0;410;
= (m—1)(miz1 — )(m — 1) (by item 1.)
= MMM — Mgl — g1 — T + 2m + M1 — 1
= MMip1T3 — Mgl — Tijp1T; — T +2m + w1 — 1 (by item 5.)

= MMp1T — Mgl — 1T + T + i1 — 1

and

Oi110i0; 41
= (mip1 — 1)(m — 1)(mq1 — 1) (by item 1.)
= MMl — WMl — M1 T — Wi 1 W1 + 241 + 75 — 1
= M1l — WMl — Wi 1T — Wil + 241 + 1 — 1 (by item 5.)

= Mg Mgl — WMl — T 1T + T + 7 — 1
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and by using the fact that TGTi41T = Ti41T 41, WE have 0i9i+19i = 9i+19i9i+1~

O

For any permutation o # id, define 0, = 0;, ...0;; where s;, ...s;, is a reduced decomposition

of 0. By the same argument in [Proposition 2.2 and [Proposition 2.3 we also have 0, = 0;, ...0;,

and 7, = 7;, ... m;,. We define 0;q = 0;q = m;q = id.

Lemma 2.4. Let n > 1 be an integer and consider a permutation v € S,. For1 <i <mn—1,

=0, ifl(siy) =1U(y) -1
0,0, =

Proof. By [Lemma 1.8] if [(s;y) = I(y) — 1, then there exists a reduced decomposition of v =

8iSry """ Sry,, and hence 0, = 0;0,, "'GT’M)' By item 5. in [Proposition 2.1} we have 6;0, =

(0:0:)0,, - 0r, = (=0)0py -0y, = —0:6yy -0, = —6,. Otherwise if I(s;y) = I(7) + 1,

Ti(v) Ti(~) Ti(~)

8iSiy Siy * Siy,, 1S A reduced decomposition of s;v for any reduced decomposition s;, $;, - - - Sy of

=0 O

Si7

Y- Thus 9#7 = 9i¢9i19i2 -0

()

Lemma 2.5. For any permutation o, 7, = Z 0.
<o

Proof. Let k = [l(c). We prove the statement by induction on k.

For 0 =id (i.e. k =0), mqg = 0;q = id.

When k = 1, then o = s; for some positive integer 7. By item 1. [in Proposition 2.1 we have

To =T, =T = 14 0; = 0,4 + 05,. Hence the statement is true for I(o) = 1.

Assume the statement is true for all non-negative integers k < m for some m > 1.

Let [(0) = m + 1. Let s;, 8, ---5;,., be a reduced decomposition of 0. Let o' = si,---s;,.,,
(which implies I(o’) < m by definition) and hence o = s;,0’. Note that by Siy " Sipay

is a reduced decomposition of o’.
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By induction assumption, 7/ = Z 6,. Now we have

y<o’

To

= T Mg Ty

= 7Ti171'g/

= (146;,) ) 0,
y<o’

:(1+9i1)< oo+ > 97>
y<o' y<o'
1(siyv)=l(7)+1 l(siy7)=l(v)—1

D D DS DY

<o’ <o’ <o’

U(siy7)=U)+1 l(siy 7)=l(7)-1 U(siyV)=U)+1

D L LD DTS

<o’ <o’ <o’

Usiyy)=l(7)+1 Usiyv)=l(7)—1 Usiyv)=L(m)+1

(vy [Comma 2)

<o’
Usiyv)=l(7)+1

S 6. (by emma 11)

<o

(6 + 0si,+)

and result follows by induction.
Lemma 2.6. For any f,g € P and i € N, we have
L. 0i(fg) = (9:f)g + (s:f)(0ig):
2. 0i(fg) = (0:f)g + (s:f)(0ig);

3. mi(fg) = (mif)g + (sif)(0ig).

23

(by [Cemma 1.7

ailo’Y + Z 9i197
<o’
l(siy7)=l(v)—1
081'1’)’ + Z _07
v<o’

Usiyv)=l(7)—1



Proof.

0:(fg)
_ fg—silfg)
I T
_ fg—(sif)g+ (sif)g — sifsig
B T — Tip1
g s
Ti — Tit1 Ti — Ti41
= 9(9if) + (sif)(9ig)
= (0if)g + (sif)(0ig)-
Therefore
0:(fg)
= 2i110i(f9g)

= 2i1(0:f)g + (5:.f)(:9))

= (2410 f)g + (sif)(2i110;9)

= (0if)g + (s:f)(0ig)-
By item 1. of [Proposition 2.1]
Wi(fg)
= (1+6:)(f9)
= fg+0i(fg)

= fg+(0:f)g+ (sif)(0ig)
= ((1+6:)f)g+ (sif)(0ig)
= (mif)g+ (sif)(0ig)
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2.2 Semi-Standard Augmented filling

Let N (or Z1) be the set of all positive integers and Z>o be the set of non-negative integers. Also

we denote €, = 12---k = id as the identity element (we write permutations in one line notation).

For n € Zsp and k € N, we say a = (a1, az,...,a;) € (Z>0)* is a weak composition n (denoted as
k

a F n) with k parts if Z a; = n and write I(«) = k to denote the length (the number of parts) of
i=1

«. Furthermore, if a3 > ag > --- > ai > 0, we call « a partition of n with & parts and write a - n
(usually we denote I(a) = max{i : a; > 0} for a being a partition). We use Par(n) to denote the set
of all partitions of a nonnegative integer n and Par to denote the set of all partitions. For a weak
composition o with k parts, define z® := {232 - - - 27*. We call z® a dominating monomial if « is
a partition.

We denote @ as the reverse of «, that is , @ = (a, ..., a1). (Note that in [4], they use o* instead
of @.) Similarly, we write X as the reverse of X for any finite string of alphabets X. For example,

cacdba = abdcac and 14D9¢7 = 7¢9D41.

Define w, as the permutation of minimal length such that

wa(a) = (awa(l)v A (2)5 -+ awa(k))

is a partition.

Given two weak compositions a and 3, we write § > « if and only if wg < w, in the strong
Bruhat order.

Let « be a weak composition. The augmented diagram of shape « is the figure with |a| + I(«)
cells (or boxes) where column ¢ has a; + 1 cells. The bottom row is called the basement of the
augmented diagram.

For example, if o = (1,0,1,0,0,4,0,6,5), then the augmented diagram of « is

[TTTT]
[TTT]

[11]

[1T]
L]
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Also we impose an order, called the reading order, on the cells of the diagram which starts from

left to right, top to bottom. So the order of the above diagram is:

[1]
[2]3]
[4] [5]6]
7] [8]9]
o] [z
13 [14 [15 [16[17
[18]19[20[21]22[23[24]25]26

where the number in each cell represents the order of that cell in reading order.

A filling of an augmented diagram is an assignment of a positive integer to each cell in the
diagram.

From now on we only consider fillings whose entries in each column are weakly decreasing from
the bottom to the top.

For any two columns (including the basement cells) i and j with i < j, we pick three cells X,Y

and Z, where cell X is immediately above cell Y in the ‘taller’ column & , where

1 if C!Z'ZO[]‘
k=

joif o <ay

and cell Z from the ‘shorter’ column to form a triple (X,Y, Z) in the following way:
Type A triple: cell Z is in the same row as cell X if a; >

Type B triple: cell Z is in the same row as cell Y if o; < ;

Here are some examples of triples:

(The first two are type A triples and the last two are type B triples.)

[TTT]
[T 1]
[T T[]

Il

[TT1]

[T 1]
B T[]
[ =[]

[T T ]]
[T 1]

[1TT1]

[ L[] 111 NN H
LT LT CETT CLLTT
We say (X,Y,Z) forms a coinversion triple if the filling F' of the diagram assigns each cell in

the triple a positive integer, say F(X), F(Y'), F(Z) respectively, in such a way that

F(X) < F(Z) < F(Y). Otherwise we call (X,Y, Z) an inversion triple.
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For instance in the following examples, the second and the third ones are coinversion triples

while the first and the last one are inversion triples.

[TT]
[TTTT]
[TTT]
[T 1]
[TT]
[
[TTTT]
[ ==l ]

L[] 1]
B[] LTI EH%I LTI

Definition 2.1. A semi-standard augmented filling (SSAF) of an augmented diagram with shape

being a weak composition a = (a1, e, ..., ax) is a filling satisfying:

1. the basement entries form a permutation o (in one line notation) of {1,...,k}, i.e. 0 € Sk;

2. every (Type A or B) triple is an inversion triple.

We denote SSAF (o, a) the set of all SSAF of an augmented diagram of shape a = (ayq, ..., o)

with basement entries (from left to right) being o € Sy (i.e. basement of column ¢ has entry o(i)).

Example 4. The following SSAFs are all the elements in the set SSAF(4132,1032):

(1] (2] (3] (1] (1] (2]
3]2 32 3]2 2[1 3]2 3[2
(1] [3]2] [1] [3]2] [1] [3]2] [4] [3]2] [4] [3]2] [4] [3]2
41 3 2 413 2 41 3 2 41 3 2 41 3 2 413 2
(3] (1] (2] (1] (2] (3]
3]2 2]1 2[1 3[1 3[1 3[1
(4] [3]2] [4] [3]2] [4] [3]2] [4] [3]2] [4] [3]2] [4] [3]2
41 3 2 4132 41 3 2 413 2 41 3 2 41 3 2

Given an SSAF F with basement of length n for some n € N, define the weight of F' as z!" :=

H xm(F)fl, where m;(F') is the number of 7 appearing in F for 1 <i < n.
i=1

Example 5. 27 = 222222 for F=

41

OOC/OCO?—“
NG} [ N ) V]
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2.3 Demazure atoms and Demazure characters

Definition 2.2. A Demazure atom of shape o, where a is a weak composition, is defined as
A, = Z zf.
FeSSAF (ex,)

Definition 2.3. A Demazure character (key polynomial, or key) of shape o, where a is a weak

composition, is defined as

Ry = E I'F.

FESSAF(e,a)

Remark: See [12] for further discussion on key polynomials.
The following theorem gives different equivalent definitions of Demazure atoms (A,) and De-

mazure characters (k) of shape « and is proved in [2 [6] 12].

Theorem 2.7. For k € N and composition o with l(o) = k,
Ex(xg,...,x1;00,00) = Z zF :nglx‘”“(a)
FeSSAF (ex,)

F o
Ez(z1,...,25;0,0) = g e (@)
FeSSAF (er,)

where Eg(xy,...,r1;00,00) and Ez(z1,...,25;0,0) are the nonsymmetric Macdonald polyno-
mials of shape @ with ¢ =t = 0o and X = (xg,...,x1) and with ¢ =t =0 and X = (x1,...,2k)

respectively.

Example 6. Let o = (1,0,3). Then wy = 231 = (12)(23) = s152.
Hence Ag1,0,3) = 020120330 = O3 (2323 + 2123) = 230073 + 2303 + 112373 + T1222% + 1123,

The following are all the SSAF's of SSAF(123,(1,0,3)) :

weights : xle% .1‘1.’172.{[)% xlxg xlxgxg $%l‘21‘3
As a result, the sum of all weights of the SSAFs gives A(10,3)-

3

Since eswy ! = (s25182)(s251) = s2, we have K(3,0,1) = T oot (T172) = o (2}

_ .3 3
1x9) = xjTo + X5 T3
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The following are all the SSAF's of SSAF(321,(1,0,3)) :

weights :  x3x3
As a result, the sum of all weights of the SSAFs gives r(3,0,1)-

The following theorem gives some properties of Demazure atoms and characters.
Theorem 2.8.

1. A key polynomial is a positive sum of Demazure atoms. In fact,

Bza

2. A key polynomial with a partition shape A, with I[(\) = k, is the Schur polynomial sy, i.e.,

Ry = S,\(Qfl,...,xk).

3. The set of all Demazure atoms {A, : v En,n € Z>o} forms a basis for the polynomial ring, and

so does the set of all key polynomials {k : YEn,n € Z>¢}.

Proof. follows directly from We can describe combinatorially how to get the

atoms from the key (a particular case of Proposition 6.1 in [12]):

Consider a filling F € SSAF(€;,«) and an empty filling Gy with basement €. Consider the
entries of the first row (from the bottom above the basement) of F, namely a11 < a1z < -+ < a1,
where rp is the length of the first row. Create the first row of Gy by placing ay; in the cell right
above a; in the basement of G (that is, a1, is placed in the first row above the basement and also
in the aﬁfi‘ column of @) for 1 <i < ry. We call the new filling G

Now consider the entries ag1 < age < --- < agy, of the second row of F' where 79 is the length
of the second row of F. Search in the top row of G; for the leftmost number not less that as,, and
place ag,, in the cell right above it. Then search for the leftmost available number (i.e. not chosen
yet) in the top row of Gy not less than as ,,—1 and place ag,—1 in the cell right above it, and so

on until a9 is placed. We now get a new filling with 2 rows above the basement and call it G.
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By repeating the same process until all entries of F' are placed and we get a filling G, with

basement ¢, with shape less than or equal to «, where r is the number of rows in F.

follows from as sy = Ex(z1,...,2,;0,0) ([2]). It is also proved in [6]. A

combinatorial proof can be found in Theorem 4.1 in [3] which uses the insertion algorithm discussed
in [T, 2]
also follows from as {Eq(z;q,t) : @« E n,n € Z>o} forms a basis for the

polynomial ring over Q(q,t). Again, it is also proved in [6].
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Chapter 3

Decomposition of products of

Demazure atoms and characters

In this chapter, we study the decomposition of the products of Demazure atoms and characters with
respect to the atom-basis {A, : v E n,n € Z>o} and key-basis {k, : Yy E n,n € Z>¢}.

Let A, pu be partitions and «, 5 be weak compositions. Let 4+ 4 and +, denote the property of being
able to be decomposed into a positive sum of atoms and keys respectively. Note that by in

Theorem 2.8) +, implies +4. Otherwise, we put an X in the cell. For example, a partition (u)-

shaped atom times a key of any shape («) is key positive and hence we put + in the corresponding

box.
Atoms Keys
shape A « A @
Atoms K -4 +A® TA +“@
X
+x

Keys

Table 3.1: Decomposition of products of atoms and keys into atoms

The positive results in the table can be found in [3], except for the cells marked @, @
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and @

We will prove @ (which was previously open) in this chapter using words and insertion

algorithm introduced in [3] [12]:
Theorem 3.1. The product A, - Ay is atom-positive for any partition p and weak composition c.

The coefficients in the decomposition into atoms are actually counting the number of ways

to insert words arising from an SSAF of shape « into an SSAF of shape p and we will discuss

properties of words and how to record different ways of insertion in [Section 3.1] and [Section 3.2|

Also note that the product in the theorem is not key positive. A simple counter example would
be just putting p as the empty partition, that is, with all entries 0 and a = (0,1) and hence
Ay Ag = Aa = 01(21) = (1 —id)(21) = K0,1) — K(1,0)-

@ is proved in [5] (the proof involves crystals but does not involve SSAF). Both results @

and @ imply + 4 for the A, - k7 cell. We will apply the bijection in the proof of Theorem 6.1 in

[3] to [Theorem 3.1/ to give a tableau-combinatorial proof of @ in |Section 3.4

As for the product of two keys of arbitrary shapes, that is, the cell marked with @, there are
examples showing that such a product is not a positive sum of keys. For example, £(g,2) - £(1,0,2) =
K(1,2,2) T K(1,3,1) T K5(1,4,0) T £(2,3,0) T K(3,0,2) — K(3,2,0) T K(4,0,1) — K(4,1,0)- Thus it remains to check
whether it is a positive sum of atoms, which is still open. Hence @ gives the following conjecture

(first appearing in an unpublished work of Victor Reiner and Mark Shimozono).

Conjecture 1. Let «, 8 be weak compositions. Then the product of the key polynomials of shape @

and B can be written as a positive sum of atoms, i.e.,

Ko - KB = Z Capiy

yElal+]8]

o i Y
for some nonnegative integers Cop-

We will verify for I(@),1(8) < 3 in
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3.1 Convert a column word to a row word

Definition 3.1. A word is a sequence of positive integers.

Definition 3.2. Let a,b,c € N and u,v be some fized (can be empty) words. Define twisted Knuth

relation «~* by:

1. ubacv «~* ubcav ifc<b<a

2. uwacbv «~* ucabv  ifc<b<a.

Then we say two words w and w’ are twisted Knuth equivalent if w can be transformed to w’ by

repeated use of 1. and 2. and we write w «~* w’.

Definition 3.3. A word w is a column word if it can be broken down into k weakly decreasing

subsequences of weakly decreasing lengths

w:a11...a151|a21...a262\---|ak1...akck
where ¢c; > cy > -+ >¢c >0, c1,...,c6 €N
aijzai,jﬂ V1§j<ci,1§i§k

such that

Ait1,cip1—j > Vici—j Y0 <j<c,1<i< k
Definition 3.4. A word w is a row word if it can be broken down into k strictly increasing

subsequences of weakly decreasing lengths

w:a11...a1r1|a21...a2r2|~~\akl...akrk
wherery >ro > - >1rp >0, 7r1,...,7x €N
Qij < G4 541 V1§]<T1,1§’L§k

such that

it 1yryr—j < Qie— VO<g<r;,1<i<k
Given an SSAF, one can get its column word by using the algorithm described in [3], while one

can get its row word (which is the reverse reading word defined in [4] by reading the entries of each
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row in ascending order, starting from the bottom row to the top row. We call a word a column
(resp. row) word because when we insert each subsequence of the word using the insertion in [I1],

a new column (resp. row) will be created.

Example 7. 886531|97643|9764/5|6 is a column word whose corresponding SSAF is:

OOOO\]\I@@‘

6

2] [3]

12345678

O|O| O O O =~

and the corresponding row word is 13689]589]467|357|46/6.

We describe an insertion algorithm for inserting an integer ¢ < k into an SSAF with basement
€x. A detailed description can be found in [I1].

Given an SSAF F with basement €, and an integer ¢ to be inserted, we write ¢ — F or F + ¢
to represent the insertion of ¢ into F' (and similarly we denote cac; — F and F « cyco as first
inserting ¢; to F' and then insert ¢z, and so on).

To insert ¢, we first find the cell A in F with the smallest order, say m, such that F(A’) < ¢ <
F(A), where A’ is the cell immediately above A if it exists and assign F'(A") = 0 if A is the top cell
of a column and just treat A’ as an empty cell to be filled in. If cell A is the top cell of a column,
then we create a new cell immediately above A, i.e. A’, and assign ¢ to the new cell and we are
done. Otherwise, we replace the entry y = F(A’) by ¢ and now insert y as we do for ¢, but now
finding a cell B of the smallest order larger than m such that F(B’) < y < F(B) as treating B as

A in the previous step. Repeat the process until a new cell is finally created.

Example 8. Let F be the SSAF in [Ezample 7| where k = 9. We find the new SSAF created by

inserting 7, i.e. 7T — F, as follows:
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7= 6] =
64
5|
7|6
5] [8]9
6] [8]9
1234567389
= 55—
819 819
519 1 3] [6] [5]9
1234567809 12345673809
N 6]
714
716
7|6
5] [8]9
1] [3]4] [6] [8]9
1234567389

The green cell represents the cell A in each step. The yellow cell represents the cell A" whose
value is changed after the insertion step (i.e. the original entry is bumped out by the number being
inserted). The white cells are the cells under consideration in each step (i.e. candidates for the

position of B, that is, the new A).

Lemma 3.2. Let u:= ajas...a,lb and v := ajas . ..a,|blc be two column words, where ¢ > b > ay,

n € N. Then

1. u*baj...al, where <a}, a} >ah>--->a,

n’

and V' = a; where t = min{j : b > a;}
2. v*bdalal) ... all where V' is defined as in 1., 0 < <af andaf >alff >--->al.

Proof. One can check that for t = min{j : b > a;},

albag...an if t=1

if 1<t<n and 1. follows. Also note that b’ = a;.

aiay . ..a—1baiyq ... apy

ApG1 ...0p_1b if t=n
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Indeed, we can visualize by applying the insertion in [I1]. When we insert the first n integers of u,

we get a column above the basement entry a;:

If b > a1, we have

Qn An
b— =
An—1 An—1
ai al b
1 2 al b 1 2 al b

giving the row word aibas ... a,,.

If b < aq, then for t = min{j : b > a;}, we have:

Fort <n
An An
b— =
at41 at41
a; b
at—1 at—1
al at ay
1 a al 1 a ai

giving the row word a;a; ...a;—1basyq ... ap.

Fort=n
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an b
b— =
Ay —1 An—1
ay an ay
1 B A ¢ 5 TN 1 Lo Qp ... a1

giving the row word a,a; ... a,—1b.
Since inserting v to an empty atom is the same as inserting ¢ to the atom created by inserting
u to an empty atom, we can inset ¢ to the tableaux above and get the following:

If ¢ > b > a1, we have

QA QA
c — =
Ap—1 An—1
ai b ay b c
1 2 ai b C 1 2 ai b C

giving the row word aibcas . .. a,.

If b<aj; and a;_1 > ¢ > b > a;, we have:

Fort <n
Qn Qn
Cc — =
Qi1 Qt41
b c
at—1 at—1
a a a b a
1 a: b a1 1 a b ay
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giving the row word a;ba; ...a;—1ca¢41 ... ay.

Fort=n
b c
c — =
an—1 An—1
an ay an ay
1 an ai 1 an ai
giving the row word a,ba;i ...a,_1c.
If b < a; and ¢ > a;_1, we have:
For t < mn,let ¢/ = min{j:c>a;,1 <j <t—1}, we have:
Fort' =1,
An QA
c — =
at41 at41
b b
at—1 at—1
at ay a ay c
1 a; ai c 1 a¢ ay c

giving the row word aiaicas . ..a;—1ba141 ... Gy.

For 1<t <t—1,
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An An
Cc — =

At Qi1

b b
at—1 at—1
at/+1 at/+1

Qyr C
t/—1 t/—1

at al at Qyr al

1 at ag ay 1 at ag aq

giving the row word aiapay ...apy_1¢ap 41 ... ar—1bagy1 ... ap.

/
Fort' =t —1,
An An
c— =
Qi1 Qi1
b b
at—1 (&
at—2 at—2
at ay at at—1 ay
1 Lo.ay e Qg1 ... Q1 ... 1 Lo.oay e Q¢—1 ... a1

giving the row word a;as—1a1 ...a;_ocbaiiy ... ay.
For t = n, let ¢’ = min{j : ¢ > a;}, we have:

Fort' =1,
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b b
c — =
an—1 An—1
an ay an ay c
1 an ay 1 an a c

giving the row word a,aicas . ..a,—1b.

Forl<t <n-—1,

b b
c— =

an—1 an—1
A/ 41 At/ 41

Qyr (&
t/ —1 +/ —1

an ay an ag ay

1 Qn ai 1 Qn ag ai

giving the row word a,apajas...ay_1capyq ...an—1b.

/
Fort'=n—1,
b b
c— =
Ay, —1 (&
An—2 An—2
An ay an An—1 ay
1 an ai 1 an Ay —1 al

giving the row word a,a,_1a1as...a,_ocbh.

Notice that for all the cases of inserting ¢, the first row has the least entry unaffected, meaning
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that the row word has the same first entry after inserting c¢. The result follows by setting the row

word of the tableau of inserting v into an empty atom as b'c’af ... all. O

Example 9. One can also prove by repeated use of 1. and 2. in |Definition 3.2, for

example:
9764|5 «~* 97465 ~* 94765 ~* 4|9765 by using 2. repeatedly, and similarly, we have 9764|5|6 «~*
4]9765(6 «* 45(9766.

Using SSAF, it means

65 — = 6— = 6]
0] ] A5 [
123...89 1234...89 1...45...89
where 65 — means 5 is inserted before 6.
Lemma 3.3. Let k > 2 be an integer and i1, ...,1; be nonnegative integers. Let
wo = o . al el . af?)] .- [af) .. qlit
be a column word. Then there exist a&s where 1<s<e¢,1 <r<kanda, ““+m) where
1 <m < k satisfying
a](fif;iiltzkfjfl < algcllk_'_]) < gclkjjl-i_l) V1< J< k-1 (k > 3)
a](jf-‘rk_l) < agill—‘rl)
agfllﬂ) .. aﬁgl)\ ~la ,(;’“111“) .. (lkllct1)1| a,(;c’“) is a column word

such that wg «* wy «»* -+ «* wi_1, where
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(i) (i1) (lh—j—1) (lo—j—1) (ix+7) (ik—;+1) (ik—j+1)
Wi =Gy Oy O g1 Ok ey M1 Ch—j1 e
(ik—1+1) (ik—1+1) (ix) (i) :
apy e, s g Vi<j<k-1,
L dptk—1 (i1+1) (i14+1) (ig—1+1) (ik—1+1) (ix) (i)
Wr—1 1= a5 aq, c@ye Sy T ags L ag

Proof. We prove this by induction on k.

(21) _(i1) a(il)

When k = 2, we have wy 1= aj1 a1, 2)al2) a2

(
C Qg o1 Aoy A

Let tiz = min {j: a5’ > af'}.

By applying the proof of 1. in on agif)agl) .. a(licll)agf), we have

wo ~F Wy ::agf+1)agi11+1)agi21+l) . agiclfl)ag;) . aéifz)
agif)a;if)ag) . gicll)a;i;) . agfz) if tia=1

(@1) (i1) (i1) (i2) (i1) (i1) (i2) (i2)

A, 17 QY gy, Q1 A gt Qg Qo9 - Ggey AT T2 >1
io+1 i +1 i1 +1 i1 +1 io+1 '
where agz12+ ) < a%ﬁ' ) and a%ﬁ ) > > aglclf ). Also note that a(;lﬁ ) = agltlli

For t15 = 1, we know that agg) e aﬁll)ag;) e agfz) is a column word and hence

(i1+1) (i1+1) (i2) (i2)
ajg cye Ay Ay

For t15 > 1, if ¢o — (Cl — 112 + 1) > 0, then

) <al), s =d"_ L <ad® . (byDefinition 3.3)

which leads to a contradiction as agif) > aé’f) for 1 <j < eo.

As a result, we have co — (¢1 — t12 + 1) < 0 which implies ¢o — 1 < ¢1 — t12.

(i1) (i1) (i2) (i2) -
Thus aj ;7,41 Gy, G35 - .. ag.; 18 & column word, and hence
(i1) (i1) (i2) (i1) (i1)  (i2) (i2) +
Al - 41,1091 Gy gyyqy - Qie) Ao - - - Qe 1S also a column word.
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(i1+1) (i1+1) (i2) (i2) .

Therefore aj, "7 ...ay." “as;’ ...ay: is a column word.
i1 i1 1 1 i2)
Note that a{? ™ > a{4™) we can conclude a{} ™ ... agzclf Jal2) . agci) is a column word.

Hence the statement is true for &k = 2.

For k = 3, we have wg := aglll)a(“) a(llcll) (llz)aglz) a(22022) (lls)agls) ) (23)
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303 :
Consider agf)ag;) . ézfz) gf’)agg‘) . agz(f’s), by k = 2 case, we know
aytags) . ags)agiaiy) oyl < alp Vel Vet eyt e L a)
where a{? ™) < a{2™ and af2 Y aéifjl)ag;’) . aglf) is a column word. Also, a2 1! = agé)s >
(i2) (i1) — (i) (i2)
a’2c22 > alcll y tog 1= 1ér;1<nc {-7 an > a2_]2 }
Hence, aﬁll) < agffﬂ) < aélfﬂ).
Furthermore, aglf)agg) . agicll)angﬂ) is also a column word and by 1. in ,
aiayy) . al)ag Y o ag el eyt
where aéﬁﬁg) < agifﬂ) and agilﬁl)a%ﬁl) . a(1i611+1) is a column word for agifﬂ) > aﬁ’;“) > >
(11+1) Also 13+2) _ agitl) where t13 := 1£nln {: a(13+1 (11)}
It remains to check that aghﬂ)aggﬂ) . agzclfl)agfﬂ)agfﬂ) agﬁj ) is a column word.
First note that by 1. in
(i3) (i2) (i2) .
_ _ _ a3y Qgy - .. gy, if tog=1
(i2+1) (i2+1) (i24+1) 2
gy agy  C..ayl, = )
a(zlf) : a§1§2371agl13)a(21,23+1 aé’f) if 93 >1
PRSI CEY (i1) : -
(41) (a+1) () _ )BT M2l it ty =1
11 G2 el 0=
(i1) (i1) (E3+1) (i1) (1)
ayy’ ...y, 1037 Ay -G itz >1
a$?) o) . al) if =1
aft) o), g ol el i s>



(i2)

By definition of a column word, we have a,,. > al™

1e1—(ca—tag)" By definition of t13, we have
tlg S C1 — (CQ — t23) which implies Co — tgg S C1 — t13.

Combining, we have the following four cases:

(1) t13 =t23 =1:

71+1 71+1 11+1 i0+1 19+1 i0+1 7 7 7 7 7
aft aly ™ el agy ™Y ™ = aflaly) el el agy) el

Since ag i) > aéif) aglfﬂ) > a(l?ﬂ) = ag?) for 1 < j <ey,

(11) (i) ,(i2) (i2)

and ay5’ ... 4y, Q35 ...y, is a column word, we can conclude that
1 C2
(i2) (i1) (i) , (is)  (i2) (32) :
A9y 19  «. .Gy, G317 Aoy ... (s, 1S also a column word.

(11) t13 = 1,t23 >1:

agierl) ... agicl1+1)ag12+1) ... agif;l)
)l sl )
Since a$?) > agf) and o}’ .. agzcll)ag;) . agzizs_laé121a51§33+l aéf) is a column word, we
know ag) . agzcll)a;?) . aéli;rlaézf)agi; 41 ag?; is a column word.
Also al?) > a(;iirl > al® > ag{;l aly ™ > agile) = agijl) for 1 < j <ey,
thus a(”) agg) . a(lzcll) (iz) | (2?;371@%3) gigg“ agf) is a column word.

(111) t13 > 1, t23 =1:

(i14+1) (41+1) (i14+1) (i2+1) (i2+1) (i2+1)
ay;  Gpo ceeQye TQgp "Qgg e lge,
(i1) (1) (i2) (1) (i1) (i3) (12) (i2)
=Qyy -0 451021 A1 41541 - - Qg Q31 Q227 - - - Ao, -

Since ¢o — 1 < ¢ — t13 which implies ¢o < ¢1 — (t13 — 1), we just need to consider

gzlz)a'gl;33+1 agicll) a:g’f)agQ) . 57622)
to conclude that
afP . alt qafPdl) el el el el

is a column word.
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As g — 1 < ¢1 — t13, a(liizﬁl . ..agicll)ag;) . ..agifz) is a column word. Also agf)

ta3 = 1, and aéif) = agitll"_l) >a

(i1+1)
3 15

= aﬁij) for t13 < j < ¢1 and hence
agf)agfgﬁl e agill)aéif)aéi;) . a;ifz) is a column word and result follows.

(IV) t13 > 1,t23 > 1:

(i1+1) (i1+1) (i14+1) (i2+1) (i2+1) (i24+1)
aj; Qg cee Qe Go7 Qg c g

(11) (11) (i2) (i1) (1) (i2) (i2) (i3) (i2) (12)

=y 01 4151024557 11541 00 Bl @21 - A2 45,1031 A2 4y0 i1 - - - Aoy -

(1) (i1) (11)  (41) (11) (i2) (i2) (i2) (i2) (i2)

(i2)

> ag;’ for

Since ayy’ ... a3 3], 10140 41441 Qig, Q21 -+ 2 15 1051505 1,0 1 - - - A9y 1S & column word,

(i14+1) (i2+1) (i141)

it remains to check if ay ;" < ag; . and ayy 0 < al> (We need to check

2,c2—(c1—t13)

the latter condition only when ¢y — (¢1 — t13) > 0).
If Coy — t23 =C1 — t13, then

(i1+1) = glatl) _ G2
l,c1—(ca—tag) — “1tis 2ty

)

) < a(ia) _ a(i2+1) _ (i2+1)

31 = W2ty = Qg h(c1—t13)

If co — to3 < ¢1 — t13, then c; — (Cl — t13) < to3.

(i14+1) _ (4i2) (i2) _ (i2+1)
Hence a1t13 - a2t23 < a2,c‘27(617t13) - 2,027(017t13)'

Similarly, ¢13 < ¢1 — (c2 — ta3) implies

(i1+1) _(41) (i2) _(i2) (i3) (12+1).

1,01—(62—t23) - l,Cl—(Cz—t23) a2,C2—(CQ—t23) — 2ta3 < a31 = a2t23

(i) (41) (i1)  (i3+1) (iz+1) (i2+1) (i2+1) (i3) (i3)
wy = ay) Ay Ayl agy as) Ggy Gyl gy .Gyl
Set ,

agi13+2)a§ill+1)a¥21+1) a(z‘1+1)a(iz+1)a(2i22+1) a(iz+1)a(z‘s) a(is)

Wwo = <o Qe 21 <o Qop, 32 - A3cy

and we thus have wg «* w; «~* wy and result follows.
Therefore the statement is true for £ = 3.
Assume the statement is true for all k = 2,...,m, m + 1 for some m > 2.

When k£ =m + 2,

(im) (im)  (im+1) (tm+1) (tm+2) (tm+2)

By considering a,,"}" ... am e, @y, 1 - - R S el i R N and apply the result in

k=3, we get
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(i1) (i1) (i2) (i2) . (imt1) (im+1) (imy2) —(imy2)

@117 01y Q217 - Qoey " By 11 - B L1 Imt 2,1 - O 2,¢ 40
x (i1) (i1) (i2) (i2) (tm+y2+1) (im41+1) (tm41+1)  (im+2) (tm+2)
a e a‘lcl Aoy - - a202 e am+2,1 aerl,l s am+1,cm+1 m+2,2 " am+2,cm+2
x (i1) (i1) (i2) (i2) (Tm+2+2) (Zm+1)
wrayy Ay Gar A Y T a
a(zm+1)a(lm+1+1) qlim+1tl) (mg2) (imi2)
™m,Cm, m—+ CrUmAl,emg1 TmA42,2 00 P mA2,em42
im+1) (tm~+1) (img1+1) (tm41+1)  (m+2) (tm+2) . i
where a,,"} ey O 11 O e L G2 9 -- Gay o, 18 @ column word, and a
(imi2+1) (tm1+1)

Oyl < Qpiq

As ag,{"czn < a%ﬁg? 1), we can apply the induction assumption on

(i1) (i1) (im) (im) , (tm+2+1)
L R € A g
and hence we have
(i1) (i1) (i2) (i2) (im) alim) o (tm+y2+1)

A1 Qe Qo1 oo Qoey " Qyppy " -+ - Qe Oy 21

wglin) ) G2) o (62) im—1) (tm—1) (tm42+2) (1m+1) (im+1)
Ny Qe Aoy oy Q1 e Gy e Qpa2 1 G < Qe

* (il) (i1) (32) (i2) (tm—2) (tm—2) (4m+2+3) (tm—1+1)
DAy Qe Qo1 - Oy Ay 1 o Q20 S Oipio1 Q11 T

(1m_1+1) (im+1) (im+1)
m 1l,com— 1am1 "'amcm

* (zm+2+m+1) (i141) (i14+1) (i2+1) (i2+1) (z,,t+1) (im+1)

Am+2,1 11 -Gy 021 - og, R B
('Lm i) (im42+1+7) (tm+41-;+1) .
Uy—jrep—; < Om+2,1 < Opy1-ji Vi<j<m

where { ,(mtatm+l) o (i141)

Am42,1 a1

1 1 1 1 41 m+1 .
5111-&- ). a§1611+ )agzlﬁ ) - ézcz; ) ._agrszr ) a%c: ) is a column word
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Combining the above results, we have

(i1) (11) L. a(im+1) (im+1) (tm+2) a(im+2)
ayp” - Qe m+1,1 Y1 e Ym+2,1 -+ - Cmt2.cm 10
o, (1) (i) . (im) (zm) qlimt2t1) o (imp1+1) (tmt1+1) (ims2) (im+2)
ayp” - Qe Ay - Am4+2,1 P11 Dl e 1 @m42,2 - 2.0y 0
(i1) (1) ( -1) (im—1) (im42+2) (Zm+1) (im+1)  (Emt1+1)
wragyage) ra e a, " a Y an ag a
(Im+1+1)  (im+2) (tm+2)
m+1,cm41m+2,2 * " Ym42,c, 42
% (41) (lm 2) (im42+3) (tm—1+1)
RO ST T AR, W OV, 15 R M T R
(2771.71"”1) (1m+1) (imA41) , (Emy1+1) a(im+1+1) (tm—2) a(im+2)
Am—1,c0m -1 m1 ey, a1 Ut lep m2,2 0 Omt2,c0m 00
ok (mpatm+1) (ia+1) (1+1) | GmdD) (imt1) (zm+1+1)
a’m+2,1 a‘ll s Hler aml N mcm m+1 e
(tm+1+1)  (im+2) (im+2)
: am+1,cm+1a’m+2,2 te am+2’cm+2
(i1+1) (i141) (i2+1) (i2+1) (ierl) (im+1)
Both ajy " ..aje as Qe A . Qme,, ~ and
(Zerl) (im+1) (im+1+1) (tm+14+1)  (im2) (im+2) -
Ay N e e (SO SN S SO S L column words, so
(i1+1) (i1+1) (im+1) (im+1) (1m+1+1) (tm41+1)  (im+2) (tm+2)
aiq te a’lcl ] - Amceyy, a’m+1 1 . am+1,cm+1am+2,2 e am+2,cm+2

is a column word.

Also,
(im—yj) (7'm+2+1+]) (mt1-;+1) :
U ey < Oy, < a5 Vi<j<m
(im) (tm42+1) (tm41+1)
e < Qppyoy < Oyt
oo 1 — 5 2+ 2 g1 ‘
implies agfl_;{l_jfgmﬁij < affwg’zl D < agfl_é?_j{l ) Vi<j<m+1.

Therefore the statement is true for kK = m + 2.
By Mathematical Induction, the statement is true for all integers k > 2.

O

shows how to create the first entry of the corresponding row word, leaving the

(lk"l‘.?)

remaining part as a column word . We illustrate the Lemma by an example with a,, circled for
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al0<j<k-—1.

Example 10. Let wy be the word in [Ezample 7, hence k =5, ¢ = 6,¢co = 5,¢3 = 4,4 = ¢5 = 1.

Set i; =0 for all j. Then we have

wo=aly ... aQa ... aP1al) ... a0l 41) 886531|97643|9764|5|@
w =aly .. Qe .. afaly .. .agggmgy = 886531|97643|9764|@|6
wy =aly .. aQ]a ...agg>||ag11> al)all) = 886531|97643|@9765|6
wy =al? .. a§%>||a§11> aSDlaly L a]aly) = 886531|@|976449765|6
wy = aﬁ) alDlasy L aP1al) . alY el = @|886533|976449765|6

Lemma 3.4. Let w = aq11...Q1¢, * - Q1 - - - Ake, be a column word. Then there exists a sequence

{bijh1<j<es1<i<k such that
w A" bklbk,—l,l - b11b12 . b161b22 - b2(:2 o bkg . bkcky

where byp > bay > -+ > by and byy ... bicy b2z .. bac,| -+ |bk2 - - - bre, @5 a column word (with lengths

Cl>62—12'~-26k—1).

Proof. Apply [Lemma 3.3|on a1 ... a1c, -+ - Qg1 - - - Gke,,, We have

all...alclagl...@@ ~-~ak1...akck

(k—1) (1) (1) (1) (1)
fag Cayy-..aq gl Ol o OR2 - Qkey,

(1) (1) 1) 1)

where ayy ...ay; rap’y 11Oy Q2 - Oy 1S A column word.

Apply on agll) . a(llc)1 a,(cl)1 ag)l e, » We have

1 1 1 1
agl) . agc)l ) al(c )1 1° al(c—)1,ck,1

(k1) (2) (2) (2) (2) 1) (1)
tay_ S 0 N PP ) S 1S R 7, WAL L) S 1 IR G R

(2) (2) (2) (2) (1) (1) :
where ayy ...ay; @ g @ g o Gy 0 Gy ., 1S & column word.

Since by the k = 2 case in the proof of we have al(cll) < a,(cljl’l, then by applying 2.

of inductively, we have a,(ﬁ_l) < ;Ck 113
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Combining the above, we have

@11 -+ QA1e;A21 + - - A2y * * * A1« - - Afeey,

x (k=1) (1) (1) (1) (1)
SR T R (P A I (A T <o R ()
x (k=1) (k—1) (2) (2) (2) (2) (1) (1)
S I A L R P A IR () N SN ) S I S 1) e SN <o R (9

: (k—1) (k—1) (2) (2) (2) (2) (1) (1) :
with a;; <ap_ ;3 and a7 .. O3y A gy Oy o Oy g Oy o (R2 - Oy 1S a column

word.

Hence by induction, we have

a1 .--Q1¢,A21 - - Q2¢y ** - Ak - - - Ay,

(k—1) (1) (1) (1) (1)
P Y P A TR IR SN T ¢ B o

\/«*a

« (k=1) (k=1) (2) (2) (2) (2) (1) (1)
D gy 011000 - Oy o1 Ok o, m1,2 0 A l1 g BR2 - - - Oy,
« (k=1) (k=1) (k=1) (3) (3) (3) (3) (2) (2) (1)
N Qpy O g 10k 91017 Qi Qg O g SO o1 Qg o O 190
(1)

k—l,ck,lakQ e Oy,

* (k=) (k—1) (k—l)agg—l) )

(k—1) (k—2) (k—2)
gy E—1,1--- 411 a 5P a

s Gy <o Qo

.,,a(l) a(l) a a
E—1,2 " Qk—1,cp_ HE2 - - - Ukey

(k—-1) (k—-1) (k—1)

where a;; ' <a;,_ ;1 <---<aj; ’ and
k—1 k—1) (k-2 k—2 1 1 .
a§1 ). .agcl )a(QQ ). agCQ ). '(L](C_)Lz - a,(C_)17Ck71ak2 ... Qe 15 a column word.
(k—1) (k—) . .
Set b1 :=a;;  and b;j :=a;; 7 for 1 <j <¢;, 1 <4<k and result follows.

O

Example 11. We use the same word in to illustrate by repeated use of

[Lemma 3.3 We first have

(0) (0

_ ), (0) (0
Wo = Gjy -.-Gq |Gy

afQ1aly L aQ1a'1alY) = 886531]97643]9764]5]6

and by [Ezample 10, we have
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where by > by > - - -

(4)

all | (1) )|a(1) (1), (1) 1)|a(1)

1)
ajr; ---Qg CQgg lagy .. agg

= 1|[886533|97644(9765|6

and we apply [Example 10| again on the latter part (marked by the rectangle), we have

aty|afy . a16)|a(”...a§”|a(2> ..agi):1|88653397644|@|9766
atValy .. all ||a aDla )...ag’j)_1|886533@|97654|9766

a§41>|a11. D82 aP1aR )| = 1@88654397654|9766

and again we apply [Example 1(] again on the latter part (marked by the rectangle), we have
(4)

aVaM1a? . al@al? a32a3§>a§i_13|886543|97654|@766

aVaMal? . a 2)||a(3) a8 aPaPald) = 13|886543|@|99654|766
alValy 63 a@1a) . a0l |aP P el —13@|887543|99654|766

and by repeating the same process again, we get

alVaMaP)al? . )| a$y) . a0 all) el = 136|887543|@9654|766

ag?ag?ag?mn alD1a8) 10D el ald)| = 136|9875439654|766

and finally we get

alVaMaPalPaWalD . al®1ald) . 0P 1P aldal?) = 1368|987543|9654|766.
So we have:
b51b41b31b21|611612 e b16|b22 e 625“)31 N b34 = 1368|987543|9654|766, where

b11b12 ... b1g|baz . . . bos|b3abssbss = 987543|9654|766 is a column word with lengths 6,4, 3.

Using the notation in since

*
w bklbkfl,l ...b11b1o ... blclbgg . bQC2 ceebgy ... bkck,

as that representing bg1bg—1,1-..b11b12 ... b1, 022 ... bacy -+ - b2 - .. bie, . Denote F'(w) as the SSAF

created.

> bg1, the SSAF with basement being ¢,, representing the word w is the same

Since br1br—11 - .. b11 is strictly increasing, by Lemma 15 in [4], they create new cells in ascending

reading order (i.e. one after another) and hence is exactly the first entire row of F'(w) as the entries
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are fixed when inserting by1bx_1.1...b11 into an empty atom, and there are k columns (as w has
k subsequences) and so the first row has length k¥ and hence the row reading word has exactly
b1, bk—11,---,b11 as the first subsequence. That means we can apply to find the first
subsequence of the row reading word of F'(w).

Since b1 ...b1e 022 .. b2ey - bga ... bge, is a column word, we can apply again and
get the second subsequence of the row reading word of F(w), and we can applyrepeatedly
on the remaining b;;’s until we get all the subsequences of the row reading word of F(w). As a result,
we can convert w into the row reading word of F'(w) by applying repeatedly as described.

We illustrate this by using the example in

Example 12. From |Example 1 and |Example 11, we notice that bs1bs1b31b21011 = 13689 which

is exactly the first subsequence of the row word of the SSAF representing the column word w =

886531]97643|9764|5|6. Also one can check that 87543|9654|766 is a column word (by

E)
We can apply on 87543|9654|766 as we did in|Example 11| on

886531]|97643|9764|5|6 and get 589|7643|754|66 which gives the second subsequence of the row word:
589, and by repeating the same process, we get 467|753|64|6, 357|646, 46|6 and lastly 6.

As a result, we get 467, 357, 46 and 6 as the third to the last subsequence of the row word (see

[Ezample 7).

3.2 Convert a Column Recording Tableau to a Row Record-

ing Tableau

This section gives an interpretation of the twisted Knuth equivalence using recording tableaux. We

use the insertion in [I1] and the generalized Littlewood-Richardson rule in [3]. We also use the

ry T2 ...T
notation (U + W) for an SSAF U and a biword W = " | for some positive integer

Yr Y2 ---Yn
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n to denote the pair (U’, L) where U’ is the SSAF obtained by (U + y1ya...y,) while L is the
recording tableau, i.e. by putting x; into the cell created when y; is being inserted. In particular, if
Y1Y2 - . - Yn is a column (resp. row) word, then we call L as a column (resp. row) recording tableau.
By abuse of notation, we sometimes refer (U « W) to either V or L (depending on the context).
(Note that if we change the basement ¢, into the large basement in [3], a column recording

tableau is the same as an LRS defined in Section 4 of [3].)

Lemma 3.5. Let U be an SSAF with basement €, and shape « for some positive integer n and

2 21
l(a) < n. Consider the biword W = ,a>byec>b (ie. ablcis a column word.). Let

a b c
L = U < W be the recording tableau. Let V be the SSAF representing the word abc and a't'c

be the row reading word of V (so o' < V' and ¢ < bV and abec «~* a'b'c’). Consider the biword

N 1 1 2 _ . ~
W = and let L =U < W be the recording tableau. Then L determines L.

a b

Proof. There are two cases to consider: a > c or a < c.

Case(I): a>c> b

Hence we have a’b’'c’ = bac.

2 2
We first consider L. Since a > b, when we insert ab into U, i.e. (U — ), the
a b

cell created by b is strictly above that created by inserting a (by Lemma 15 in [4]):

(i) The cell appears when inserting b is immediately above that of inserting a:

(ii) The two cells are the top cells of two distinct columns (by Theorem 16 in [4])

and the cells appear in ascending reading order, (i.e. one after another):

Since ¢ > b, by Lemma 15 in [4], the cell created when inserting ¢ after inserting ab

into U is after the first cell created by inserting b in reading order.
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For (i), we have L =

a 2 1 or 2 or C 2 or 2
<> (b) <> <d>

(a) is impossible as the cell created by inserting ¢, i.e. , is not a removable cell

(defined in [4]).

For (b), L = as the cell created by ¢’ must be the top cell of some column and

is strictly above that created by &’ but there is only one such cell.

(c) and (d) can be considered as the same case by viewing the cell created by inserting
c is after that created by inserting a (the second in reading order). By the same

argument as (b), we have L =

For (ii), since the reading word of L is contre-lattice by [3] which means it should be
221 or 212, the cell created by inserting c is either the middle in reading order or the

last one in reading order.

Suppose the cell created by inserting c is the middle cell among the three in reading

order, i.e. the reading word of L is 212.

Since ¢ = ¢ < a ="V >da =b, so when performing (U + a'b’'c’ = bac) to get L, the
cell created by inserting a is after both of that inserted by b and by ¢, by Lemma 15

of [4], the last cell must be created when a is inserted and hence marked as 1.

If the middle cell (in reading order) is immediately above the last cell, then it cannot
be created by (U < b) as the last cell is not created if b is inserted before a, and so it

must be marked as 2, i.e. when ¢’ = c is inserted.

2] o [

Suppose the middle cell (in reading order) is not immediately above the last cell, then

all three cells are the top cell of three distinct columns. Suppose the middle cell is
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Case(II):

marked as 1 in Z, meaning that when we insert b before inserting a, the cell created is

after the cell created by b when we first insert a into U.

[] L] L] L]

or or or
That means the bumping sequence for (U <« a) involves some cell in the bumping
sequence in (U < b) and this implies the cell created by (U < a) is the same as
(U « b) (because the bumping sequence has the same ending subsequence starting

from the common cell and hence creating the same final cell), and this leads to a

contradiction.
Therefore we have the reading order (from first to last in reading order) of L =121.
Now consider the case when L has the reading word 221.

By the same argument, we know that the last cell in L is created when b = a is
inserted. If ' = b creates the first cell among the three in reading order as b does in L
after a is inserted, then the insertion of (U <+ a) has no common cell in the bumping
sequence of (U < b). That means when we insert a after inserting b, the bumping
sequence is the same as inserting a before inserting b (this is true because the bumping
sequence of b is a decreasing sequence, so inserting b into U would not affect the first
(in reading order) cell in U containing an entry larger than a as a > b.). That means
(U < ab) is the same as (U <« ba). This leads to a contradiction as we assumed a

create different cells in the two cases (the middle and the last cell respectively).

So we know the middle cell is marked as 1 in L. So the reading word of L is 211.

c>a>b

Then a'b/c’ = ach. Hence the first cells created in L and L are always the same. Note
that ¢ > a meaning the cell created by inserting a = a’ is not the last (in reading
order) cell, and a < b meaning that the cell created by inserting a is not the first (in

reading order) cell either. As a result, we know that the middle cell must be created

54



when q is inserted. Since the first (in reading order) is created in L when inserting b
while the last (in reading order) cell is created in L when inserting b’ = ¢ is inserted,
we know the first cell of L is marked as 2 while the last cell in L must be marked as 1

and that means the reading word of L is 221 and that of L is 211.

This shows that if the reading word of L is 221 or when L is of the form as Case(I)(i)

then the reading word of L is 211, otherwise the reading word of Lis 121.

Hence L determines L.

O

Lemma 3.6. Let U be an SSAF with basement €, and shape o for some positive integer n and

2 2 - 2 1
l(a) < n. Consider the biword W = , a1 > ag > o > ag,b > ay (ie.

ar ay -+ ap b

aias . ..aglb is a column word ). Let L = U < W be the recording tableau. If b > ay, then L has
reading word 22...21, i.e. b creates the last cell in reading order and the insertion of as...ay 1S

independent of the insertion of b.

Proof. Since aias . ..axb ~* a1bas ... ax, we have
(U <— aijas.. .akb) = (U < aibasy .. .ak).

When k = 2, the result follows by Case(II) in the proof of [Lemma 3.5

For k > 2, since ajas . ..agb «~* arbas . ..ax, we have (U < ajas...axb) = (U + ajbas...a) =
((U « aibas) < as...ar). By the case when k = 2, we know b creates a cell after both a; and
as (and ajg .. .ay create cells with decreasing reading order each of which has an order smaller than

that of the cell created by as) and result follows. O

2 2 2 2 2 21
Example 13. Let W = where ap =8 < 9=0>. Let n=9 and U be an

8 8 6 5 3 1 9
SSAF with basement eg = 123456789 and shape a = (1,1,0,0,3,0,2,0,6) :
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H
[\
SEEE

(=)
S EEENNE

~[ =[]
o

—_

2314
Therefore , (U <~ W) means:

—_

8 8 6 5 3 1 9

2 2 2 2 2 2 1
6]
8]
9
9

which results in

123456789 123456789

When 9 is inserted, it creates the last cell (we marked the cell red) in reading order among all cells

created, and one can see this by reading the recording tableau where the cell is marked as 1, which
is the last cell in reading order among all cells.

Also, note that the bumping route of 9 starts from the second row of U while those of aa,...,a6 =
8,6,5,3,1 starts from the third row. Hence the insertion of 9 does not affect the bumping routes of
mserting as, . . ., 0g.

Lemma 3.7. Let U be an SSAF with basement €, and shape « for some positive integer n and

2 2 .. 2 1
l(a) < n. Consider the biword W = a1 > ag > o > ag,b > a (ie.

ar az --- ap b

ajas . ..aglb is a column word ). Let L = (U < W) be the recording tableau. Ifi = 1I<lli£1k{j tb>aj},
<<

then the cell created by inserting a., for m > i is not affected by the insertion of b.

Proof. Since (U < ajaz...axb) = (U < ajaz...a;—1) < a;...axb). By applying with

the U in the lemma being (U « aj ...a;—1) and result follows.
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Lemma 3.8. Let U be an SSAF with basement €, and shape o for some positive integer n and

2 2 - 2 1
l(a) < n. Consider the biword W = , a1 > ag > o > ag,b > ay (ie.

ar ay -+ ap b

a1as . ..aglb is a column word ). Let L = (U + W) be the recording tableau. Suppose b < ap_1. Let

~ —~ — 1 1r 2 ... 2 2 -

L= U+ W) where W = , then L determines L.
ar ap az -+ Qp—1 b

Proof. When k = 2, this is proved by Case(I) in

For k > 2, since ay ...apb «~* aray...ar_1b, L and L has the same shape.

Also, ay...ab ~* ay...ax_1aib, we have
(U< ay...ap—1a1b) = ((U <+ a1 ...ax—2) < ag_1axb).

By applying the case when k = 2 on (U < ay .. .ag—_2) and ag_1axb being the length-3-word inserted,
we know the order of the cell being created which represents (U < aj...ax_2) < ax—1axb) =
(U + ay...a;—2) < arar—1b) and so we know which one among the three is the last cell being
created (by the last cell being created may either be the first or second cell in reading
order among the three cells created). By marking that cell as 2 in L and then consider the first two
cells being created we know how the cells are being created by the insertion on (U « ay ...a;—2)
arap—1) = (U < ay...ax_sarar—1) = (U < agay ...ag—20;—1) by induction (as ax_o < ax—1 < ay
for ar, < b < ai_1) and together with the last cell marked by 2 as mentioned, we know how to label

the entries of the recording tableau L for (U « aray . ..ax—2ax_1b).

O
2 2 2 21
Example 14. Let U as in|Ezample 15 and let W =
9 7 6 4 5
— 2 2 2 21
Then W =
4 9 7 6 5

(U «+ W) means:
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9 7 6 4 5

2 2 2 21
6
8]
9
9

which results in

123456789 123456789

We illustrate the proof of to get L from L.

Consider the last three cells created which are marked green in L:

123456789 123456789

We get the first cell (in reading order) in L (the yellow cell) marked as 2 by applying Case (i)
in the proof of as we know the green cells would have reading 211 in L which mmplies
the first cell in reading order among the three green cells in L must be marked with 2 in L while the
two cells appear in the order as circled (i.e. the one marked as @ appear before the one marked
with @ when we insert agazb = 465 to get Z)

Hence we can treat the cell marked with @ as the last cell created among the remaining 4 cells
in L to be filled, and so we mark that cell as 1 ( treating it as the new b being inserted as 4 < 6 < 7

). Now we have the three new lastly-created cells marked green:

123456789 123456789

Again, we get the second (in reading order) cell among the three green cells (the new yellow cell

) marked as 2 by applying Case (ii) in the proof of [Lemma 3.5 as we know the green cells would
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have reading 121 in L which implies the second cell in reading order among the three green cells in
L must be marked 2 in L while the two cells appear in the order as circled (i.e. the one marked with
@ appears before the one marked with @ when we insert agasag = 476 to get E)

Hence we can, again, treat the cell marked with @ as the last cell created among the remaining
three cells in L to be filled, and so mark it as 1 and the other two cells as 2 by a similar argument

as the previous step. Now we have the three new lastly-created cells marked green:

123456789 123456789
We get the remaining entries of L by applying again as we know the reading word
among these three cells would change from 212 to 121.

One can verify that L is indeed the recording tableau of (U W)

Lemma 3.9. Let U be an SSAF with basement €, and shape a for some positive integer n and

2 2 -~ 2 1
l(a) < n. Consider the biword W = ;a1 > ag > o > ag,b > ap (ie

ar ay --- ap b
a1as . ..aplb is a column word ). Let L = (U « W) be the recording tableau. Let L = (U « W)

—~ 11 2 .- 2
where W = , such that b/ = a;, where i = 1r<nj£1k{j :b>aj} and V' < af,
<j<

/ ! / !
b ay ay - ay

ay > ah > --- > a) (one can verify that V'a} ...aj}, is indeed the row reading word of the SSAF

representing the word ajas...apb by 1. in , then L determines L.

Proof. If i = k, then we are done by

If i =1, then by 1. in we have b'a) ...a) = aibas...a; and hence by [Lemma 3.6] b

would create the last cell in reading order in L when being inserted and hence we know that which
two cells are created by a; and b in L and hence we know how to label the entries by marking those

two cells as 1 and the rest as 2.
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Suppose i < k then by 1. in we have
bay...a) =aar...a;_1ba;i1...ay.

Now by we know all aj,j > i creates create the same cells in L and L and since
ai...a;_1a;b «~* a;ay...a;_1b, we just need to first apply on (U + aj...a;b) as the
insertion recorded by L in the lemma in order to find the first i+ 1 cells created in L by the insertion
(U < a;a1 ...a;-1b) and then label the rest of cells created by (U < a;a; ...a;—1b) < a;t1...ax)

as 2 and get the entries of L and result follows. O
Lemma 3.9| gives a recording tableau interpretation of 1. in using L and L.

Lemma 3.10. Let U be an SSAF with basement €, and shape « for some positive integer n and
l(a) <n. Let wg = a1 ...a1¢,]021 - - G2y | -+ |Ak1 -+ - ke, with k < n be a column word and using
the notation z'n while we assume (i;) = 0 for 1 < j < ¢, 1 <1 <k, the recording
tableau L of (U < W) determines the recording tableau Ly, to (U < W,,) for 0 < m < k—1, where
L:= Zo and Wy, is a biword with the lower word being wy,, and the upper word has entry k+1—1t if

the lower word entry just below it is agj) Jor s =iy, iy +1, and 1¢yy if m > 0 and the entry is a2k1+m.

Proof. Suppose k = 2 then

(U ¢ wp) = (U 4 11 ... a1e,a91) 4 azs - age,) = (U = a5y) + al) .. all))  ass. .. as,)

and by we know how the cells are created in (U < agll)) — aﬁ) . aﬁ)l) So giving

the recording tableau L of (U < ajj...a1.0a21), we know how the cells are created by (U <
ag)agll) .. a(li)l) Now inserting the rest of the sequence ass ... as., and which creates in L the
same last (c3 — 1) cells as in L, we know how to label the recording tableau L.

Suppose k > 2, then

(U(—wo):(U(—all...alclagl...agcz-~-a;€1...akck)

=(U<+a11...G1c, " Q=21 Q2,05 _5) Q1,1 - - Ch—1,c,_1Ok1 - - - Qe,,) and by the argument
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with
(U S~ a11..-Qley " Ak—21 - - - ak_2,0k72)

being the U to be considered for k = 2, we know how the cells are created in El for

(1) (1) (1)
(U<=a11...a1¢, Q2,1 -+ Ql—2,0p_5) < Qpy CQp 4 1 Qg AR Qkey,)

and by the same argument, we know how the cells are created in Zg for
2) (1 1 1 1
(U + a11...a1¢c, " Qk—31 - A—3,0,_5) a’l(cl)agc)Ql a‘l(g)2 JCho 2al(c)11 al(c)l JCh 1ak2~~akc;c)

and result follows by induction.

O

Example 15. We use the words in and the same U as in to illustrate

lLemma 3. 10,

Recall that z'n we have

wo=al? ... aPa? .. a1V .. a1l 886531|97643|9764|5|@
wy =aly .. a1 aP1aY .. al) |a§jl) = 886531|97643|9764|@|6
wy =aly .. aQal) .. a25)||a(1) al)aly) = 886531|97643|@9765|6
wy =al? ... a16)||a alDal) L alely) = 886531|@|976449765|6

Wy :agll alD1al L aW1a) el el —@|886533|976449765|6

Therefore, we now have
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5 5 5 5 5 5 4 4 4 4 3
Wy =
8 8 6 5 3 1 9 7 4 3 7
5 5 5 5 5 5 4 4 4 4 3
Wi =
8 8 6 5 3 1 | 9 7 4 3 7
5 5 5 5 5 5 4 4 4 4 1)
Wy =
8 8 6 5 3 1 | 9 7 43@
5 5 5 5 5 5 1y 4 4 4 4
W3 =
886531@97 4 4
Ty 5 5 5 5 5 5 4 4 4 4
Wy =
@886533 9 7 4 4
We now show how to get El to Z4 from L = Eo .
For U < Wy:
ol
112 50 |7 |9
123456789
5 5 5 5 5 5 4 4 4 4 4
%
8 8 6 5 3 1 9 7 6 4 3

which results in
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1

2

3
1 2 3 4 5 6 7 8 9 1 2 3 45 6 7 8 9

To get EO, we just consider the last (in reading order) cell containing 1 and all cells containing
2 and 1 and apply [Lemma 3.10, Note that in this case since there are only two cells involved, we

can simply move 1 to the cell with a smaller reading order cell and mark as 1y :

1 2 3 45 6 7 8 9 1 2 3 45 6 7 8 9

From L, we get L by considering the cell containing 1(1y and all the cells containing 3 and apply

to find the new position of 1(1):

1 2 3 45 6 7 8 9 1 2 3 4 5 6 7 8 9

Then consider the cells with 4 and also the cell with 1(1y in Zg, we get Ls by applyz'ng

[3.10 to find the new position of 1(1):
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1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

By the same argument and consider the cells with 5 and also the cell with 1(1y, we get Ly:

12 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

We describe a more direct way to get L = Eo from L. Note that the reading word of L is a
contre-lattice word, we can always find a 2 before (in reading order) 1. By the last part in the proof
of [Lemma 3.5, we know that, except for the case when L is of the form of Case(I)(i) , the first cell
created in L (which is the first cell in reading order containing a 1) is the cell with largest reading
order containing 2 in L before the cell containing 1 in L, and so we put 11y into that cell in L.

In short, the red cell with 11y is always interchanged with the last green cell before it in reading
order, except for the case when that green cell is immediately above the next green cell (which must
be after the red cell if it exists) in which the red cell stays the same and compare to the next set of

green cells (if available).

Lemma 3.11. Let U be an SSAF with basement €, and shape o for some positive integer n and
l(a) <mn. Let w=a11...01¢,|a21 - - A2cy| ** |ak1 - - - Qe With & < n be a column word and using

the notation in , the recording tableau L of (U < W) determines the recording tableau L
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of (U + W), where

k k k 1 1 1
W =
aill a2 e Q1 e ag1 a2 e akck
and
. Iy 20y .. kagy kK k... k-~ 1 1 ... 1
W— (1) (1) (1)
bkl bk—l,l o bll b12 b13 ce b1c1 te bk2 bk3 o bkc;c

Proof. As in the proof of which depends mostly on we apply
(which is like the tableaux version of [Lemma 3.3 to get the result.

Given L, by [Lemma 3.10} we can get Ly_1 and if we ignore all the 1 entries (including 1) in

Zk_l, we get a new column recording tableau L’ with entries 2,...k%, and we apply [Lemma 3.10
again (treating r in L’ as r — 1 in L when we apply and get a ' k—2 with an entry
2(1)- By changing the corresponding entries of L with those in L'j_5, we have 2(2) in a cell after the
cell containing 1(;y in reading order (because a,(ﬁ_l) < agc__lli and apply Lemma 15 of [4] ). Result

follows by repeating this process until (k — 1)y is formed and then convert the first & as k(). O

Example 16. We use the same word in and the same U in[Ezample 13, which is also
the U and the word we used as wq in[Ezample 15, to illustrate [Lemma 3.11]

By Frample 11

(1w 20) 3wy 40y Say 5 5 5 5 5 4 4 4 4 3 3 3
W:

1 3 6 8 9 8 7 5 43 9 6 5 4 7 6 6

We continue to illustrate|Lemma 3.11| to get L.

We mark the cell which is being moved and added subscript (1) as green and the the cells under
consideration to get the mew position of the green cell as yellow and mark the final cell of the

subscripted green cell as red.

By we get the position 11y and we continue using the same process:
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2 3 4 5 6 7 8 9 1 2 3 45 6 7 8 9

1

1 2 3 45 6 7 8 9

2 3 45 6 7 8 9

1

2 3 45 6 7 89 1 2 3 4 5 6 7 8 9

1

23 4 5 6 7 8 9 1 2 3 45 6 7 8 9

1
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1 2 3 45 6 7 8 9
One can verify that L is actually the recording tableau of (U + W)

Lemma 3.12. Let U be an SSAF with basement €, and shape o for some positive integer n and
(o) <n. Letw=a11...01¢ 021 ... Q2ey| -+ |1 - - - Qpe,, with k < n be a column word. Let V' be the
SSAF representing w (i.e. inserting w into an empty atom). Let 0 = x11x12 ... Tp1 - - “Tey 1 Tey,re,
be the row reading word of V' (as V has ¢1 rows and k columns and so ry is k), where k = ry >

rg > - > 1 > 0 are the row lengths of V' from bottom to top. Then the recording tableau L of

(U < W) determines the recording tableau R of (U + W), where

k k... k - 1 1 ... 1
W =
ailz aiz ... Qic¢ - Qg1 Qg2 ... OQkey
. 1 1 e 1 cee C1 C1 e C1
W =
11 12 e $1T1 s .7361,1 $c1,2 . J}Cl’TCl

Proof. By and the corresponding word in given L, we know how to enter

all the 1’s in R, which are those cells marked 11),2(1),...,kq) after applying as the

bribr—11...b11 = z11%12. .. 1y, (by the argument after [Lemma 3.4)).

We remove the cells from L in [Lemma 3.11/to create a new L to apply |[Lemma 3.11| on, we can
get the second row entries (as described in the paragraphs after [Lemma 3.4)),and hence we know
how to put all the 2’s into R. By the same argument, we can fill in all entries in R and hence L

determines R.
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Example 17. We continue with the L in to illustrate .

We mark the final position of the subscripted cells a different color for a different subscript.

Starting with what we get in |[Fxample 16|

1 2 3 45 6 7 8 9 1 2 3 45 6 7 8 9

1 2 3 45 6 7 8 9 1 2 3 45 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
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1 2 3 45 6 7 8 9 1 2 3 45 6 7 8 9

1 2 3 45 6 7 8 9 1 2 3 45 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 45 6 7 8 9 1 2 3 45 6 7 8 9
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1 2 3 45 6 7 8 9
Now by replacing the entry of each cell with the subscript number, we get

1 2 3 45 6 7 89

One can verify that R can be obtained by using the row word mentioned in[EzampleT

3.3 Decomposition of the product of a dominating monomial

and an atom into a positive sum of atoms

We now prove mentioned in the beginning of this Chapter. We rephrase the Theorem

in a more precise form as follows.

Theorem 3.13. Let \ be a partition and « be a weak composition. Let Ay and A, be atoms of
shape \ and « respectively. Then

Av-Au= Y KA
BEIX|+|a,ACB
where cfa is the number of distinct LRS of shape §/X created by column words whose corresponding

SSAF has shape a.
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Proof. Since A, = z* (there is exactly one SSAF with shape A, denoted by U,) and A, =

E z¥", we have

FESSAF(a)
Ay - Ay = Z 2zt
FESSAF(a)

To prove the theorem, we only need to check that given a LRS L of shape 8/ created by column

words whose corresponding SSAF has shape «, if there is some column word

w = a11...a161|a21...a202\-~-|ak1...akck
and biword
k k k 1 1 1
W =
aill a2 e Alc,q e Qa1 (0775 e Cchk

such that (Uy < W) creates the same L, then the SSAF corresponding to w also has shape a.

First consider the last cell in reading order among all those containing entry k in L, that means
it is the very first entry inserted. Since aj; must be inserted in a cell immediately above the cell
(including those in basement) containing a7, the position of that cell fixes the value of aq;.

Now consider all the cells with k£ and also the last cell in reading order among all those containing
the entry k — 1, then these cells are created by Uy  a1; . ..a1¢,a21. By we know the
corresponding row recording tableau and hence we know which two cells are the first two entries
being inserted using the corresponding row word. Note that the first row consists of distinct entries
and is inserted in ascending order using the row word, then by Lemma 15 in [4], we know the cells
are created in ascending reading order (one after another in reading order) and so they must be
the cells immediately above those in Uy, and hence the value inside each of those cells in the SSAF
created by inserting the row word into U), is exactly the value inside the cell just below it. Hence we
know what the first two row entries of the corresponding SSAF of aq1a12... a1, a2 are. Since we
already know the first row entry, which is the lowest entry of the column corresponding to a1 . .. a1,
is, we now know what the lowest entry of the second column (corresponding to aij ...a1., a2 and

hence the same for aqy ... a10a21 - .- age,) is.
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We can repeat the same process until we get all the last entries of the k£ columns and hence fix
the shape of the SSAF corresponding to w. Since we read those entries just by considering L, this

shows that L fixes the shape of the corresponding SSAF of w and result follows.

Example 18. Pick A = 4332221 and a = (1,0,1,0,0,4,0,6,5).

Let 8= (5,3,5,2,4,6,1,6,2).

Let U =

1]
1]2]3
1]2]3]4]5]6
1]2]3]4]5]6]7

1 2 3456789

One can first check that a recording tableaux L (which is also an LRS if we change the basement)

of shape B/X is created when the column word z'n whose corresponding SSAF has shape

a is inserted into U. Indeed, we have

ofo|alae]a]s]

1 2 3 4 5 6 7

If a column word w would create the same L when inserted in U, we know that it has column

lengths 6,5,4,1,1, and hence we can break it into 5 subsequences:

w=ay... a16|a21 e a25|a31 e a34|a41|a51

satisfying the conditions of being a column word in |Definition 3.5 Let F(w) be the SSAF corre-

sponding to w, i.e. the SSAF created when inserting w into an empty SSAF with basement being
1 2 3 4

Consider the cells with entry 5 in L:
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1 2 3 45 6 7 8 9
the largest in reading order (marked as red) is created when ayy is inserted in U. Note that as
U is a partition shaped SSAF, a11 must be placed immediately above the cell (including basement)
containing the entry a;1. Hence a;; must be 8. That means the column in F(w) corresponding to
aii ---a1g 18 above the basement entry 8.

Next consider the cells with entry 5 and the last cell in reading order containing 4:

ofeo|e]a|ea]a]s]

1 2 3 4 5 6 7
by applying we know the first two cells created when inserting the row word correspond-

ing to the column word a11 .. .aieaz; must be the ones marked red as below:

1 2 3 45 6 7 8 9

and so we know the two numbers in the row word must be 8 and 9, and since we already know 8
is the basement entry which the new cell created is above, when inserting aii ...a1s and hence we
know the second column of F(w) when inserting as;y ... ass s above the basement entry 9.

Apply on the cells with entries 4,5 and also the last cell in reading order with entry
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3, we know the first three cells created when inserting the corresponding row word of the column

word a1y ...a1ga21 - .. assazy into U, and we mark them red as shown:

1 2 3 45 6 7 8 9
That means the first three numbers in the corresponding row word is 6,8,9 and since we already
know the first two columns are above basement entries 8 and 9, we can conclude that the third column
created in F(w) when inserting az; . ..asy is above the basement entry 6.

Continue with the same process and we have:

and

1 2 3 45 6 7 8 9 1 2 3 45 6 7 8 9

Therefore we know the shape of F(w) is (1,0,1,0,0,4,0,6,5) which is exactly c.

3.4 Decomposition of the product of a dominating monomial

and a key into a positive sum of keys

We would adapt the notations and apply the results in [3] to prove the key-positivity property of
the product of a dominating monomial and a key. However, we will still use @ instead of a* which

[3] uses to denote the reverse of a.

Lemma 3.14. For any given partition \ and weak compositions 8,7 such that A C 3, Let
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K is a LRK of shape §/\ with content created w~ () and ¢(K) is an LRS created

S = {K by a column word whose corresponding SSAF has a shape > 7 and basement shape}7
Ao<p

{ L is an LRS of shape /A created by a column word whose corresponding SSAF }
v

has shape a, 0 > 75

(where ¢ is defined in the proof in Theorem 6.1 in [J] (see . Then ¢|s, : S1 — Sz is a

bijection.)

Proof. Let K € S;. Then by fixing 8, we know ¢(K) has an overall shape 5. Hence ¢(K) has shape
B/ and thus ¢(K) € Ss.

Therefore we have ¢(S1) C Ss.

Since ¢ and hence ¢|g, is injective, it remains to check ¢|g, : S1 — Sa is surjective.

Let L € S5. Since L is created by a column word whose corresponding SSAF has shape a and
o > 7, we know L has content w., (7). Then by the proof in Theorem 6.1 in [3], $~!(L) is an LRK
of shape /) for some ¢ < 3 and has the same column sets as L. Hence ¢~1(L) € S;. Therefore for

any L € Sy, we can find an LRK, namely, ¢~!(L) € Sy such that ¢|g, (¢~(L)) = L.

We thus have ¢|g, is surjective and result follows. O

Theorem 3.15. Let A be a partition and v be a weak composition. Let Ay and r. be an atom of

shape \ and a key of shape v respectively. Then

Ay ky = z b3 Ka
(0%

where bY., is the number of distinct LRK of shape a/\ with content w(y) and the image under ¢
is an LRS with basement shape \ created by a column word whose corresponding SSAF has shape p

for some p > 7.
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Proof. By [Theorem 1| and [Theorem 3.13] we have

AA'KWZAA'ZAQZZ(AA'AQ):Z Z Cfm“ﬁ:z Z Cfa‘AB'

a>y a>y a>% BE|A|+al B2X  a>y
BOA ok |B]—|A|

Also, by we have

be\v"% - Z Z Dy As = Z(Z D3 ) As-
5

5 p>3 B 3<p

Hence to prove the theorem, we only need to prove

Z Cfa = Zb(j\v

az>y >3
arlg P2
which follows from [Lemma 3.14| as |Se| = Z cfa and |S1| = Z biv
a>y B>6
ak|B|—|A|

3.5 Decomposition of the product of a Schur function and a

Demazure character

It is proved in [3] that the product of a Schur function and a Demazure character is key-positive

using tableaux-combinatorics. In this section, we give another proof using linear operators.
Lemma 3.16. If f is atom-positive, then m; f is also atom positive for all positive integers i.

Proof. Let f = Ag(z) + Z 01 Ar(x) where Ag(z) = Z axz® with ay € Zso and

» AePar
Iis a reduced word

Ar(z) = Z aka? with af € Zs for any reduced word I.
AePar
Let o7 be the permutation corresponding to a reduced word I. Then by [l(s;or) —

(o) =1. Ifl(s;o1) =1(o) — 1, then by there exists a reduced word of oy starting with

i. Hence m;0; = 0 by [item 5. of Proposition 2.1} If I(s;07) = l(o7) 4+ 1, then iI is also a reduced

word and hence 71'7;9] = (1 + 92)91 = 9[ + 91‘[.
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As a result,

mif = mi(Ao(x)+ > Ap(x)) = Ao(x) +0;(Ao(x)) + > (01 Ar(x)+0i1As(2)).
Iis a reduced word ilis a reduced word

Since Ag(x) and Aj(x) are sums of dominating monomials with nonnegative integer coefficients,

m; f is also atom positive.

Lemma 3.17. Letoc =n,n—1,...,1€ S,. Then m;7, = 7, and hence ;0 = 0.

Proof. By there exists a reduced word of o starting with i and hence by
we have m;m; = m; which implies m;7, = 7,.

Hence 6,7, = (m; — \)71y = Mo — Ty = Ty — Ty = 0. O
Theorem 3.18. The product of a key and a Schur function is key positive.

Proof. Let 0 = n,n—1,...,1 € S, and A, u be partitions with length at most n. By of

Theorem 2.8] we have sy = 7, ().

Let I = iyis ... 4 be a reduced word of some permutation in S,,. We prove that 7(z#) x 7, (z*)
is key positive.
By
i, (P X e (2))
= () X o (2) + si, (2#) X (03,70 (22))

= (") x WU(I)\)

7



Ty Ty, (TH X m,(x)‘))
= iy, (mi (27) X T (2))
= (ﬂ-ik—lﬂ-ik (xli)) X WU(:EA) T Sip_ 1 iy, (xﬂ) X gikffﬂﬂ(x/\)

= (ﬂ-ik—lﬂ-ik (zﬂ)) X WU(‘T)\)

Inductively, we get

mr(ah) x ﬂ'g(ac)‘) = T, Wiy -+, () X WU(.Z‘A) = Ty Ty -+ gy, (2 X ﬂg(x)‘)).

By [Lemma 2.5, 7, (2}) = Z 0., (z*) = Z 0., (z*) which implies 2 x 7,(z*) = Z xH x
<o YESRH YESn

0.,(z*). Therefore by |Theorem 3.13L " x 7, (x?) is atom positive. By [Lemma 3.16, we know
i, (2 X 7, (21)) is atom-positive. Inductively applying [Lemma 3.16} m;, 7, - - - m;, (29 x 7, (2)) is

also atom-positive. O
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Chapter 4

Atom positivity of the product of
two key polynomials whose

basements have length at most 3

In this section, we prove for I(a),1(8) < 3. Note that if I(«) < 3, we can always add
zero parts to it to increase the length to 3. Hence, we can assume [(a) = 3. Similarly, we can
assume [(5) = 3.

Let Ay = wo(a) and Ag = wg(B). We claim that we can consider [(Ay),1(Ag) < 2, i.e. both «
and [ have at least one zero part.

First note that for integers 7 > 0 and a > b > ¢ > 0, (v17923)" 0, (z2b25) = QT(x‘l‘”xg”xg”)

and 7, (v¢zbxs) = (a:lxgxg)CWT(Jc‘f_ca:g_c) for any 7 € S3. That means the monomial (zzox3)"
times any atom is still an atom, and same for the case for key. We can also interpret this by

considering fillings, as multiplying (z12223)" to an atom or a key is just adding r bottom rows to

the diagram and there is only one way to fill in these cells in an atoms or a key.

Suppose [Conjectue 1|is true for I(A,),{(Ag) < 2. Then for any w,7 € S3 and integers a > b >
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b t

To(@fabas) - mo(ajabal) = (z1moms) T(

o (2§25 (2 ey )
= (x1$2$3)0+u ( Z C'YA’Y)
Y
=Y oy ((@rzams) M A,)
vy

=> Ay
v

where ¢, are all nonnegative integers and (z1z223) A, = A, with v = v+ (c+u,c+u, c+u)
(i.e. 7' can be obtained by adding ¢ 4+ u to each part of 7).

As a result, we now only consider compositions of length 3 and with at most two nonzero parts.

4.1 Polytopes

In this section, we introduce another way to view Demazure atoms and characters.

For each weak composition with length k, we can view it as a lattice point in Zgo We will focus
on the case k = 3. (Everything in this section applies for any positive integer k.) Hence we have
the bijection:

a (a1, 0,a3) € Z2 5« 2% = 291252258,

Consider the Coxeter arrangement (of type As) in R3:

Cox(3) ={a; —a;:1<i<j<3}
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a1 = a9

RQ RS

R4 RG

Ry : ay > az > as;
Ry : a1 > a3z > ao;
R3: ay > a1 > as;
Ry: a3 > a1 > ao;
Rs: ax > a3z > ay;

Rg : a3 > as > aq;

4.1.1 Demazure characters and polytopes

Let a be a weak composition with A\, = (m,n,0), for some integers m > n > 0. Then there are

exactly 6 key polynomials obtained from A, namely:

T, mx 77T2$>‘“ ) 7T21CCA“ ) 71'1217)“’ ) 7T121~’C)“’-
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We now plot each of these 6 key polynomials in the Coxeter arrangement:
Case 1. 2*e = 22%, so it corresponds to the point (m,n,0) in R;:

a1 = a9

(m,n,0) ®

az = as Ry

Case 2. mate = m(aPa}) = ol + o tah ™ 4 aal
Therefore it corresponds to the line joining (m,n,0) and (n,m,0). That is, each monomial
corresponds to a lattice point (and vice versa) on the line obtained by joining (m,n,0) and its

reflection along a1 = as.

a1 = a9

(m,n,0) —e—0—0—0—0—9—0—0—0—90—0—9 (1n,m,0)

n—1

Ao = mo(zPal) = aTal + o ah " oy 4 4 2Pah

Case 3. mox

Therefore it corresponds to the line joining (m,n,0) and (m,0,n). That is, each monomial
corresponds to a lattice point (and vice versa) on the line obtained by joining (m,n,0) and its

reflection along as = as.
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a1 = a9

A

Case 4. moae = momy (2al) = mo(aVx} + &7 tah ™ 4 - 4 ahal?)

Since mo(zal + a7 et 4 atal) = mo(aal) +mo(a T el ) o b (2, we
can apply the same correspondence in Case 3. for each key in the summand. Therefore g,z >
corresponds to the m —n + 1 lines obtained by reflecting each lattice point on the line joining
(m,n,0) and (m,0,n) along as = az. That is, each monomial corresponds to a lattice point
(and vice versa) in the trapezoid obtained by first reflecting (m, n,0) along the line a; = az
followed by reflecting the resulting line along as = ag as shown below:

First reflect along a; = as and get a line joining (m,n,0) and (m,0,n):

a] = az

(m,n,0) o—0—0—0—0—0-0—0—0—0—0—0 (n,m,0)

az = as Ry R3 ap = as
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Then reflect the line along as = as:

a1 = a9

(m,n,0) (n,m,0)

0 00000 00
as = as ..Rl......}g a; = as
0 00006 6000
CC I I B B B
@ ®©® 0 O

Note that there is another case where the trapezoid does not have any point in R5 or Rg:
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Case 5.

a1 = ag

(n,0,m)

Indeed, the trapezoid has at least a point in R5 or Rg if and only if m > 2n (one can prove

that by locating the mid-point of the line joining (n,m,0) and (n,0,m).)

-1
mxte = myme(2Pal) = m (2P ad + P al e + -+ 2k

Similar to Case 4., it corresponds to the lattice points in the trapezoid formed by first reflecting
(m,n,0) along as = ag followed by reflecting the resulting line along a; = as. The trapezoid
has at least a point in Ry or Rg if and only if 2n > m. The trapezoid is as follows (we just
shade the region using dotted pattern for convenience, but the actual correspondence should

be lattice points in the shaded region including the boundary):

For 2n < m:
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o = ag

(m,0,n)

ayp = ag

a1 = as

For 2n > m:

Ry
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ayp = ag

R4 R6

Case 6. Tig12* e = mymom (x2h) = 71 (momy (27 28))

First recall that by [Proposition 2.1| m;s; = (1 + 6;)s; = s; + 0;8; = s; — 6;, hence m;s; + m; =

Si_9i+(1+0i):3i+1-

For example, when i = 1, m(2¢2}) + mi(ab2g) = 292} + 242$ for any and any integers

a>b>0. Hence my(z%29) = 2¢ab + 2528 — w1 (x§2h).

We can plot 7 (z8z%) as:

87



a1 = a9

-1-1-1-1-1{1-1-1-1-1-1
(a,b,0) O—0-0-0-0-0-0—0-0-0-00—0 (,a,0)

as = as R1 R3 a; = as

and 7y (2§xb) + 7 (2422) as

(a,b,0) @ ® (b,a,0)

az = ag R, R ay = as

Now consider 721 (x]*x) = 71 (721 (2]28)).

By Case 4., we have m; ("2]) as a trapezoid as follows:
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a1 = ag

(m,n,0) (n,m,0)

@0 00000 0 00
as = as °°R1°°....f§ a1 = as
00000 60 00
CIC I I B B B
e ®© 00 O

eego00e0
e00000o00
e0o0o0 o000

Rs

oS

(n,0,m)

Apply 71 to each lattice points in the trapezoid is equivalent to reflecting the trapezoid along
a; = as and get a hexagon with multiplicities on the points. Consider the multiplicity of
a lattice point (a1, as,as) in the hexagon with a1 > as. The multiplicity of its ‘a; = ao’-
reflection, namely, (ag,a1,a3) is the same. Recall that for each ‘a; = a} - reflection pair in
the trapezoid region (i.e. (a.b,c) and (b,a,c)), applying 71 to both of them results in the
two points themselves. So the multiplicity of the lattice points increases by 1 ‘horizontally’
from the boundary, starting from 1, until it first hits the line joining (m,n,0) and (0,n,m) or
the line joining (n,m,0) and (n,0,m) (i.e. hit either of the lines in region a; > as), then it

becomes stable. Here is an example for m > 2n:
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The monomials corresponding to the lattice points on the red boundary have coefficient 1
in the key polynomial, and those monomial corresponding to the lattice points on the blue
boundary have coefficient 2 and so on, while those corresponding to the lattice points in the
inner most triangle (the orange region) have coefficient n + 1 for m > 2n (and m —n + 1 if

m < 2n).

If we also plot the multiplicity (with zy -plane being the Coxeter arrangement and z-axis

represents the multiplicity), we get a polytope as follows:

90



/< ay = as

Note: One can also start with w5 and apply 72 on each lattice point in the trapezoid corre-

sponding to w19 and form ma15 to check that w91 = ma1s.

4.1.2 Demazure atoms and polytopes

In this section, we will discuss how one can obtain a polytope from a Demazure atom. Again, we
focus on the case where the shape of the atom is a weak composition of length 3 with at least one
zero part.

Let a be a weak composition with A, = (m,n,0), for some integers m > n > 0. Then there are

exactly 6 key polynomials obtained from )\, namely:
.’EAQ s 91$>\“ N (92.13)\‘1 s 921Z‘A“ s 91233)\” s 91213?)\" .
We now plot each of these 6 Demazure atoms in the Coxeter arrangement:

Case 1. z*e = z"x%, so it corresponds to the point (m,n,0) in R;:

a1 = a9

(m,n,0) ®

a9 = ag Rl
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Case 2. x> = 0y (zal) = a7 tah ™ 4 2202 o gl
Hence each monomial corresponds to a lattice point except (m,n,0) (and vice versa) on the

line obtained by joining (m,n,0) and its reflection along a; = as.

a1 = a9

(m,n,0) 0—e—e—0—0—0—9—0—0—0—0—0—0 (1,Mm,0)

az = as R, R ay = as

This also shows that m; = 6; +1

Case 3. Ooate = Oy(aV'x}) = aPad tas + ol 2ad + - + aal
Therefore it corresponds to the line joining (m,n,0) and (m,0,n) excluding (m,n,0). That
is, each monomial corresponds to a lattice point except (m,n,0) (and vice versa) on the line

obtained by joining (m,n,0) and its reflection along as = as.

a1 = a9
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This also shows mg = 05 + 1

Case 4. Oo1ate = 026, (2ah) = O (2T L2t + 272202 4. apal)

Since O (7"t i T b2l 2 atalt) = Oy (a7 el T 400 (2 22l ) b - o (a2,
we can apply the same correspondence in Case 3. for each atom in the summand. Therefore
Ba12 > corresponds to the m — n + 1 lines obtained by reflecting each lattice point except
(m,n,0) on the line joining (m,n,0) and (m,0,n) along az = az. That is, each monomial
corresponds to a lattice point (and vice versa) in the ‘semi-open’ trapezoid obtained by first
reflecting (m, n, 0) along the line a; = a9 followed by reflecting the resulting line along as = as
as shown below:

First reflect along a1 = ay and get a line joining (m,n,0) and (m,0,n):

a] = a2

(m,n,0) 0—o—0—0—0—0+0—0—0—0—e—o (n,Mm,0)

as = as Ry R3 a1 = as

Then reflect the line along as = as:
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a1 = a2

(m,0,n) Q ® @9 © © & @
e 0000 0 00O

(n,0,m)

Note that there is another case where the trapezoid does not have any point in R5 or Rg:
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a1 = a9

As Case 4 in[Section 4.1.1} the trapezoid has at least a point in Ry or Rg if and only if m > 2n

(one can prove that by locating the mid-point of the line joining (n,m,0) and (n,0,m).)

Again, we can illustrate mo; = 14 61 + 03 + 051:
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a1 = ag

01 (" xh)

(x2%) : (m,n,0) (n,m,0)

@0 00000 0 00
as = as ..,{1......}% a1 = as
00000 60 00
CIC I I B B B
e ®© 00 O

O (2722

(m,0,n) ..];’2....
o0 000 0 00O

Rs

(n,0,m)

Ao — _ n—1 n—2_2
Case 5. O1oz™> = 0102(x'xl) = 61 (22 23 + 2xy ™ “25 + - - - + 2"xf)

Similar to Case 4., it corresponds to the lattice points in the semi-open trapezoid formed by
first reflecting (m,n,0) along ay = as followed by reflecting the resulting line along a; = as.
The trapezoid has at least a point in R4 or Rg if and only if 2n > m. The trapezoid is as follows
(we just shade the region using dotted pattern for convenience, but the actual correspondence

should be lattice points in the shaded region including the solid boundaries.):

For 2n < m:
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ayp = ag

a1 = as

(n,0,m)

Ry Rs

Ry Re

For 2n > m:
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ayp = ag

Ry Re

We again illustrate how to decompose 715 into 1 + 61 + 05 + 615.
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ayp = ag

01 (" xh)
(m,n,0)

m (" m:0)

o = ag : a1 = as

a2}

(m,0,n)

(n,0,m)

Ry Rs

Ry Re

Case 6. 019177 = 01020 (z'23) = 01 (020, (z°2%))
First recall that by [Proposition 2.1]6;s; = —6;, hence 6;s; + 6; = 0.
For example, when i = 1, 0y (x¢2%) + 0;(x82%) = 0 for any and any integers a > b > 0.
We can plot 6 (zb2%) as:

a1 = ag

1-1-1-1-141-1-1-1-1-1-1
(a,b,0) O—0-0—0-0—0-0-0-00000 ()a0l)

az = ag Ry R3 ay = as

Now consider 0121 (2 xh) = 61 (021 (x*2h)).
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By Case 4., we have 691 (27'2]) as a trapezoid as follows:

a1 = ag

Apply 01 to each lattice points in the semi-open trapezoid is equivalent to reflecting the
trapezoid along a; = as and get a hexagon with multiplicities on the points. Recall that each
"‘a; = af - reflection pair in the trapezoid region (i.e. (a.b,c¢) and (b, a,c)) vanishes under
0,. Hence the multiplicity stays constant along the horizontal line perpendicular to the line

a1 = ag. Here is an example for m > 2n:
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ayp = ag

The monomials corresponding to the lattice points on the red boundary have coefficient 1
in the key polynomial, and those monomial corresponding to the lattice points on the blue
boundary have coefficient 2 and so on, while those corresponding to the lattice points in the

inner most triangle (the orange region) have coefficient n for m > 2n (and m —n for m < 2n).

If we also plot the multiplicity, with xy -plane being the Coxeter arrangement and z-coordinates
being the multiplicity, we get a polytope similar to the one in Case 6 in but with
different heights (as not all the multiplicity of the monomials in an atom is the same as those

in keys).

One can verify that 6127 = 0212 by starting with 6,5 instead. Also one can get the decom-
position w97 = 1 4+ 601 + 03 + 615 + 021 + 0121 by putting the figures shown in this section

together.
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4.2 Products of two Demazure characters

Let m >n >0 and k > 1 > 0 be integers.

afal i (efah) o (afah) mor(afah) | mo(riah) | miai(zzh)
3.13 3.13/13.18
(ii) 3.18
4.2.3 3.18
o1 (2l 4.2.4 3.18

mia(aah)

3.18

3.18

Table 4.1: Decomposition of products of keys into atoms

In the following sections, we will first state the result and one can verify by expanding both sides
directly. We will state some other methods (either using operators or polytopes) to verify or interpret
the decomposition in the first two sections. These methods are applicable to all cases.

1 if (myn), (k1) € S

Also, we denote the indicator function as 1g =

0 otherwise.

4.2.1 i (a7ah) x mo(akah)

min{m—n,k} min{l,s+n}
mi(pe) x ma(rhad) = > S e
s=0 t=max{0,s—(k—1)}
min{l, (m—n)— (k-1)}
+ Lmonsk-n > Oy (2 bkt
t=0

min{l—n,m—n}
m+k—s_Jl _n+s
+ 1y Z 02 (] Ty ")
s=0

We can also use polytopes to verify the atom positivity of m (z72%) x mo(z¥xb).

The polytope corresponding to 71 (a]*«%) is the line:
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a1 = ag

(m,n,0) (n,m,0)

a9 = ag R1 R3 a]p = as

The polytope corresponding to o (a’fxé) is the line:

a]; = ag
(k,1,0)
a2 = as Rl
(k,0,1)
Ry
a] = as

Hence the product is a parallelogram:
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(m+k,n+1,0) (n+k,m+1,0)

(m+k,n,l) (n+k,m,l)

There are different possible positions for the parallelogram:

1. The whole parallelogram lies in R;:

a1 = a9

(m+k,n+1,0) (n+k,m+1,0)

(m+k,n,l) (n+k,m,l

a2 = asg

R’

This case corresponds to m —n < k — [ and | < n in the expansion.

2. The parallelogram lies in R; and Rg:
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ay = az

(m+k,n+1,0) (n+k,m+10)

(m+k,n,1) (1 +k,m,1)

az = as

Rl RS

Then we can decompose the parallelogram as:

(m+k,n+1,0) (n+k,m+10)

(m + k,n,l) (m + k,m,1)

az = as

ay = as
Rl R3

Here the green region is obtained by applying 67 on each lattice point on the black line. Notice
that the black line is in R;, meaning that every monomial corresponding to the a lattice point

is a dominating monomial.

Hence we can decompose the parallelogram into the yellow region in R; and 6, of the black
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line, all of which are positive sum of atoms.

This corresponds to the case when m —n > k —1[ and [ < n. Note that there are two different
cases for the positions for the line a1 = ag, either (n + &k, m,!l) is on the left of the line or on
the right of the line. They correspond to the two cases in min{l, (m —n) — (k — 1)} in the
upper limit of the summation. In fact, one can locate the black line simply by flipping along

a1 = az the boundary of the parallelogram which lies in Rg.

3. The parallelogram lies in Ry and Rs:

a; = ag

(m+k,n+1,0) (n+k,m+1,0)

This case corresponds to m —n < k — [ and [ > n in the expansion.

Similar to the previous case when the parallelogram lies in R; and Rs, we can decompose the
parallelogram into the yellow region which corresponds to a sum of dominating monomials and
the green region which corresponds to #5 of a sum of dominating monomials (corresponding

to the lattice points on the black line obtained by reflecting along the line as = agz the ‘base’
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of the parallelogram in Rs.

Again there are also two cases: either (n + k, m,l) is above or below the line as = as, corre-
sponding to the upper limit min{l —n, m —n} of the summation in the third summand in the

expansion.

4. The parallelogram lies in Ry, Ry and Rs:

a1 = ag

(m+k,n+1,0) (n+k,m+1,0)

This case corresponds to m —n > k — [ and [ > n in the expansion and the three regions
correspond to the three summands in the expansion.
4.2.2  m (7)) x 7o (xhal)
We first write the decomposition of (z*z3) x 7191 (xFx}) as follows:
(x7ah) X mio1 (2 wh) = Ag(x) + 01 A1 () + O2A5(x) + 21 A1 (2) + O12A12(2) + O121 A1on (),

where Aj(z) = Z ata? with af € Z for I €{0,1,2,12,21,121}.
AEPar

By [Theorem 3.18) (zx7*x%) x w121 (z¥zL) is key positive and hence atom positive.
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i.e. Aj(z) is a sum of dominating monomials with integer coefficients. Then

m(a]'ah) x mo (afah) =

min{m,k} min{r,m—n,k—1}
Ao(@) + Y Y. GatEragt )
r=0  s=max{0,r—(n+l)}
min{m,k}

+0242(7) + Limin{m,k}>nt1} Z Oro (] Tyt
r=n+Il+1

+021 A1 () + 1 k>msntrybi21 (zfayal ™).

One can check the coefficients using polytopes as in [Section 4.2.1] We will show a case where

k> m >n+1 as an example (Note that even k > m > n +1 has several subcases). Other cases can

be easily deduced similarly.

ma1(z¥xh) corresponds to:

ag = asg

(k,0,1)

a1 = a9

So 71 (z7' ) x w1 (x¥zl) is equivalent to m — n + 1 trapezoids along the line perpendicular to

a1 = ay as follows:
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(I +n,k+m,0)
(k+m,l+n,0)

(k+ m,n,l)

(I+m,n,k) (I +mn,m,k)

We can draw the product as:
a1 = a9

(k+m,l+n,0) (I+n,k+m,0)

(I+m,n,k) (I +n,m, k)
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Here the number next to each line represents the multiplicity of the lattice points lying on that
line (i.e. the number of trapezoids that the lattice point lies, which is also equal to the coefficient
of the monomial corresponding to that lattice point) like what we have shown in Case 6. in
Also all the lattice points in the red region have the maximum multiplicity.

We can now decompose the polytope (with multiplicity) as follows:
a1 = az

(k+m,l+n,0) (I+n,k+m,0)

(I +m,n, k) (I +n, m, k)

One can check that the multiplicity of each lattice point in the original yellow region is at least the
multiplicity of the sum of the multiplicities in all other colored regions. This ensures the remaining
points in Ry still corresponds to a positive sum of dominating monomials (i.e. Ag is a positive sum
of some dominating monomials).

We can also check some of the coefficients by using operators.

Suppose

m (@' ah) x mor (zfah)

= Boy(z) + 01B1(z) 4+ 02Ba() + 021 Ba1(x) + 612B12(x) + 0121 B121(2).
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By [Lemma 2.6| and [Proposition 2.1} after applying m; on both sides, we get:

mi(my (2] xy) x Wzl(mlfxlz))
= 7T1(7T21($]1€9512) x (27" 2y))
= o (ahab) x m (@ al) + simoy (2hal) x Oy (2 xh)

= mzn(ayay) x m(a]'zh)
and

m1(Bo(x) + 61B1(x) + 02B2(x) + 021 Ba1(x) + 012B12(x) + 6121 B121())

= 77130(30) + 7719282(33) + 7T1921321($).

Therefore Wl(ﬂl(.finxg) X Fgl(l'lfl'lg)) = 7T1.B()(CE) + 7T102B2(£L’) + 7T1921B21(£L‘).

Now apply 71 on both sides of

(:CTJZS) X 7T121($’f£1712) = Ao(iﬂ) —+ 91A1 (’I’) —+ 92142(1’) —+ 021A21($) —+ 0121412(1‘) + 912114121(3’]),

we get
m ((27'25) X mia1 (xfah))
=m1(Ao(z) + 0141 () + 02A2(x) + 621 A21(z) + O12A12(x) + b121 A121(2))
:Wle(I) + 7T192A2($) —+ 7T1921A21($).
Since

m (2 @y) X w1 (2fxh))
=m (2 @) X w1 (2 xh) + sy (2 @h) X ymi01 (2fah)

m_.n k_l
=m (o' zy) X m21(2773),
we can conclude that

7T1A0({E) —+ 71'102142(56) —+ 7T1021A21(JC) = 7T1B0(1‘) —+ 7T192B2(SC) —+ 7T1921B21(£C).
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Expand both sides as a sum of atoms:

Ao(.’E) + 91A0(£L') + 02A2($) + 9192A2(.’E) + 921A21(1’) + 01921A21($)

:Bo(x) + 91B0((E) + HQBQ(CE) + 019232(%) + 921321(%) + 91021321(1’)

and thus

Ao(a?) + 01A0(Z‘) + 02142(33) + 912142(:13) + 021A21($) + 91211421(:13)

:Bo(l‘) + 0130(.73) + QQBQ(JZ) + 012B2(l‘) + 921321(33) =+ 9121321(1‘).

Since the set of all atoms form a basis by [item 3| in [Theorem 2.8 we have Ay = By, As = B>

and A21 = B21.

4.2.3 my(aal) x mo(ahal)

With the same notation in [Section 4.2.2 we have

k.l
mo (a7 wy) X Ta(r7 )
min{m,k} min{n+Ii,m+k—r}

= Ao(x) + 61 A1 (x) + Y > O (xS 508 ) + 015 A (1)
r=0  s=max{l,n,r,(n+l)—r}
min{m,k}
+ ]]-{n+l2max{m,k}} Z 921(9C?+l$31+k7r$§) + l{n+l>k>m}9121(m?+l$]2€‘r3m)~
r=m-+k—n—I

4.2.4  mpo(aTal) x o (2hab)

With the same notation in we have

mio (7' 2y) X may (2 h)
min{m—n,l}

= (1 + 601 + 92)A0(£E) + 921A1($) + 912A2(x)]l{m+l>k>n} + Z 9121($T+l*txl2fxg+t)'
t=0
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4.2.5 All other cases in the table

We will complete the verification for all other unknown cases in the tables by applying [Lemma 3.106]

and [Cemma 2.6] on verified cases.
(i) As

(') x m (abab)
= mayey x (b))

= m(efal x afah + 2’z x 01 (ziah)),
result follows by
(i)
mi (2 ay) X ma(atas)

= m(a'al x ma(zfah))

= m(ofay x (ahah + 01 (ahah) + Oa(afab) + Ora(atab))),

result follows by
Alternatively, one can use the fact that
mi(afal) x m(afah) = mi(m(2Pad) x m(afah)) = mi(ma(zfah) x m(2{'z3)) by putting
f=ma(ahab), g=m(27x}) and i = 1 inand claim 71 (27'2%) x mio(2h2h) is atom
positive by applying on
7 (2 a) x mo(zhxh) which is verified as atom positive in
(ii)
(@) x ()
= mo(alag x mo(akah)
= mo(aal x afal + a2l al x Oy(xfal)),
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result follows by

(iv) As

mo(a'ah) x mo (zfah)
=ma (2" af X w1 (af}))

=ma(a 'zl X m]fxé +aTxy x Hl(ac’fxlg) +aTxhy x Hg(x’fxlz) + aT'xy x Ggl(x’fxé))

and result follows by [Theorem 3.13

Similar to one can also use the fact that
mo(z{'al) X ma1 (i) = my(me(af'ay) x m(afah)) = ma(m (afah) x ma(2{'2}))

and claim 7 (z'2%) x Ti2(zhxh) is atom positive.

(v) mor(2al) x mor (k) = mo(my (xah) x mo1(2¥2)) and result follows by the case in

4.2.2)

(vi) mia(aad) x ma(zhah) = 7 (me(27wh) x ma(2fxh) and result follows by the case in

4. 2.0l
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Appendix A

Bijection between LRS and LRK

We will illustrate the map ¢ in Section 6 in [3] without proof. The definition and examples are

mostly adapted from [3].

Definition A.1. A wordw = wywsws ... is called contre-lattcie if for any initial sequence wy . .. w;,
there are at least as many occurrences of the number k as the number of k — 1 for each 1 < k <
max{wy, : 1 <m <i}. We call w a regular contre-lattice word if w is contre-lattice and contains

the number 1.
Example 19. 3231321 is a reqular contre-lattice word while 3132321 is not.

Definition A.2. Let §,~ be weak compositions. A Littlewood- Richardson skew skyline tableau (LRS)
of shape §/v is an SSAF of shape §/v with basement entry of the i"-column is b; = 2n + 1 — i,
where n = 1(0) = (), whose reading word (obtained by reading the entries in the cells in ascending
reading order) is a regular contre-lattice word. We use LRS(n) to denote the set of LRS with entries

Definition A.3. Let §,v be weak compositions. A Littlewood-Richardson skew key (LRK) of shape

§/v is an SSAF of shape &/~ with basement entry of the it"-column is b; = n + i, where n = 1(§) =
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(), whose reading word (obtained by reading the entries in the cells in ascending reading order) is

a regular contre-lattice word. We use LRK(n) to denote the set of LRK with entries in [n].

Example 20. An LRS (left) and an LRK (left) with reading word 3231321.

10 9 8 7 6 6 7 8 9 10

We now describe the map ¢ in Section 6 in [3].

Given an LRK K of shape §/v with basement entry of the i'’-column is b; = n + i where
n = 1(§) = I(7), and fix any permutation of §. Then we can find a unique LRS of overall shape
o whose set of entries of each row is the same as that of the given LRK. We can find this LRS by
successively filling the rightmost column strip in the unfilled portion of the diagram for the set of
rows containing the smallest entry of K at each step. Here a column strip means a sequence of cells
chosen in such a way that they appear in the topmost portion of the diagram (i.e. if a cell is chosen,
wither it is the top cell of that column or all cells above it are chosen).

Conversely, given a LRS L of shape §/8 and fix a rearrangement of g, say, v such that 7 < 3,
then we can find the corresponding LRK with basement shape 7 as follows:

Consider the basement diagram K with basement shape 7 on which we will build the desired
LRK. Consider the bottom row of L and start from the largest entry. Place this entry to the leftmost
available cell in the lowest row of K and call the resulting filling as K'. Then place the second
largest entry of the bottom row of L to the leftmost available cell in the lowest row of K, and so
on until all entries of the bottom row of L is filled into the bottom row of the basement diagram.
Repeat this process with each column from the bottom to the top until all non-basement entries of
L have been placed into the diagram.

We illustrate this process by using the LRK in
Example 21. Consider the LRK
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and fix o = (2,4,1,4,3). Then we can get a LRS by filling the entries as

6 7 8 9 10
shown_below:
2
] 1] 1]
— — 2
1 1
109 8 7 6 109 8 7 6 109 8 7 6
3|2
3] [1]
— 312 —
1
109 8 7 6 109 8 7 6

Conversely, if we start from

and fix v = (3,2,1,0,1), we can build the LRK as follows:

109 8 7 6

6 7 8 9 10 6 7 8 9 10 6 7 8 9 10

6 7 8 9 10 6 7 8 9 10 6 7 8 9 10
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6 7 8 9 10 6 7 8 9 10
and we get back the LRK we started from.
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