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ABSTRACT

ON DECOMPOSITION OF THE PRODUCT OF DEMAZURE ATOMS AND DEMAZURE

CHARACTERS

Anna, Ying Pun

James Haglund

This thesis studies the properties of Demazure atoms and characters using linear operators and

also tableaux-combinatorics. It proves the atom-positivity property of the product of a dominating

monomial and an atom, which was an open problem. Furthermore, it provides a combinatorial

proof to the key-positivity property of the product of a dominating monomial and a key using

skyline fillings, an algebraic proof to the key-positivity property of the product of a Schur function

and a key using linear operator and verifies the first open case for the conjecture of key-positivity

of the product of two keys using linear operators and polytopes.
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Introduction

Macdonald [9] defined a family of non-symmetric polynomials, called non-symmetric Macdonald

polynomials,

{Eγ(x1, . . . , xn; q, t)|γ is a weak composition with n parts, n ∈ N}

which shares many properties with the family of symmetric Macdonald polynomials [8]

{Pλ(x1, . . . , xn; q, t)|λ is a partition with n parts, n ∈ N}.

Haglund, Haiman and Loehr [2] obtained a combinatorial formula for Eγ(X; q, t) where X =

(x1, . . . , xn), using fillings of augmented diagram of shape γ, called skyline fillings, satisfying certain

constraints.

Marshall[10] studied the family of non-symmetric Macdonald polynomials using another notation

Êγ(x1, . . . , xn; q, t) := Eγ(xn, . . . , x1; 1
q ,

1
t ). In particular, by setting q = t = 0 in Êγ , one can ob-

tain Demazure atoms (first studied by Lascoux and Schützenberger[6]) Aγ = Êγ(x1, . . . , xn; 0, 0) =

Eγ(xn, . . . , x1;∞,∞). Similarly, one can obtain Demazure characters (key polynomials) by setting

q = t = 0 in Eγ , i.e., κγ = Eγ(x1, . . . , xn; 0, 0) = Êγ(xn, . . . , x1;∞,∞). The set of all Demazure

atoms forms a basis for the polynomial ring, as does the set of all key polynomials.

Haglund, Luoto, Mason, Remmel and van Willigenburg [3], [4] further studied the combinatorial

formulas for Demazure atoms and Demazure characters given by the skyline fillings and obtained

results which generalized those for Schur functions like the Pieri Rule, the Robinson-Schensted-

Knuth (RSK) algorithm, and the Littlewood-Richardson (LR) rule.
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It is a classical result in Algebraic Geometry that the product of two Schubert polynomials can

be written as a positive sum of Schubert polynomials. A representation theoretic proof is also given

recently by using Kráskiewicz-Pragacz modules [13]. However a combinatorial proof of the positivity

property of Schubert polynomials has long been open.

Since every Schubert polynomial is a positive sum of key polynomials [7], the product of two

Schubert polynomials is a positive sum of product of two key polynomials. This suggests one to

study the product of two key polynomials. It is known that the product of two key polynomials is not

key-positive in general. However, it is still a conjecture that whether the product is atom-positive.

This provides a possible approach to a combinatorial proof of the positivity property of Schubert

polynomials by trying to recombine the atoms into keys and hence into Schubert polynomials.

Also, since key polynomials are positive sum of atoms [6], one can study the atom-positivity

properties of the products between atoms and keys or even atoms and atoms to try to prove the

conjecture by recombining the atoms back to keys. In this thesis, we prove that the product of

a dominating monomial and an atom is always atom positive and that the product of a dominat-

ing monomial and a key is always key positive (and hence atom-positive) by using the insertions

introduced in [11] and [3].

In Chapter 1, we will give a brief summary on notations and some results in symmetric groups.

We will introduce Demazure atoms and Demazure keys in Chapter 2 by first defining them using

linear operators and then define them using semi-standard augmented fillings. We will then study

some properties of atoms and characters using both definitions. We also study some properties

among the linear operators and obtain certain useful identities for the proofs in later Chapters.

In Chapter 3, we will set up the tools, namely, words and recording tableaux, that we need to

prove the main results of this thesis in the first 2 sections in the chapter and give the proof in Section

3.3. We then give alternative proofs to known results, namely, the key-positivity of the product of a

dominating monomial and a key in Section 3.4 using results in Section 6 of [3] and the key-positivity

of the product of a Schur function and a key in Section 3.5.
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We will check the first open case of the conjecture of the key-positivity of the product of two key

polynomials in Chapter 4. We first introduce a geometric interpretation of Demazure atoms and

characters in Section 4.1. We then verify the key-positivity of the product of every pair of keys in

this open case in Section 4.2.

We will give a brief summary of the materials from [3] that we use in Section 3.4 in the Appendix.
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Chapter 1

Symmetric group Sn

This chapter gives a brief summary of the terminologies, notations, lemmas and theorems that will

be used in later chapters.

Let [n] = {1, . . . , n} be the set of all positive integers not greater than n. Let Sn be the group of

all permutations on [n], i.e. Sn = {σ : [n] → [n]|σ is bijective} with identity id such that id(j) = j

for all j ∈ [n], and the group product is defined as the composition of functions, that is, for all

σ1, σ2 ∈ Sn, σ1σ2(j) = σ1(σ2(j)) for all j ∈ [n].

Definition 1.1. Let n be a positive integer and 1 ≤ k ≤ n. A cycle of length k, denoted as

(a1, a2, · · · , ak), where a1, a2, . . . , ak are k distinct integers in [n], is a permutation σ ∈ Sn such that

σ(ai) = ai+1 for 1 ≤ i < k

σ(ak) = a1

σ(j) = j if j 6= ai for any 1 ≤ j ≤ k

.
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Example 1. Let k = 3 and n = 5 , then the 3-cycle (2, 5, 3) represents the permutation

σ : 1 7→ 1

2 7→ 5

3 7→ 2

4 7→ 4

5 7→ 3

.

Note that (2, 5, 3), (5, 3, 2) and (3, 2, 5) are all treated as the same cycle.

We say cycles C1 = (a1, . . . , ar) and C2 = (b1, . . . , bk) are disjoint if {a1, . . . , ar}∩{b1, . . . , bk} =

∅. For example, (2, 5, 3) and (1) are disjoint cycles while (2, 5, 3) and (1, 2) are not.

Definition 1.2. A cycle of length 2 is called a transposition (or a reflection). In particular, for

any positive integer n, we call si = (i, i+ 1) ∈ Sn a simple transposition (or a simple reflection) for

1 ≤ i ≤ n− 1.

Proposition 1.1. The simple transpositions in Sn for any integer n > 1 satisfy the following

relations:

(i) s2i = id for 1 ≤ i ≤ n− 2

(ii) sisj = sjsi for |i− j| > 1

(iii) sisi+1si = si+1sisi+1 = (i, i+ 2) for 1 ≤ i ≤ n− 2.

Theorem 1.2. Every permutation is a product of disjoint cycles.

Theorem 1.3. Let n > 1 be an integer. The permutation group Sn is generated by simple transpo-

sitions, that is ,

Sn = 〈s1, s2, . . . , sn−1〉.
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Proof. For any k-cycle, we have (a1, a2, . . . , ak) = (a1, ak)(a1, ak−1) · · · (a1, a2). Also, for 3 ≤ j ≤ k,

(a1, aj) = (aj−1, aj)(a1, aj−1)(aj−1, aj). Hence every cycle can be written as a product of simple

transpositions.

As a result, by Theorem 1.2, every permutation is a product of simple transpositions and thus

Sn = 〈s1, s2, . . . , sn−1〉.

There are several ways to represent a permutation σ ∈ Sn:

1. Two-line notation: σ :=

 1 2 · · · n

σ(1) σ(2) · · · σ(n)


2. One-line notation: σ = σ(1), σ(2), σ(3), · · · , σ(n)

3. Product of disjoint cycles: This follows by Theorem 1.2.

4. Product of simple transpositions: This follows by Theorem 1.3.

Example 2. Consider the permutation σ in Example 1, we can write it as:

1. Two-line notation: σ :=

1 2 3 4 5

1 5 2 4 3


2. One-line notation: σ = 1, 5, 2, 4, 3

3. Product of disjoint cycles: σ = (1)(4)(2, 5, 3).

4. Product of simple transpositions: σ = (3, 4)(4, 5)(3, 4)(2, 3) = s3s4s3s2.

From now on, we will use one-line notation to represent a permutation, i.e.

σ = σ(1), σ(2), σ(3), · · · , σ(n)

unless stated otherwise.

Note that applying a transposition si on the left of a permutation σ means interchanging i and

i+1 in the one-line notation of σ while applying si on the right interchanges entries σ(i) and σ(i+1)

in the one line notation of σ.
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By Theorem 1.3, every permutation σ can be written as a product of simple transpositions.

Hence we can find a decomposition with the shortest length (that is, with the smallest number of

transpositions). For σ 6= id, we call such a decomposition a reduced decomposition of σ.

Definition 1.3. Let n ≥ 2 be an integer and σ ∈ Sn\{id}. Let σ = si1si2 · · · sik be a reduced

decomposition of σ. We call i1i2 . . . ik a reduced word of σ.

Lemma 1.4. Every consecutive substring of a reduced word is also a reduced word.

Proof. Let i1i2 . . . ik be a reduced word. If there is a consecutive substring with length m(≥ 2),

say ir+1 . . . ir+m which is not reduced, then l(sir+1
sir+2

· · · sir+m) < m implying that there ex-

ist j1, . . . , jt, where t = l(sir+1sir+2 · · · sir+m) such that sir+1sir+2 · · · sir+m = sj1sj2 · · · sjt . Then

si1si2 · · · sik can be written as a product of k −m+ t simple transpositions by replacing

sir+1
sir+2

· · · sir+m by sj1sj2 · · · sjt , which contradicts the fact that i1i2 . . . ik is reduced since k −

m+ t < k.

Definition 1.4. Let n be any positive integer and a permutation σ ∈ Sn\{id}. Define the length

of σ, denoted as l(σ), as the number of simple transpositions in a reduced decomposition. Define

l(id) = 0.

Note that reduced decomposition of a permutation is not unique. For instance, s1s3s2s3 =

s1s2s3s2 = s3s1s2s3. By Tit’s Theorem, any reduced word can be obtained by applying a sequence

of braid relations (i.e. item (iii) in Proposition 1.1) on any other reduced word representing the

same permutation.

Definition 1.5. Let n be a positive integer and σ ∈ Sn be a permutation. The pair (i, j) is called

an inversion of σ if i < j and σ(i) > σ(j). Denote inv(σ) as the number of inversions of σ.

Lemma 1.5. Let n ≥ 2 be an integer. For any permutation σ ∈ Sn and a simple transposition si (
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1 ≤ i ≤ n− 1), we have

inv(siσ)− inv(σ) =


−1 if (σ−1(i+ 1), σ−1(i)) is an inversion pair of σ

1 else

.

Proof. Let {x, y} = {σ−1(i), σ−1(i+ 1)} where x < y.

Note that σ(w) = siσ(w) for w ∈ [n]\{x, y}. Also if σ(w) > i, then as w 6= x, y, σ(w) 6= i+1 and

hence σ(w) > i+ 1 > i. As a result, either siσ(w) = σ(w) > i+ 1 > i or i+ 1 > i > σ(w) = siσ(w)

for w 6= x, y. This means that any pair of inversion (j1, j2) of σ, where {j1, j2} 6= {x, y}, is also an

inversion in siσ. Hence the only difference between inv(siσ) and inv(σ) comes from the pair (x, y).

Since (x, y) is an inversion in exactly one of σ and siσ, we have

inv(siσ)− inv(σ) =


−1 if (σ−1(i+ 1), σ−1(i)) is an inversion pair of σ

1 else

.

Proposition 1.6. Let σ = si1si2 . . . sik (not necessarily reduced). Then k ≡ inv(σ) (mod 2).

Proof. By Lemma 1.5, we have

inv(si1si2 . . . sik) ≡ inv(si2si3 . . . sik) + 1 (mod 2)

≡ inv(si3si4 . . . sik) + 2 (mod 2)

...

≡ inv(sik) + k − 1 (mod 2)

≡ k (mod 2)

and hence k ≡ inv(σ) (mod 2).

Lemma 1.7. Let n > 1 be an integer and σ ∈ Sn be a permutation. Let si be a transposition in

Sn, where 1 ≤ i ≤ n− 1. Then |l(siσ)− l(σ)| = 1.
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Proof. By Theorem 1.3 and Definition 1.4, we can write σ as a product of l(σ) simple transposi-

tions. Hence by Lemma 1.5, we have l(σ) ≡ inv(σ) (mod 2). Similarly, l(siσ) ≡ inv(siσ) (mod 2).

Therefore, l(siσ)− l(σ) ≡ inv(siσ)− inv(σ) ≡ 1 (mod 2) and we get l(siσ) 6= l(σ).

Let siσ = si1si2 · · · sil(siσ) be a reduced decomposition. If l(siσ) < l(σ)− 1, then σ = si(siσ) =

sisi1si2 · · · sil(siσ) and hence l(σ) ≤ l(siσ) + 1 < l(σ)− 1 + 1 = l(σ) which leads to a contradiction.

As a result, l(siσ) ≥ l(σ) − 1. Together with the fact that l(siσ) ≤ l(σ) + 1 and l(siσ) 6= l(σ), we

have |l(siσ)− l(σ)| = 1.

Lemma 1.8. Let n > 1 be an integer and σ ∈ Sn. l(siσ) = l(σ) − 1 if and only if there exists a

reduced decomposition sr1sr2 . . . srl(σ) such that r1 = i.

Proof. If σ has a reduced decomposition sr1sr2 . . . srl(σ) such that r1 = i, then

siσ = sisr1sr2 . . . srl(σ) = s2i sr2 . . . srl(σ) = sr2 . . . srl(σ)

by item (i) in Proposition 1.1. By Lemma 1.4, we know that sr2 . . . srl(σ) is reduced and hence

l(siσ) = l(σ)− 1.

If l(siσ) = l(σ) − 1, then consider a reduced decomposition of siσ, say siσ = si1 · · · sil(σ)−1
,

by item (i) in Proposition 1.1, applying si on both sides gives σ = sisi1 · · · sil(σ)−1
with exactly

l(σ) transpositions, which implies sisi1 · · · sil(σ)−1
is a reduced decomposition of σ. Hence σ has a

decomposition with si as the leftmost simple transposition.

Proposition 1.9. l(σ) = inv(σ) for any permutation σ.

Proof. We first consider σ−1(1). If σ−1(1) 6= 1, then all the integers before 1 in σ,

i.e. σ(1), . . . , σ(σ−1(1)−1), are all larger than 1, and hence (r, σ−1(1)) are inversions of σ for all 1 ≤

r < σ−1(1). So by interchanging 1 with σ(σ−1(1)−1), and then with σ(σ−1(1)−2) until with σ(1), we

can put 1 to the leftmost of the new σ (the sigma after interchanging 1 with the σ−1(1)−1 integers).

Indeed, by a previous note, the procedure described above is exactly applying transpositions on the

right of σ, resulting in a new permutation, call it σ(1) = σsσ−1(1)−1sσ−1(1)−2 · · · s1.

9



Note that each of the above procedure of moving 1 to the front decreases the the number of

inversions by exactly 1.

We then use the same procedure by moving 2 to the second leftmost position of σ(1) by applying

σ(1)−1(2)− 1 simple transpositions on the right of σ(1) and get σ(2).

Continue this process until we get the σ(n−1) which has no inversion, i.e. σ(n−1) = id. Since

each time we apply the interchanging procedure, we are actually applying a simple transposition

on the right and also decrease the number of inversion by exactly 1, we have performed exactly

inv(σ) interchanging procedures from σ to id. As a result, we get σsi1si2 · · · siinv(σ) = id and hence

σ = siinv(σ) · · · si1 . (This also proves Theorem 1.3) which implies l(σ) ≤ inv(σ).

Let sr1 · · · srl(σ) be a reduced decomposition of σ. By Lemma 1.5, we know inv(sr1 · · · srl(σ)) ≤

inv(sr2 · · · srl(σ)) + 1 ≤ · · · ≤ inv(srl(σ)) + l(σ)− 1 = l(σ) and hence we get inv(σ) ≤ l(σ).

As a result, l(σ) = inv(σ).

Note that n, n− 1, · · · , 1 has the longest length in Sn as it has the maximum number (namely,n
2

) of inversions.

Corollary 1.10. Let σ = n, n − 1, · · · , 1. Then for any i ∈ [n − 1], there is a reduced word of σ

starting with i.

Proof. Let i ∈ [n− 1]. Since |l(siσ)− l(σ)| = 1 and l(σ) > l(siσ) as σ has the longest length among

all permutations in Sn, we have l(siσ) = l(σ)− 1. Hence result follows by Lemma 1.8.

There are several equivalent definitions of Bruhat order on Sn and we will use the reduced word

definition. See [1] for further discussion.

Definition 1.6. Let n be a positive integer. Define a partial ordering ≤ on Sn such that σ ≤ γ

if and only if there exists a reduced word of σ which is a substring (not necessarily consecutive) of

some reduced word of γ.

10



Lemma 1.11. Let k ≥ 2 be a positive integer and i1i2 . . . ik be a reduced word. Let σ′ = si2 · · · sik

and σ = si1σ
′. Then {τ |τ ≤ σ} = {si1γ, γ|γ ≤ σ′, l(si1γ) = l(γ) + 1}.

Proof. First note that as i1i2 . . . ik is reduced, by Lemma 1.4, i2 . . . ik is a reduced word of σ′. Hence

σ′ ≤ σ.

Consider γ such that γ ≤ σ′ such that l(si1γ) = l(γ) + 1.

Since γ ≤ σ′ and σ′ ≤ σ, we have γ ≤ σ. Also, γ ≤ σ′ implies γ has a reduced word which

is a substring of i2 . . . ik, say ir1ir2 . . . irl(γ) where 2 ≤ r1 < r2 < · · · < rl(γ) ≤ k. Then si1γ =

si1sir1 sir2 · · · sirl(γ) which is reduced as l(si1γ) = l(γ) + 1. Hence si1γ ≤ σ (as i1ir1 . . . irl(γ) is a

substring of i1i2 . . . ik).

We thus have {τ |τ ≤ σ} ⊇ {si1γ, γ|γ ≤ σ′, l(si1γ) = l(γ) + 1}.

Now consider τ such that τ ≤ σ. Let ij1ij2 . . . ijl(τ) be a reduced word of τ , where 1 ≤ j1 <

j2 < · · · < jl(γ) ≤ k. If j1 6= 1 for any reduced word of τ , then by Lemma 1.8, l(si1τ) 6= l(τ) − 1.

By Lemma 1.7, l(si1τ) = l(τ) + 1. Also, 2 ≤ j1 < j2 < · · · < jl(γ) ≤ k implies τ ≤ σ′. As a result,

τ ≤ σ′ and l(si1τ) = l(τ) + 1 if j1 6= 1 for any reduced word ij1ij2 . . . ijl(τ) of τ .

If j1 = 1, then we can write τ = si1τ
′ where τ ′ = sij2 sij3 . . . sijl(τ) which is also a reduced

decomposition by Lemma 1.4. Since 1 = j1 < j2, we have τ ′ ≤ σ′. Also l(τ ′) = l(σ) − 1 which

implies l(si1τ
′) = l(σ) = l(τ ′) + 1. Hence τ = si1τ

′ where τ ′ ≤ σ′, l(si1τ
′) = l(τ ′) + 1 if j1 = 1 for

some reduced word ij1ij2 . . . ijl(τ) of τ .

Therefore {τ |τ ≤ σ} ⊆ {si1γ, γ|γ ≤ σ′, l(si1γ) = l(γ) + 1} and result follows.

11



Chapter 2

Demazure atoms and characters

2.1 Linear operators

Let P be the polynomial ring Z[x1, x2, . . . ] and S∞ be the permutation group of the positive integers,

acting on P by permuting the indices of the variables. For any positive integer i, define linear

operators

∂i :=
1− si

xi − xi+1

πi := ∂ixi

θi := xi+1∂i

where si is the elementary transposition (i, i+ 1) and 1 is the identity element in S∞.

Note that for f ∈ P , (xi−xi+1) is a factor of (1− si)f and hence ∂if ∈ P . Therefore, πif, θif ∈ P .

Example 3. Let i = 2 and consider the monomials x51x
4
2x3, x31x

2
3 and x1x

2
2x

2
3, we have

1 a) ∂2(x51x
4
2x3) =

x51x
4
2x3 − s2(x51x

4
2x3)

x2 − x3
=
x51x

4
2x3 − x51x2x43
x2 − x3

= x51(x32x3 + x22x
2
3 + x2x

3
3)

b) π2(x51x
4
2x3) = ∂2x2(x51x

4
2x3) = ∂2(x51x

5
2x3) = x51(x42x3 + x32x

2
3 + x22x

3
3 + x2x

4
3)

c) θ2(x51x
4
2x3) = x3∂2(x51x

4
2x3) = x51(x32x

2
3 + x22x

3
3 + x2x

4
3)
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2 a) ∂2(x31x
2
3) =

x31x
2
3 − s2(x31x

2
3)

x2 − x3
=
x31x

2
3 − x31x22
x2 − x3

= −x31(x2 + x3)

b) π2(x31x
2
3) = ∂2x2(x31x

2
3) = ∂2(x31x2x

2
3) = −x31x2x3

c) θ2(x31x
2
3) = x3∂2(x31x

2
3) = −x31(x2x3 + x23)

3 a) ∂2(x1x
2
2x

2
3) =

x1x
2
2x

2
3 − s2(x1x

2
2x

2
3)

x2 − x3
=
x1x

2
2x

2
3 − x1x22x23
x2 − x3

= 0

b) π2(x1x
2
2x

2
3) = ∂2x2(x1x

2
2x

2
3) = ∂2(x1x

3
2x

2
3) = x1x

2
2x

2
3

c) θ2(x1x
2
2x

2
3) = x3∂2(x1x

2
2x

2
3) = 0
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Proposition 2.1. For any positive integer i, we have

1. πi = θi + 1;

2. πiθi = θiπi;

3. si∂i = −∂isi = ∂i, siπi = πi, πisi = −∂ixi+1, siθi = xi∂i, θisi = −θi;

4. ∂i∂i = 0, ∂iπi = θi∂i = 0, πi∂i = −∂iθi = ∂i;

5. πiπi = πi, θiθi = −θi, πiθi = θiπi = 0.

Proof. Let f ∈ P . Then

πif = ∂ixif =
xif − si(xif)

xi − xi+1

=
xif − xi+1sif

xi − xi+1

=
xi+1f − xi+1sif + (xi − xi+1)f

xi − xi+1

= xi+1
f − si(f)

xi − xi+1
+ f

= xi+1∂if + f

= (θi + 1)f

and hence πi = θi + 1.

By item 1, we have πiθi = (θi + 1)θi = θiθi + θi = θi(θi + 1) = θiπi, proving item 2.

si∂if = si(
f − sif
xi − xi+1

) =
sif − sisif
xi+1 − xi

=
sif − f
xi+1 − xi

=
f − sif
xi − xi+1

= ∂if .

∂isif =
sif − si(sif)

xi − xi+1
= − f − sif

xi − xi+1
= −∂if .

siπif = si(∂ixif) = si∂i(xif) = ∂i(xif) = πif .

πisif = ∂i(xisif) = ∂isi(xi+1f) = −∂ixi+1f .

siθif = si(xi+1∂if) = xisi∂if = xi∂if .

θisif = xi+1∂isif = −xi+1∂if = −θif .

Hence, si∂i = ∂i, ∂isi = −∂i, siπi = πi, πisi = −∂ixi+1, siθi = xi∂i, θisi = −θi and item 3

follows.
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By item 3, ∂i∂if =
∂if − si∂if
xi − xi+1

=
∂if − ∂if
xi − xi+1

= 0.

Hence ∂iπif = ∂i∂ixif = 0 and θi∂if = xi+1∂i∂if = 0.

Then πi∂if = (1 + θi)∂if = ∂if + θi∂if = ∂if .

Also, ∂iθif = ∂i(πi − 1)f = ∂iπif − ∂if = −∂if .

As a result, ∂i∂i = ∂iπi = θi∂i = 0, πi∂i = ∂i, ∂iθi = −∂i, proving item 4.

Now by item 4, we have

πiπif = (πi∂i)(xif) = ∂i(xif) = πif ,

θiθif = (xi+1∂i)θif = xi+1(∂iθi)f = −xi+1∂if = −θif ,

Therefore θiπif = θi(θi + 1)f = θiθif + θif = −θif + θif = 0.

Furthermore, πiθif = (θi + 1)θif = θiθif + θif = 0 and item 5 follows.

Proposition 2.2. ∂i∂j = ∂j∂i, πiπj = πjπi and θiθj = θjθi for |i− j| ≥ 2.

Proof. Let f ∈ P and i, j ∈ N such that |i− j| ≥ 2. Then

∂i∂jf =
∂jf − si∂jf
xi − xi+1

.

Since sisj = sjsi, we have

si∂jf = si
f − sjf
xj − xj+1

=
sif − sisjf
xj − xj+1

=
sif − sjsif
xj − xj+1

= ∂jsif.

Hence

∂i∂jf =
∂jf − ∂j(sif)

xi − xi+1

=
∂j(f − sif)

xi − xi+1

=
(f − sif)− sj(f − sif)

(xj − xj+1)(xi − xi+1)

=
f − sif − sjf − sisjf
(xi − xi+1)(xj − xj+1)

.

Similarly ∂j∂if =
f − sjf − sif − sjsif
(xj − xj+1)(xi − xi+1)

=
f − sif − sjf − sisjf
(xi − xi+1)(xj − xj+1)

.
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Thus ∂i∂j = ∂j∂i.

Note that xi∂jf = xi
f − sjf
xj − xj+1

=
xif − xisjf
xj − xj+1

=
xif − sjxif
xj − xj+1

= ∂jxif , that is, xi∂j = ∂jxi.

Similarly, xj∂i = ∂ixj .

Hence we have

πiπjf = ∂ixi∂jxjf = ∂i∂jxixjf = ∂j∂ixixjf = ∂j∂ixjxif = ∂jxj∂ixif = πjπif.

θiθj = (πi − 1)(πj − 1) = πiπj − πi − πj + 1 = πjπi − πi − πj + 1 = (πj − 1)(πi − 1) = θjθi.

Proposition 2.3. For any positive integer i, linear operators ∂i, πi and θi satisfy the braid relation.

That is, ∂i∂i+1∂i = ∂i+1∂i∂i+1, πiπi+1πi = πi+1πiπi+1 and θiθi+1θi = θi+1θiθi+1.

Proof. Let f ∈ P and i ∈ N.

∂i∂i+1f

=
∂i+1f − si∂i+1f

xi − xi+1

=

f − si+1f

xi+1 − xi+2
− sif − sisi+1f

xi − xi+2

xi − xi+1

=
(xi − xi+2)(f − si+1f)− (xi+1 − xi+2)sif + (xi+1 − xi+2)sisi+1f

(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)
.
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Hence we have

∂i∂i+1∂if

=
(xi − xi+2)(∂if − si+1∂if)− (xi+1 − xi+2)si∂if + (xi+1 − xi+2)sisi+1∂if

(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)

=
(xi − xi+2)∂if − (xi − xi+2)si+1∂if − (xi+1 − xi+2)∂if + (xi+1 − xi+2)sisi+1∂if

(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)

=
(xi − xi+1)∂if − (xi − xi+2)si+1∂if + (xi+1 − xi+2)sisi+1∂if

(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)

=
f − sif − si+1f + si+1sif + sisi+1f − sisi+1sif

(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)

=
(1− si)(1− si+1)(1− si)

(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)
f.

Also, we have

si+1∂i∂i+1f

=
(xi − xi+1)(si+1f − f)− (xi+2 − xi+1)(si+1sif − si+1sisi+1f)

(xi+2 − xi+1)(xi − xi+1)(xi − xi+2)

=
(xi+1 − xi)(si+1f − f)− (xi+1 − xi+2)(si+1sif − si+1sisi+1f)

(xi+1 − xi+2)(xi − xi+1)(xi − xi+2)

which implies

∂i∂i+1f − si+1∂i∂i+1f

=
(xi+1 − xi+2)(f − sif − si+1f + si+1sif + sisi+1f − si+1sisi+1f)

(xi+1 − xi+2)(xi − xi+1)(xi − xi+2)

and thus

∂i+1∂i∂i+1f =
∂i∂i+1f − si+1∂i∂i+1f

xi+1 − xi+2

=

(xi+1 − xi+2)
(f − sif − si+1f + si+1sif + sisi+1f − si+1sisi+1f)

(xi+1 − xi+2)(xi − xi+1)(xi − xi+2)

xi+1 − xi+2

=
f − sif − si+1f + si+1sif + sisi+1f − si+1sisi+1f

(xi+1 − xi+2)(xi − xi+1)(xi − xi+2)
= ∂i∂i+1∂if
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as sisi+1si = si+1sisi+1.

As a result, we get

∂i∂i+1∂i =
(1− si)(1− si+1)(1− si)

(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)r

=
1 + sisi+1 + si+1si − si − si+1 − sisi+1si

(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)

=
(1− si+1)(1− si)(1− si+1)

(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)
= ∂i+1∂i∂i+1.

Next we prove πiπi+1πi = πi+1πiπi+1.

πif = ∂ixif =
xif − si(xif)

xi − xi+1
, πi+1f = ∂i+1xi+1f =

xi+1f − si+1(xi+1f)

xi+1 − xi+2

and hence

πiπi+1f

=
xiπi+1f − si(xiπi+1f)

xi − xi+1

=

xi
xi+1f − si+1(xi+1f)

xi+1 − xi+2
− si

(
xi
xi+1f − si+1(xi+1f)

xi+1 − xi+2

)
xi − xi+1

=

xixi+1f − si+1(xixi+1f)

xi+1 − xi+2
− si(xixi+1f)− sisi+1(xixi+1f)

xi − xi+2

xi − xi+1

=
(xi − xi+2)xixi+1f − si+1

(
(xi − xi+1)xixi+1f

)
(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)

−
si
(
(xi − xi+2)xixi+1f

)
− sisi+1

(
(xi − xi+1)xixi+1f

)
(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)

=
(1− si)

(
(xi − xi+2)xixi+1f − si+1

(
(xi − xi+1)xixi+1f

))
(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)
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and

πi+1πif

=
xi+1πif − si+1(xi+1πif)

xi+1 − xi+2

=

xi+1
xif − si(xif)

xi − xi+1
− si+1

(
xi+1

xif − si(xif)

xi − xi+1

)
xi+1 − xi+2

=

xixi+1f − si(x2i f)

xi − xi+1
− si+1(xixi+1f)− si+1si(x

2
i f)

xi − xi+2

xi+1 − xi+2

=
(xi − xi+2)xixi+1f − si

(
(xi+1 − xi+2)x2i f

)
(xi − xi+1)(xi − xi+2)(xi+1 − xi+2)

−
si+1

(
(xi − xi+2)xixi+1f

)
− si+1si

(
(xi+1 − xi+2)x2i f

)
(xi − xi+1)(xi − xi+2)(xi+1 − xi+2)

=
(1− si+1)

(
(xi − xi+2)xixi+1f − si

(
(xi+1 − xi+2)x2i f

))
(xi − xi+1)(xi − xi+2)(xi+1 − xi+2)

.

So

πiπi+1πif

=
(1− si)

(
(xi − xi+2)xixi+1πif − si+1

(
(xi − xi+1)xixi+1πif

))
(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)

=

(1− si)
(

(xi − xi+2)xixi+1πif − si+1

(
(xi − xi+1)xixi+1

xif − si(xif)

xi − xi+1

))
(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)

=

(1− si)
(

(xi − xi+2)xixi+1
xif − si(xif)

xi − xi+1
− xixi+2

(
xisi+1f − si+1si(xif)

))
(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)

.

Since

si

(
(xi − xi+2)xixi+1

xif − si(xif)

xi − xi+1
− xixi+2

(
xisi+1f − si+1si(xif)

))
= (xi+1 − xi+2)xixi+1

si(xif)− xif
xi+1 − xi

− xi+1xi+2

(
xi+1sisi+1f − sisi+1si(xif)

)
= (xi+1 − xi+2)xixi+1

xif − si(xif)

xi − xi+1
− xi+1xi+2

(
xi+1sisi+1f − sisi+1si(xif)

)
,
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we have

(1− si)
(

(xi − xi+2)xixi+1
xif − si(xif)

xi − xi+1
− xixi+2

(
xisi+1f − si+1si(xif)

))
= xixi+1(xif − si(xif))− x2ixi+2si+1f

+xixi+2si+1si(xif) + x2i+1xi+2sisi+1f − xi+1xi+2sisi+1si(xif)

= (1− si − si+1 + sisi+1 + si+1si − sisi+1si)(x
2
ixi+1f)

and hence πiπi+1πif =
(1− si − si+1 + sisi+1 + si+1si − sisi+1si)(x

2
ixi+1f)

(xi+1 − xi+2)(xi − xi+2)(xi − xi+1)
.

πi+1πiπi+1f

=
(1− si+1)

(
(xi − xi+2)xixi+1πi+1f − si

(
(xi+1 − xi+2)x2iπi+1f

))
(xi − xi+1)(xi − xi+2)(xi+1 − xi+2)

=

(1− si+1)
(

(xi − xi+2)xixi+1πi+1f − si
(
(xi+1 − xi+2)x2i

xi+1f − si+1(xi+1f)

xi+1 − xi+2

))
(xi − xi+1)(xi − xi+2)(xi+1 − xi+2)

=
(1− si+1)

(
(xi − xi+2)xixi+1πi+1f − si

(
x2i
(
xi+1f − si+1(xi+1f)

)))
(xi − xi+1)(xi − xi+2)(xi+1 − xi+2)

.

Since

si+1

(
(xi − xi+2)xixi+1πi+1f − si

(
x2i
(
xi+1f − si+1(xi+1f)

)))
= (xi − xi+1)xixi+2

si+1(xi+1f)− xi+1f

xi+2 − xi+1
− si+1si

(
x2i
(
xi+1f − si+1(xi+1f)

))
= (xi − xi+1)xixi+2

xi+1f − si+1(xi+1f)

xi+1 − xi+2
− si+1si

(
x2i
(
xi+1f − si+1(xi+1f)

))
,

20



we have

(1− si+1)
(

(xi − xi+2)xixi+1πi+1f − si
(
x2i
(
xi+1f − si+1(xi+1f)

)))
= x2i

(
xi+1f − si+1(xi+1f)

)
− si(x2ixi+1f) + si

(
x2i si+1(xi+1f)

)
+si+1si

(
x2i
(
xi+1f − si+1(xi+1f)

))
= (1− si − si+1 + sisi+1 + si+1si − si+1sisi+1)(x2ixi+1f)

and hence πi+1πiπi+1f =
(1− si − si+1 + sisi+1 + si+1si − si+1sisi+1)(x2ixi+1f)

(xi − xi+1)(xi − xi+2)(xi+1 − xi+2)
.

Now sisi+1si = si+1sisi+1 implies πiπi+1πi = πi+1πiπi+1 and result follows.

By item 1. and 5. of Proposition 2.1, we have

θiθi+1θi

= (πi − 1)(πi+1 − 1)(πi − 1) (by item 1.)

= πiπi+1πi − πiπi+1 − πi+1πi − πiπi + 2πi + πi+1 − 1

= πiπi+1πi − πiπi+1 − πi+1πi − πi + 2πi + πi+1 − 1 (by item 5.)

= πiπi+1πi − πiπi+1 − πi+1πi + πi + πi+1 − 1

and

θi+1θiθi+1

= (πi+1 − 1)(πi − 1)(πi+1 − 1) (by item 1.)

= πi+1πiπi+1 − πiπi+1 − πi+1πi − πi+1πi+1 + 2πi+1 + πi − 1

= πi+1πiπi+1 − πiπi+1 − πi+1πi − πi+1 + 2πi+1 + πi − 1 (by item 5.)

= πi+1πiπi+1 − πiπi+1 − πi+1πi + πi+1 + πi − 1
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and by using the fact that πiπi+1πi = πi+1πiπi+1, we have θiθi+1θi = θi+1θiθi+1.

For any permutation σ 6= id, define ∂σ = ∂i1 . . . ∂ij where si1 . . . sij is a reduced decomposition

of σ. By the same argument in Proposition 2.2 and Proposition 2.3, we also have θσ = θi1 . . . θij

and πσ = πi1 . . . πij . We define ∂id = θid = πid = id.

Lemma 2.4. Let n > 1 be an integer and consider a permutation γ ∈ Sn. For 1 ≤ i ≤ n − 1,

θiθγ =


−θγ if l(siγ) = l(γ)− 1

θsiγ if l(siγ) = l(γ) + 1

Proof. By Lemma 1.8, if l(siγ) = l(γ) − 1, then there exists a reduced decomposition of γ =

sisr2 · · · srl(γ) and hence θγ = θiθr2 · · · θrl(γ) . By item 5. in Proposition 2.1, we have θiθγ =

(θiθi)θr2 · · · θrl(γ) = (−θi)θr2 · · · θrl(γ) = −θiθr2 · · · θrl(γ) = −θγ . Otherwise if l(siγ) = l(γ) + 1,

sisi1si2 · · · sil(γ) is a reduced decomposition of siγ for any reduced decomposition si1si2 · · · sil(γ) of

γ. Thus θiθγ = θiθi1θi2 · · · θil(γ) = θsiγ .

Lemma 2.5. For any permutation σ, πσ =
∑
γ≤σ

θγ .

Proof. Let k = l(σ). We prove the statement by induction on k.

For σ = id (i.e. k = 0), πid = θid = id.

When k = 1, then σ = si for some positive integer i. By item 1. in Proposition 2.1, we have

πσ = πsi = πi = 1 + θi = θid + θsi . Hence the statement is true for l(σ) = 1.

Assume the statement is true for all non-negative integers k ≤ m for some m ≥ 1.

Let l(σ) = m + 1. Let si1si2 · · · sim+1
be a reduced decomposition of σ. Let σ′ = si2 · · · sim+1

(which implies l(σ′) ≤ m by definition) and hence σ = si1σ
′. Note that by Lemma 1.4, si2 · · · sim+1

is a reduced decomposition of σ′.
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By induction assumption, π′σ =
∑
γ≤σ′

θγ . Now we have

πσ

= πi1πi2 · · ·πim+1

= πi1πσ′

= (1 + θi1)
∑
γ≤σ′

θγ

= (1 + θi1)

( ∑
γ≤σ′

l(si1γ)=l(γ)+1

θγ +
∑
γ≤σ′

l(si1γ)=l(γ)−1

θγ

)
(by Lemma 1.7)

=
∑
γ≤σ′

l(si1γ)=l(γ)+1

θγ +
∑
γ≤σ′

l(si1γ)=l(γ)−1

θγ +
∑
γ≤σ′

l(si1γ)=l(γ)+1

θi1θγ +
∑
γ≤σ′

l(si1γ)=l(γ)−1

θi1θγ

=
∑
γ≤σ′

l(si1γ)=l(γ)+1

θγ +
∑
γ≤σ′

l(si1γ)=l(γ)−1

θγ +
∑
γ≤σ′

l(si1γ)=l(γ)+1

θsi1γ +
∑
γ≤σ′

l(si1γ)=l(γ)−1

−θγ

(by Lemma 2.4)

=
∑
γ≤σ′

l(si1γ)=l(γ)+1

(θγ + θsi1γ)

=
∑
τ≤σ

θτ (by Lemma 1.11)

and result follows by induction.

Lemma 2.6. For any f, g ∈ P and i ∈ N, we have

1. ∂i(fg) = (∂if)g + (sif)(∂ig);

2. θi(fg) = (θif)g + (sif)(θig);

3. πi(fg) = (πif)g + (sif)(θig).
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Proof.

∂i(fg)

=
fg − si(fg)

xi − xi+1

=
fg − (sif)g + (sif)g − sifsig

xi − xi+1

= g
f − sif
xi − xi+1

+ (sif)
g − sig
xi − xi+1

= g(∂if) + (sif)(∂ig)

= (∂if)g + (sif)(∂ig).

Therefore

θi(fg)

= xi+1∂i(fg)

= xi+1

(
(∂if)g + (sif)(∂ig)

)
= (xi+1∂if)g + (sif)(xi+1∂ig)

= (θif)g + (sif)(θig).

By item 1. of Proposition 2.1,

πi(fg)

= (1 + θi)(fg)

= fg + θi(fg)

= fg + (θif)g + (sif)(θig)

=
(
(1 + θi)f

)
g + (sif)(θig)

= (πif)g + (sif)(θig).
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2.2 Semi-Standard Augmented filling

Let N (or Z+) be the set of all positive integers and Z≥0 be the set of non-negative integers. Also

we denote εk = 12 · · · k = id as the identity element (we write permutations in one line notation).

For n ∈ Z≥0 and k ∈ N, we say α = (α1, α2, . . . , αk) ∈ (Z≥0)k is a weak composition n (denoted as

α � n) with k parts if

k∑
i=1

αi = n and write l(α) = k to denote the length (the number of parts) of

α. Furthermore, if α1 ≥ α2 ≥ · · · ≥ αk ≥ 0, we call α a partition of n with k parts and write α ` n

(usually we denote l(α) = max{i : αi > 0} for α being a partition). We use Par(n) to denote the set

of all partitions of a nonnegative integer n and Par to denote the set of all partitions. For a weak

composition α with k parts, define xα := xα1
1 xα2

2 · · ·x
αk
k . We call xα a dominating monomial if α is

a partition.

We denote α as the reverse of α, that is , α = (αk, . . . , α1). (Note that in [4], they use α∗ instead

of α.) Similarly, we write X as the reverse of X for any finite string of alphabets X. For example,

cacdba = abdcac and 14D9c7 = 7c9D41.

Define ωα as the permutation of minimal length such that

ωα(α) := (αωα(1), αωα(2), . . . , αωα(k))

is a partition.

Given two weak compositions α and β, we write β ≥ α if and only if ωβ ≤ ωα in the strong

Bruhat order.

Let α be a weak composition. The augmented diagram of shape α is the figure with |α| + l(α)

cells (or boxes) where column i has αi + 1 cells. The bottom row is called the basement of the

augmented diagram.

For example, if α = (1, 0, 1, 0, 0, 4, 0, 6, 5), then the augmented diagram of α is
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Also we impose an order, called the reading order, on the cells of the diagram which starts from

left to right, top to bottom. So the order of the above diagram is:

1
2 3

4 5 6
7 8 9
10 1112

13 14 15 1617

181920212223242526

where the number in each cell represents the order of that cell in reading order.

A filling of an augmented diagram is an assignment of a positive integer to each cell in the

diagram.

From now on we only consider fillings whose entries in each column are weakly decreasing from

the bottom to the top.

For any two columns (including the basement cells) i and j with i < j, we pick three cells X,Y

and Z, where cell X is immediately above cell Y in the ‘taller’ column k , where

k =


i if αi ≥ αj

j if αi < αj

,

and cell Z from the ‘shorter’ column to form a triple (X,Y, Z) in the following way:
Type A triple: cell Z is in the same row as cell X if αi ≥ αj

Type B triple: cell Z is in the same row as cell Y if αi < αj

.

Here are some examples of triples:

(The first two are type A triples and the last two are type B triples.)

We say (X,Y, Z) forms a coinversion triple if the filling F of the diagram assigns each cell in

the triple a positive integer, say F (X), F (Y ), F (Z) respectively, in such a way that

F (X) ≤ F (Z) ≤ F (Y ). Otherwise we call (X,Y, Z) an inversion triple.
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For instance in the following examples, the second and the third ones are coinversion triples

while the first and the last one are inversion triples.

1 3
2

4 7
8

5
5 9

6
4 6

Definition 2.1. A semi-standard augmented filling (SSAF) of an augmented diagram with shape

being a weak composition α = (α1, α2, . . . , αk) is a filling satisfying:

1. the basement entries form a permutation σ (in one line notation) of {1, ..., k}, i.e. σ ∈ Sk;

2. every (Type A or B) triple is an inversion triple.

We denote SSAF (σ, α) the set of all SSAF of an augmented diagram of shape α = (α1, . . . , αk)

with basement entries (from left to right) being σ ∈ Sk (i.e. basement of column i has entry σ(i)).

Example 4. The following SSAFs are all the elements in the set SSAF (4132, 1032):

1

3 2

1 3 2

4 1 3 2

2

3 2

1 3 2

4 1 3 2

3

3 2

1 3 2

4 1 3 2

1

2 1

4 3 2

4 1 3 2

1

3 2

4 3 2

4 1 3 2

2

3 2

4 3 2

4 1 3 2

3

3 2

4 3 2

4 1 3 2

1

2 1

4 3 2

4 1 3 2

2

2 1

4 3 2

4 1 3 2

1

3 1

4 3 2

4 1 3 2

2

3 1

4 3 2

4 1 3 2

3

3 1

4 3 2

4 1 3 2

Given an SSAF F with basement of length n for some n ∈ N, define the weight of F as xF :=
n∏
i=1

x
mi(F )−1
i , where mi(F ) is the number of i appearing in F for 1 ≤ i ≤ n.

Example 5. xF = x21x
2
2x

2
3 for F = 1

3 2

1 3 2

4 1 3 2

.
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2.3 Demazure atoms and Demazure characters

Definition 2.2. A Demazure atom of shape α, where α is a weak composition, is defined as

Aα :=
∑

F∈SSAF (εk,α)

xF .

Definition 2.3. A Demazure character (key polynomial, or key) of shape α, where α is a weak

composition, is defined as

κα :=
∑

F∈SSAF (εk,α)

xF .

Remark: See [12] for further discussion on key polynomials.

The following theorem gives different equivalent definitions of Demazure atoms (Aα) and De-

mazure characters (κα) of shape α and is proved in [2, 6, 12].

Theorem 2.7. For k ∈ N and composition α with l(α) = k,

Eα(xk, . . . , x1;∞,∞) =
∑

F∈SSAF (εk,α)

xF = θω−1
α
xωα(α)

Eα(x1, . . . , xk; 0, 0) =
∑

F∈SSAF (εk,α)

xF = πεkω−1
α
xωα(α)

where Eα(xk, . . . , x1;∞,∞) and Eα(x1, . . . , xk; 0, 0) are the nonsymmetric Macdonald polyno-

mials of shape α with q = t = ∞ and X = (xk, . . . , x1) and with q = t = 0 and X = (x1, . . . , xk)

respectively.

Example 6. Let α = (1, 0, 3). Then ωα = 231 = (12)(23) = s1s2.

Hence A(1,0,3) = θ2θ1x
3
1x2 = θ2(x21x

2
2 + x1x

3
2) = x21x2x3 + x21x

2
3 + x1x

2
2x3 + x1x2x

2
3 + x1x

3
3.

The following are all the SSAFs of SSAF (123, (1, 0, 3)) :

weights :

3

3

1 3

1 2 3

x1x
3
3

2

3

1 3

1 2 3

x1x2x
2
3

1

3

1 3

1 2 3

x21x
2
3

2

2

1 3

1 2 3

x1x
2
2x3

1

2

1 3

1 2 3

x21x2x3
As a result, the sum of all weights of the SSAFs gives A(1,0,3).

Since ε3ω
−1
α = (s2s1s2)(s2s1) = s2, we have κ(3,0,1) = πε3ω−1

α
(x31x2) = π2(x31x2) = x31x2 + x31x3.
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The following are all the SSAFs of SSAF (321, (1, 0, 3)) :

weights :

1

1

3 1

3 2 1

x31x3

1

1

2 1

3 2 1

x31x2
As a result, the sum of all weights of the SSAFs gives κ(3,0,1).

The following theorem gives some properties of Demazure atoms and characters.

Theorem 2.8.

1. A key polynomial is a positive sum of Demazure atoms. In fact,

κα =
∑
β≥α

Aβ .

2. A key polynomial with a partition shape λ, with l(λ) = k, is the Schur polynomial sλ, i.e.,

κλ = sλ(x1, . . . , xk).

3. The set of all Demazure atoms {Aγ : γ � n, n ∈ Z≥0} forms a basis for the polynomial ring, and

so does the set of all key polynomials {κγ : γ � n, n ∈ Z≥0}.

Proof. Item 1 follows directly from Theorem 2.5. We can describe combinatorially how to get the

atoms from the key (a particular case of Proposition 6.1 in [12]):

Consider a filling F ∈ SSAF (εk, α) and an empty filling G0 with basement εk. Consider the

entries of the first row (from the bottom above the basement) of F , namely a11 < a12 < · · · < a1r1

where r1 is the length of the first row. Create the first row of G0 by placing a1i in the cell right

above ai in the basement of G0 (that is, a1i is placed in the first row above the basement and also

in the ath1i column of G) for 1 ≤ i ≤ r1. We call the new filling G1

Now consider the entries a21 < a22 < · · · < a2r2 of the second row of F where r2 is the length

of the second row of F . Search in the top row of G1 for the leftmost number not less that a2r2 and

place a2r2 in the cell right above it. Then search for the leftmost available number (i.e. not chosen

yet) in the top row of G1 not less than a2,r2−1 and place a2,r2−1 in the cell right above it, and so

on until a21 is placed. We now get a new filling with 2 rows above the basement and call it G2.
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By repeating the same process until all entries of F are placed and we get a filling Gr with

basement εk with shape less than or equal to α, where r is the number of rows in F .

Item 2 follows from Theorem 2.7 as sλ = Eλ(x1, . . . , xk; 0, 0) ([2]). It is also proved in [6]. A

combinatorial proof can be found in Theorem 4.1 in [3] which uses the insertion algorithm discussed

in [11, 12].

Item 3 also follows from Theorem 2.7 as {Eα(x; q, t) : α � n, n ∈ Z≥0} forms a basis for the

polynomial ring over Q(q, t). Again, it is also proved in [6].
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Chapter 3

Decomposition of products of

Demazure atoms and characters

In this chapter, we study the decomposition of the products of Demazure atoms and characters with

respect to the atom-basis {Aγ : γ � n, n ∈ Z≥0} and key-basis {κγ : γ � n, n ∈ Z≥0}.

Let λ, µ be partitions and α, β be weak compositions. Let +A and +κ denote the property of being

able to be decomposed into a positive sum of atoms and keys respectively. Note that by item 1 in

Theorem 2.8, +κ implies +A. Otherwise, we put an × in the cell. For example, a partition (µ)-

shaped atom times a key of any shape (α) is key positive and hence we put +κ in the corresponding

box.

Atoms Keys
shape λ α λ α

Atoms
µ +A +A 1 +A +κ 2

β × +A ×

Keys
µ +κ +κ

β open 3

Table 3.1: Decomposition of products of atoms and keys into atoms

The positive results in the table can be found in [3], except for the cells marked 1 , 2
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and 3 .

We will prove 1 (which was previously open) in this chapter using words and insertion

algorithm introduced in [3, 12]:

Theorem 3.1. The product Aµ · Aα is atom-positive for any partition µ and weak composition α.

The coefficients in the decomposition into atoms are actually counting the number of ways

to insert words arising from an SSAF of shape α into an SSAF of shape µ and we will discuss

properties of words and how to record different ways of insertion in Section 3.1 and Section 3.2.

Also note that the product in the theorem is not key positive. A simple counter example would

be just putting µ as the empty partition, that is, with all entries 0 and α = (0, 1) and hence

Aµ · Aα = Aα = θ1(x1) = (π1 − id)(x1) = κ(0,1) − κ(1,0).

2 is proved in [5] (the proof involves crystals but does not involve SSAF). Both results 1

and 2 imply +A for the Aµ · κα cell. We will apply the bijection in the proof of Theorem 6.1 in

[3] to Theorem 3.1 to give a tableau-combinatorial proof of 2 in Section 3.4.

As for the product of two keys of arbitrary shapes, that is, the cell marked with 3 , there are

examples showing that such a product is not a positive sum of keys. For example, κ(0,2) · κ(1,0,2) =

κ(1,2,2) + κ(1,3,1) + κ(1,4,0) + κ(2,3,0) + κ(3,0,2) − κ(3,2,0) + κ(4,0,1) − κ(4,1,0). Thus it remains to check

whether it is a positive sum of atoms, which is still open. Hence 3 gives the following conjecture

(first appearing in an unpublished work of Victor Reiner and Mark Shimozono).

Conjecture 1. Let α, β be weak compositions. Then the product of the key polynomials of shape α

and β can be written as a positive sum of atoms, i.e.,

κα · κβ =
∑

γ�|α|+|β|

cγαβAγ

for some nonnegative integers cγαβ.

We will verify Conjecture 1 for l(α), l(β) ≤ 3 in Chapter 4.
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3.1 Convert a column word to a row word

Definition 3.1. A word is a sequence of positive integers.

Definition 3.2. Let a, b, c ∈ N and u, v be some fixed (can be empty) words. Define twisted Knuth

relation v∗ by:

1. ubacv v∗ ubcav if c ≤ b < a

2. uacbv v∗ ucabv if c < b ≤ a.

Then we say two words w and w′ are twisted Knuth equivalent if w can be transformed to w′ by

repeated use of 1. and 2. and we write w v∗ w′.

Definition 3.3. A word w is a column word if it can be broken down into k weakly decreasing

subsequences of weakly decreasing lengths

w = a11 . . . a1c1 |a21 . . . a2c2 | · · · |ak1 . . . akck

where c1 ≥ c2 ≥ · · · ≥ ck > 0, c1, . . . , ck ∈ N

such that


aij ≥ ai,j+1 ∀1 ≤ j < ci, 1 ≤ i ≤ k

ai+1,ci+1−j > ai,ci−j ∀0 ≤ j < ci, 1 ≤ i < k

.

Definition 3.4. A word w is a row word if it can be broken down into k strictly increasing

subsequences of weakly decreasing lengths

w = a11 . . . a1r1 |a21 . . . a2r2 | · · · |ak1 . . . akrk

where r1 ≥ r2 ≥ · · · ≥ rk > 0, r1, . . . , rk ∈ N

such that


aij < ai,j+1 ∀1 ≤ j < ri, 1 ≤ i ≤ k

ai+1,ri+1−j ≤ ai,ci−j ∀0 ≤ j < ri, 1 ≤ i < k

.

Given an SSAF, one can get its column word by using the algorithm described in [3], while one

can get its row word (which is the reverse reading word defined in [4] by reading the entries of each
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row in ascending order, starting from the bottom row to the top row. We call a word a column

(resp. row) word because when we insert each subsequence of the word using the insertion in [11],

a new column (resp. row) will be created.

Example 7. 886531|97643|9764|5|6 is a column word whose corresponding SSAF is:

6

6 4

3 7 5

4 7 6

5 8 9

1 3 6 8 9

1 2 3 4 5 6 7 8 9

and the corresponding row word is 13689|589|467|357|46|6.

We describe an insertion algorithm for inserting an integer c ≤ k into an SSAF with basement

εk. A detailed description can be found in [11].

Given an SSAF F with basement εk and an integer c to be inserted, we write c → F or F ← c

to represent the insertion of c into F (and similarly we denote c2c1 → F and F ← c1c2 as first

inserting c1 to F and then insert c2, and so on).

To insert c, we first find the cell A in F with the smallest order, say m, such that F (A′) < c ≤

F (A), where A′ is the cell immediately above A if it exists and assign F (A′) = 0 if A is the top cell

of a column and just treat A′ as an empty cell to be filled in. If cell A is the top cell of a column,

then we create a new cell immediately above A, i.e. A′, and assign c to the new cell and we are

done. Otherwise, we replace the entry y = F (A′) by c and now insert y as we do for c, but now

finding a cell B of the smallest order larger than m such that F (B′) < y ≤ F (B) as treating B as

A in the previous step. Repeat the process until a new cell is finally created.

Example 8. Let F be the SSAF in Example 7 where k = 9. We find the new SSAF created by

inserting 7, i.e. 7→ F , as follows:
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7→ 6

6 4

3 7 5

4 7 6

5 8 9

1 3 6 8 9

1 2 3 4 5 6 7 8 9

⇒ 6→ 6

7 4

3 7 5

4 7 6

5 8 9

1 3 6 8 9

1 2 3 4 5 6 7 8 9

⇒ 5→ 6

7 4

3 7 6

4 7 6

5 8 9

1 3 6 8 9

1 2 3 4 5 6 7 8 9

⇒ 4→ 6

7 4

3 7 6

5 7 6

5 8 9

1 3 6 8 9

1 2 3 4 5 6 7 8 9

⇒ 6

7 4

3 7 6

5 7 6

5 8 9

1 3 4 6 8 9

1 2 3 4 5 6 7 8 9

The green cell represents the cell A in each step. The yellow cell represents the cell A′ whose

value is changed after the insertion step (i.e. the original entry is bumped out by the number being

inserted). The white cells are the cells under consideration in each step (i.e. candidates for the

position of B, that is, the new A).

Lemma 3.2. Let u := a1a2 . . . an|b and v := a1a2 . . . an|b|c be two column words, where c > b > an,

n ∈ N. Then

1. u v∗ b′a′1...a
′
n where b′ < a′1, a′1 ≥ a′2 ≥ · · · ≥ a′n, and b′ := at where t = min{j : b > aj}

2. v v∗ b′c′a′′1a
′′
2 . . . a

′′
n where b′ is defined as in 1., b′ < c′ < a′′1 and a′′1 ≥ a′′2 ≥ · · · ≥ a′′n.

Proof. One can check that for t = min{j : b > aj},

u v∗



a1ba2 . . . an if t = 1

ata1 . . . at−1bat+1 . . . an if 1 < t < n

ana1 . . . an−1b if t = n

and 1. follows. Also note that b′ = at.
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Indeed, we can visualize by applying the insertion in [11]. When we insert the first n integers of u,

we get a column above the basement entry a1:

If b > a1, we have

b→
an

an−1

.

.

.

a1

1 2 . . . a1 . . . b . . .

⇒
an

an−1

.

.

.

a1 b

1 2 . . . a1 . . . b . . .

giving the row word a1ba2 . . . an.

If b ≤ a1, then for t = min{j : b > aj}, we have:

For t < n

b→
an

.

.

.

at+1

at

at−1

.

.

.

a1

1 . . . at . . . a1 . . .

⇒
an

.

.

.

at+1

b

at−1

.

.

.

at a1

1 . . . at . . . a1 . . .

giving the row word ata1 . . . at−1bat+1 . . . an.

For t = n
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b→
an

an−1

.

.

.

a1

1 . . . an . . . a1 . . .

⇒
b

an−1

.

.

.

an a1

1 . . . an . . . a1 . . .

giving the row word ana1 . . . an−1b.

Since inserting v to an empty atom is the same as inserting c to the atom created by inserting

u to an empty atom, we can inset c to the tableaux above and get the following:

If c > b > a1, we have

c→
an

an−1

.

.

.

a1 b

1 2 . . . a1 . . . b . . . c . . .

⇒
an

an−1

.

.

.

a1 b c

1 2 . . . a1 . . . b . . . c . . .

giving the row word a1bca2 . . . an.

If b ≤ a1 and at−1 ≥ c > b > at, we have:

For t < n

c→
an

.

.

.

at+1

b

at−1

.

.

.

at a1

1 . . . at . . . b . . . a1 . . .

⇒
an

.

.

.

at+1

c

at−1

.

.

.

at b a1

1 . . . at . . . b . . . a1 . . .
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giving the row word atba1 . . . at−1cat+1 . . . an.

For t = n

c→
b

an−1

.

.

.

an a1

1 . . . an . . . a1 . . .

⇒
c

an−1

.

.

.

an b a1

1 . . . an . . . b . . . a1 . . .

giving the row word anba1 . . . an−1c.

If b ≤ a1 and c > at−1, we have:

For t < n, let t′ = min{j : c > aj , 1 ≤ j ≤ t− 1}, we have:

For t′ = 1,

c→
an

.

.

.

at+1

b

at−1

.

.

.

at a1

1 . . . at . . . a1 . . . c . . .

⇒
an

.

.

.

at+1

b

at−1

.

.

.

at a1 c

1 . . . at . . . a1 . . . c . . .

giving the row word ata1ca2 . . . at−1bat+1 . . . an.

For 1 < t′ < t− 1,
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c→
an

.

.

.

at+1

b

at−1

.

.

.

at′+1

at′

at′−1

.

.

.

at a1

1 . . . at . . . at′ . . . a1 . . .

⇒
an

.

.

.

at+1

b

at−1

.

.

.

at′+1

c

at′−1

.

.

.

at at′ a1

1 . . . at . . . at′ . . . a1 . . .

giving the row word atat′a1 . . . at′−1cat′+1 . . . at−1bat+1 . . . an.

For t′ = t− 1,

c→
an

.

.

.

at+1

b

at−1

at−2

.

.

.

at a1

1 . . . at . . . at−1 . . . a1 . . .

⇒
an

.

.

.

at+1

b

c

at−2

.

.

.

at at−1 a1

1 . . . at . . . at−1 . . . a1 . . .

giving the row word atat−1a1 . . . at−2cbat+1 . . . an.

For t = n, let t′ = min{j : c > aj}, we have:

For t′ = 1,

39



c→
b

an−1

.

.

.

an a1

1 . . . an . . . a1 . . .

⇒
b

an−1

.

.

.

an a1 c

1 . . . an . . . a1 . . . c . . .

giving the row word ana1ca2 . . . an−1b.

For 1 < t′ < n− 1,

c→
b

an−1

.

.

.

at′+1

at′

at′−1

.

.

.

an a1

1 . . . an . . . a1 . . .

⇒
b

an−1

.

.

.

at′+1

c

at′−1

.

.

.

an at′ a1

1 . . . an . . . at′ . . . a1 . . .

giving the row word anat′a1a2 . . . at′−1cat′+1 . . . an−1b.

For t′ = n− 1,

c→
b

an−1

an−2

.

.

.

an a1

1 . . . an . . . a1 . . .

⇒
b

c

an−2

.

.

.

an an−1 a1

1 . . . an . . . an−1 . . . a1 . . .

giving the row word anan−1a1a2 . . . an−2cb.

Notice that for all the cases of inserting c, the first row has the least entry unaffected, meaning
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that the row word has the same first entry after inserting c. The result follows by setting the row

word of the tableau of inserting v into an empty atom as b′c′a′′1 . . . a
′′
n.

Example 9. One can also prove Lemma3.2 by repeated use of 1. and 2. in Definition 3.2, for

example:

9764|5 v∗ 97465 v∗ 94765 v∗ 4|9765 by using 2. repeatedly, and similarly, we have 9764|5|6 v∗

4|9765|6 v∗ 45|9766.

Using SSAF, it means

65→ 4
6
7
9

1 2 3 . . . 8 9

⇒ 6→ 5
6
7

4 9
1 2 3 4 . . . 8 9

⇒ 6
6
7

4 5 9
1 . . . 4 5 . . . 8 9

where 65→ means 5 is inserted before 6.

Lemma 3.3. Let k ≥ 2 be an integer and i1, . . . , ik be nonnegative integers. Let

w0 = a
(i1)
11 . . . a

(i1)
1c1
|a(i2)21 . . . a

(i2)
2c2
| · · · |a(ik)k1 . . . a

(ik)
kck

be a column word. Then there exist a
(ir+1)
rs where 1 ≤ s ≤ cr, 1 ≤ r < k and a

(ik+m)
k1 where

1 ≤ m < k satisfying

a
(ik−j−1)
k−j−1,ck−j−1

< a
(ik+j)
k1 < a

(ik−j+1)
k−j,1 ∀1 ≤ j < k − 1 (k > 3)

a
(ik+k−1)
k1 < a

(i1+1)
11

a
(i1+1)
1,1 . . . a

(i1+1)
1,c1

| · · · |a(ik−1+1)
k−1,1 . . . a

(ik−1+1)
k−1,ck−1

|a(ik)k2 . . . a
(ik)
kck

is a column word

such that w0 v∗ w1 v∗ · · · v∗ wk−1, where

41





wj := a
(i1)
11 . . . a

(i1)
1c1
· · · a(ik−j−1)

k−j−1,1 . . . a
(ik−j−1)
k−j−1,ck−j−1

a
(ik+j)
k1 a

(ik−j+1)
k−j,1 . . . a

(ik−j+1)
k−j,ck−j · · ·

· · · a(ik−1+1)
k−1,1 . . . a

(ik−1+1)
k−1,ck−1

a
(ik)
k2 . . . a

(ik)
kck

∀1 ≤ j < k − 1,

wk−1 := aik+k−1k1 a
(i1+1)
11 . . . a

(i1+1)
1c1

· · · a(ik−1+1)
k−1,1 . . . a

(ik−1+1)
k−1,ck−1

a
(ik)
k2 . . . a

(ik)
kck

.

Proof. We prove this by induction on k.

When k = 2, we have w0 := a
(i1)
11 a

(i1)
12 . . . a

(i1)
1c1

a
(i2)
21 a

(i2)
22 . . . a

(i2)
2c2

.

Let t12 = min
1≤j≤c1

{j : a
(i2)
21 > a

(i1)
ij }.

By applying the proof of 1. in Lemma 3.2 on a
(i1)
11 a

(i1)
12 . . . a

(i1)
1c1

a
(i2)
21 , we have

w0 v
∗ w1 :=a

(i2+1)
21 a

(i1+1)
11 a

(i1+1)
12 . . . a

(i1+1)
1c1

a
(i2)
22 . . . a

(i2)
2c2

:=


a
(i1)
11 a

(i2)
21 a

(i1)
12 . . . a

(i1)
1c1

a
(i2)
22 . . . a

(i2)
2c2

if t12 = 1

a
(i1)
t12 a

(i1)
11 . . . a

(i1)
1,t12−1a

(i2)
21 a

(i1)
1,t12+1 . . . a

(i1)
1c1

a
(i2)
22 . . . a

(i2)
2c2

if t12 > 1

.

where a
(i2+1)
21 < a

(i1+1)
11 and a

(i1+1)
11 ≥ · · · ≥ a(i1+1)

1c1
. Also note that a

(i2+1)
21 = a

(i1)
1t12

.

For t12 = 1, we know that a
(i1)
12 . . . a

(i1)
1c1

a
(i2)
22 . . . a

(i2)
2c2

is a column word and hence

a
(i1+1)
12 . . . a

(i1+1)
1c1

a
(i2)
22 . . . a

(i2)
2c2

.

For t12 > 1, if c2 − (c1 − t12 + 1) > 0, then

a
(i2)
21 < a

(i1)
1,t12−1 = a

(i1)
1,c1−(c1−t12+1) < a

(i2)
2,c2−(c1−t12+1) (by Definition 3.3)

which leads to a contradiction as a
(i2)
21 ≥ a

(i2)
2j for 1 ≤ j ≤ c2.

As a result, we have c2 − (c1 − t12 + 1) ≤ 0 which implies c2 − 1 ≤ c1 − t12.

Thus a
(i1)
1,t12+1 . . . a

(i1)
1c1

a
(i2)
22 . . . a

(i2)
2c2

is a column word, and hence

a
(i1)
12 . . . a

(i1)
1,t12−1a

(i2)
21 a

(i1)
1,t12+1 . . . a

(i1)
1c1

a
(i2)
22 . . . a

(i2)
2c2

is also a column word.
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Therefore a
(i1+1)
12 . . . a

(i1+1)
1c1

a
(i2)
22 . . . a

(i2)
2c2

is a column word.

Note that a
(i1+1)
11 ≥ a(i1+1)

12 , we can conclude a
(i1+1)
11 . . . a

(i1+1)
1c1

a
(i2)
22 . . . a

(i2)
2c2

is a column word.

Hence the statement is true for k = 2.

For k = 3, we have w0 := a
(i1)
11 a

(i1)
12 . . . a

(i1)
1c1

a
(i2)
21 a

(i2)
22 . . . a

(i2)
2c2

a
(i3)
31 a

(i3)
32 . . . a

(i3)
3c3

.

Consider a
(i2)
21 a

(i2)
22 . . . a

(i2)
2c2

a
(i3)
31 a

(i3)
32 . . . a

(i3)
3c3

, by k = 2 case, we know

a
(i2)
21 a

(i2)
22 . . . a

(i2)
2c2

a
(i3)
31 a

(i3)
32 . . . a

(i3)
3c3
v∗ a(i3+1)

31 a
(i2+1)
21 a

(i2+1)
22 . . . a

(i2+1)
2c2

a
(i3)
32 . . . a

(i3)
3c3

where a
(i3+1)
31 < a

(i2+1)
21 and a

(i2+1)
21 . . . a

(i2+1)
2c2

a
(i3)
32 . . . a

(i3)
3c3

is a column word. Also, a
(i3+1)
31 = a

(i2)
2t23
≥

a
(i2)
2c2

> a
(i1)
1c1

, t23 := min
1≤j≤c2

{j : a
(i3)
31 > a

(i2)
2j }.

Hence, a
(i1)
1c1

< a
(i3+1)
31 < a

(i2+1)
21 .

Furthermore, a
(i1)
11 a

(i1)
12 . . . a

(i1)
1c1

a
(i3+1)
31 is also a column word and by 1. in Lemma 3.2,

a
(i1)
11 a

(i1)
12 . . . a

(i1)
1c1

a
(i3+1)
31 v∗ a(i3+2)

31 a
(i1+1)
11 a

(i1+1)
12 . . . a

(i1+1)
1c1

where a
(i3+2)
31 < a

(i1+1)
11 and a

(i1+1)
11 a

(i1+1)
12 . . . a

(i1+1)
1c1

is a column word for a
(i1+1)
11 ≥ a

(i1+1)
12 ≥ · · · ≥

a
(i1+1)
1c1

. Also a
(i3+2)
31 = a

(i1)
1t13

where t13 := min
1≤j≤c1

{j : a
(i3+1)
31 > a

(i1)
1j }.

It remains to check that a
(i1+1)
11 a

(i1+1)
12 . . . a

(i1+1)
1c1

a
(i2+1)
21 a

(i2+1)
22 . . . a

(i2+1)
2c2

is a column word.

First note that by 1. in Lemma 3.2,

a
(i2+1)
21 a

(i2+1)
22 . . . a

(i2+1)
2c2

=


a
(i3)
31 a

(i2)
22 . . . a

(i2)
2c2

if t23 = 1

a
(i2)
21 . . . a

(i2)
2,t23−1a

(i3)
31 a

(i2)
2,t23+1 . . . a

(i2)
2c2

if t23 > 1

,

a
(i1+1)
11 a

(i1+1)
12 . . . a

(i1+1)
1c1

=


a
(i3+1)
31 a

(i1)
12 . . . a

(i1)
1c1

if t13 = 1

a
(i1)
11 . . . a

(i1)
1,t13−1a

(i3+1)
31 a

(i1)
1,t13+1 . . . a

(i1)
1c1

if t13 > 1

=


a
(i2)
2t23

a
(i1)
12 . . . a

(i1)
1c1

if t13 = 1

a
(i1)
11 . . . a

(i1)
1,t13−1a

(i2)
2t23

a
(i1)
1,t13+1 . . . a

(i1)
1c1

if t13 > 1

.
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By definition of a column word, we have a
(i2)
2t23

> a
(i1)
1,c1−(c2−t23). By definition of t13, we have

t13 ≤ c1 − (c2 − t23) which implies c2 − t23 ≤ c1 − t13.

Combining, we have the following four cases:

(i) t13 = t23 = 1 :

a
(i1+1)
11 a

(i1+1)
12 . . . a

(i1+1)
1c1

a
(i2+1)
21 a

(i2+1)
22 . . . a

(i2+1)
2c2

= a
(i2)
21 a

(i1)
12 . . . a

(i1)
1c1

a
(i3)
31 a

(i2)
22 . . . a

(i2)
2c2

.

Since a
(i3)
31 > a

(i2)
21 = a

(i1+1)
11 ≥ a(i1+1)

1j = a
(i1)
1j for 1 < j ≤ c1,

and a
(i1)
12 . . . a

(i1)
1c1

a
(i2)
22 . . . a

(i2)
2c2

is a column word, we can conclude that

a
(i2)
21 a

(i1)
12 . . . a

(i1)
1c1

a
(i3)
31 a

(i2)
22 . . . a

(i2)
2c2

is also a column word.

(ii) t13 = 1, t23 > 1 :

a
(i1+1)
11 . . . a

(i1+1)
1c1

a
(i2+1)
21 . . . a

(i2+1)
2c2

= a
(i2)
2t23

a
(i1)
12 . . . a

(i1)
1c1

a
(i2)
21 . . . a

(i2)
2,t23−1a

(i3)
31 a

(i2)
2,t23+1 . . . a

(i2)
2c2

.

Since a
(i3)
31 > a

(i2)
2t23

and a
(i1)
12 . . . a

(i1)
1c1

a
(i2)
22 . . . a

(i2)
2,t23−1a

(i2)
2t23

a
(i2)
2,t23+1 . . . a

(i2)
2c2

is a column word, we

know a
(i1)
12 . . . a

(i1)
1c1

a
(i2)
22 . . . a

(i2)
2,t23−1a

(i3)
31 a

(i2)
2,t23+1 . . . a

(i2)
2c2

is a column word.

Also a
(i2)
21 ≥ a

(i2)
2,t23−1 ≥ a

(i3)
31 > a

(i3)
2t23

= a
(i1+1)
11 ≥ a(i1+1)

1j = a
(i1)
1j for 1 < j ≤ c1,

thus a
(i2)
2t23

a
(i1)
12 . . . a

(i1)
1c1

a
(i2)
21 . . . a

(i2)
2,t23−1a

(i3)
31 a

(i2)
2,t23+1 . . . a

(i2)
2c2

is a column word.

(iii) t13 > 1, t23 = 1 :

a
(i1+1)
11 a

(i1+1)
12 . . . a

(i1+1)
1c1

a
(i2+1)
21 a

(i2+1)
22 . . . a

(i2+1)
2c2

= a
(i1)
11 . . . a

(i1)
1,t13−1a

(i2)
21 a

(i1)
1,t13+1 . . . a

(i1)
1c1

a
(i3)
31 a

(i2)
22 . . . a

(i2)
2c2

.

Since c2 − 1 ≤ c1 − t13 which implies c2 ≤ c1 − (t13 − 1), we just need to consider

a
(i2)
21 a

(i1)
1,t13+1 . . . a

(i1)
1c1

a
(i3)
31 a

(i2)
22 . . . a

(i2)
2c2

to conclude that

a
(i1)
11 . . . a

(i1)
1,t13−1a

(i2)
21 a

(i1)
1,t13+1 . . . a

(i1)
1c1

a
(i3)
31 a

(i2)
22 . . . a

(i2)
2c2

is a column word.
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As c2 − 1 ≤ c1 − t13, a
(i1)
1,t13+1 . . . a

(i1)
1c1

a
(i2)
22 . . . a

(i2)
2c2

is a column word. Also a
(i3)
31 > a

(i2)
21 for

t23 = 1, and a
(i2)
21 = a

(i1+1)
1t13

≥ a(i1+1)
1j = a

(i1)
1j for t13 < j ≤ c1 and hence

a
(i2)
21 a

(i1)
1,t13+1 . . . a

(i1)
1c1

a
(i3)
31 a

(i2)
22 . . . a

(i2)
2c2

is a column word and result follows.

(iv) t13 > 1, t23 > 1 :

a
(i1+1)
11 a

(i1+1)
12 . . . a

(i1+1)
1c1

a
(i2+1)
21 a

(i2+1)
22 . . . a

(i2+1)
2c2

= a
(i1)
11 . . . a

(i1)
1,t13−1a

(i2)
2t23

a
(i1)
1,t13+1 . . . a

(i1)
1c1

a
(i2)
21 . . . a

(i2)
2,t23−1a

(i3)
31 a

(i2)
2,t23+1 . . . a

(i2)
2c2

.

Since a
(i1)
11 . . . a

(i1)
1,t13−1a

(i1)
1t13

a
(i1)
1,t13+1 . . . a

(i1)
1c1

a
(i2)
21 . . . a

(i2)
2,t23−1a

(i2)
2t23

a
(i2)
2,t23+1 . . . a

(i2)
2c2

is a column word,

it remains to check if a
(i1+1)
1,c1−(c2−t23) < a

(i2+1)
2t23

and a
(i1+1)
1t13

< a
(i2+1)
2,c2−(c1−t13) (We need to check

the latter condition only when c2 − (c1 − t13) > 0).

If c2 − t23 = c1 − t13, then

a
(i1+1)
1,c1−(c2−t23) = a

(i1+1)
1t13

= a
(i2)
2t23

< a
(i3)
31 = a

(i2+1)
2t23

= a
(i2+1)
2,c2−(c1−t13).

If c2 − t23 < c1 − t13, then c2 − (c1 − t13) < t23.

Hence a
(i1+1)
1t13

= a
(i2)
2t23

< a
(i2)
2,c2−(c1−t13) = a

(i2+1)
2,c2−(c1−t13).

Similarly, t13 < c1 − (c2 − t23) implies

a
(i1+1)
1,c1−(c2−t23) = a

(i1)
1,c1−(c2−t23) < a

(i2)
2,c2−(c2−t23) = a

(i2)
2t23

< a
(i3)
31 = a

(i2+1)
2t23

.

Set


w1 := a

(i1)
11 a

(i1)
12 . . . a

(i1)
1c1

a
(i3+1)
31 a

(i2+1)
21 a

(i2+1)
22 . . . a

(i2+1)
2c2

a
(i3)
32 . . . a

(i3)
3c3

w2 := a
(i3+2)
31 a

(i1+1)
11 a

(i1+1)
12 . . . a

(i1+1)
1c1

a
(i2+1)
21 a

(i2+1)
22 . . . a

(i2+1)
2c2

a
(i3)
32 . . . a

(i3)
3c3

,

and we thus have w0 v∗ w1 v∗ w2 and result follows.

Therefore the statement is true for k = 3.

Assume the statement is true for all k = 2, . . . ,m,m+ 1 for some m ≥ 2.

When k = m+ 2,

By considering a
(im)
m,1 . . . a

(im)
m,cma

(im+1)
m+1,1 . . . a

(im+1)
m+1,cm+1

a
(im+2)
m+2,1 . . . a

(im+2)
m+2,cm+2

and apply the result in

k = 3, we get
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a
(i1)
11 . . . a

(i1)
1c1

a
(i2)
21 . . . a

(i2)
2c2
· · · a(im+1)

m+1,1 . . . a
(im+1)
m+1,cm+1

a
(im+2)
m+2,1 . . . a

(im+2)
m+2,cm+2

v∗a(i1)11 . . . a
(i1)
1c1

a
(i2)
21 . . . a

(i2)
2c2
· · · a(im+2+1)

m+2,1 a
(im+1+1)
m+1,1 . . . a

(im+1+1)
m+1,cm+1

a
(im+2)
m+2,2 . . . a

(im+2)
m+2,cm+2

v∗a(i1)11 . . . a
(i1)
1c1

a
(i2)
21 . . . a

(i2)
2c2
· · · a(im+2+2)

m+2,1 a
(im+1)
m,1 . . .

· · · a(im+1)
m,cm a

(im+1+1)
m+1,1 . . . a

(im+1+1)
m+1,cm+1

a
(im+2)
m+2,2 . . . a

(im+2)
m+2,cm+2

where a
(im+1)
m,1 . . . a

(im+1)
m,cm a

(im+1+1)
m+1,1 . . . a

(im+1+1)
m+1,cm+1

a
(im+2)
m+2,2 . . . a

(im+2)
m+2,cm+2

is a column word, and a
(im)
m,cm <

a
(im+2+1)
m+2,1 < a

(im+1+1)
m+1,1 .

As a
(im)
m,cm < a

(im+2+1)
m+2,1 , we can apply the induction assumption on

a
(i1)
11 . . . a

(i1)
1c1
· · · a(im)

m1 . . . a(im)
mc2 a

(im+2+1)
m+2,1

and hence we have

a
(i1)
11 . . . a

(i1)
1c1

a
(i2)
21 . . . a

(i2)
2c2
· · · a(im)

m1 . . . a(im)
mcma

(im+2+1)
m+2,1

v∗a(i1)11 . . . a
(i1)
1c1

a
(i2)
21 . . . a

(i2)
2c2
· · · a(im−1)

m−1,1 . . . a
(im−1)
m−1,cm−1

a
(im+2+2)
m+2,1 a

(im+1)
m1 . . . a(im+1)

mcm

v∗a(i1)11 . . . a
(i1)
1c1

a
(i2)
21 . . . a

(i2)
2c2
· · · a(im−2)

m−2,1 . . . a
(im−2)
m−2,cm−2

a
(im+2+3)
m+2,1 a

(im−1+1)
m−1,1 · · ·

· · · a(im−1+1)
m−1,cm−1

a
(im+1)
m1 . . . a(im+1)

mcm

...

v∗a(im+2+m+1)
m+2,1 a

(i1+1)
11 . . . a

(i1+1)
1c1

a
(i2+1)
21 . . . a

(i2+1)
2c2

· · · a(im+1)
m1 . . . a(im+1)

mcm

where



a
(im−j)
m−j,cm−j < a

(im+2+1+j)
m+2,1 < a

(im+1−j+1)
m+1−j,1 ∀1 ≤ j < m

a
(im+2+m+1)
m+2,1 < a

(i1+1)
11

a
(i1+1)
11 . . . a

(i1+1)
1c1

a
(i2+1)
21 . . . a

(i2+1)
2c2

· · · a(im+1)
m1 . . . a

(im+1)
mcm is a column word

.
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Combining the above results, we have

a
(i1)
11 . . . a

(i1)
1c1
· · · a(im+1)

m+1,1 . . . a
(im+1)
m+1,cm+1

a
(im+2)
m+2,1 . . . a

(im+2)
m+2,cm+2

v∗a(i1)11 . . . a
(i1)
1c1
· · · a(im)

m1 . . . a(im)
mcma

(im+2+1)
m+2,1 a

(im+1+1)
m+1,1 . . . a

(im+1+1)
m+1,cm+1

a
(im+2)
m+2,2 . . . a

(im+2)
m+2,cm+2

v∗a(i1)11 . . . a
(i1)
1c1
· · · a(im−1)

m−1,1 . . . a
(im−1)
m−1,cm−1

a
(im+2+2)
m+2,1 a

(im+1)
m,1 . . . a(im+1)

m,cm a
(im+1+1)
m+1,1 . . .

· · · a(im+1+1)
m+1,cm+1

a
(im+2)
m+2,2 . . . a

(im+2)
m+2,cm+2

v∗a(i1)11 · · · a
(im−2)
m−2,cm−2

a
(im+2+3)
m+2,1 a

(im−1+1)
m−1,1 . . .

. . . a
(im−1+1)
m−1,cm−1

a
(im+1)
m1 . . . a(im+1)

mcm a
(im+1+1)
m+1,1 . . . a

(im+1+1)
m+1,cm+1

a
(im+2)
m+2,2 . . . a

(im+2)
m+2,cm+2

...

v∗a(im+2+m+1)
m+2,1 a

(i1+1)
11 . . . a

(i1+1)
1c1

· · · a(im+1)
m1 . . . a(im+1)

mcm a
(im+1+1)
m+1,1 . . .

· · · a(im+1+1)
m+1,cm+1

a
(im+2)
m+2,2 . . . a

(im+2)
m+2,cm+2

Both a
(i1+1)
11 . . . a

(i1+1)
1c1

a
(i2+1)
21 . . . a

(i2+1)
2c2

· · · a(im+1)
m1 . . . a

(im+1)
mcm and

a
(im+1)
m,1 . . . a

(im+1)
m,cm a

(im+1+1)
m+1,1 . . . a

(im+1+1)
m+1,cm+1

a
(im+2)
m+2,2 . . . a

(im+2)
m+2,cm+2

are column words, so

a
(i1+1)
11 . . . a

(i1+1)
1c1

· · · a(im+1)
m1 . . . a

(im+1)
mcm a

(im+1+1)
m+1,1 . . . a

(im+1+1)
m+1,cm+1

a
(im+2)
m+2,2 . . . a

(im+2)
m+2,cm+2

is a column word.

Also,
a
(im−j)
m−j,cm−j < a

(im+2+1+j)
m+2,1 < a

(im+1−j+1)
m+1−j,1 ∀1 ≤ j < m

a
(im)
m,cm < a

(im+2+1)
m+2,1 < a

(im+1+1)
m+1,1

implies a
(im+1−j)
m+1−j,cm+1−j

< a
(im+2+j)
m+2,1 < a

(im+2−j+1)
m+2−j,1 ∀1 ≤ j < m+ 1.

Therefore the statement is true for k = m+ 2.

By Mathematical Induction, the statement is true for all integers k ≥ 2.

Lemma 3.3 shows how to create the first entry of the corresponding row word, leaving the

remaining part as a column word . We illustrate the Lemma by an example with a
(ik+j)
k1 circled for
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all 0 ≤ j ≤ k − 1.

Example 10. Let w0 be the word in Example 7, hence k = 5, c1 = 6, c2 = 5, c3 = 4, c4 = c5 = 1.

Set ij = 0 for all j. Then we have

w0 = a
(0)
11 . . . a

(0)
16 |a

(0)
21 . . . a

(0)
25 |a

(0)
31 . . . a

(0)
34 |a

(0)
41 | a

(0)
51 = 886531|97643|9764|5| 6

w1 = a
(0)
11 . . . a

(0)
16 |a

(0)
21 . . . a

(0)
25 |a

(0)
31 . . . a

(0)
34 | a

(1)
51 |a

(1)
41 = 886531|97643|9764| 5 |6

w2 = a
(0)
11 . . . a

(0)
16 |a

(0)
21 . . . a

(0)
25 | a

(2)
51 |a

(1)
31 . . . a

(1)
34 |a

(1)
41 = 886531|97643| 4 |9765|6

w3 = a
(0)
11 . . . a

(0)
16 | a

(3)
51 |a

(1)
21 . . . a

(1)
25 |a

(1)
31 . . . a

(1)
34 |a

(1)
41 = 886531| 3 |97644|9765|6

w4 = a
(4)
51 |a

(1)
11 . . . a

(1)
16 |a

(1)
21 . . . a

(1)
25 |a

(1)
31 . . . a

(1)
34 |a

(1)
41 = 1 |886533|97644|9765|6

.

Lemma 3.4. Let w = a11 . . . a1c1 · · · ak1 . . . akck be a column word. Then there exists a sequence

{bij}1≤j≤ci,1≤i≤k such that

w v∗ bk1bk−1,1 . . . b11b12 . . . b1c1b22 . . . b2c2 · · · bk2 . . . bkck ,

where b11 > b21 > · · · > bk1 and b11 . . . b1c1 |b22 . . . b2c2 | · · · |bk2 . . . bkck is a column word (with lengths

c1 > c2 − 1 ≥ · · · ≥ ck − 1).

Proof. Apply Lemma 3.3 on a11 . . . a1c2 · · · ak1 . . . akck , we have

a11 . . . a1c1a21 . . . a2c2 · · · ak1 . . . akck

v∗ a(k−1)k1 a
(1)
11 . . . a

(1)
1c1
· · · a(1)k−1,1 . . . a

(1)
k−1,ck−1

ak2 . . . akck

where a
(1)
11 . . . a

(1)
1c1
· · · a(1)k−1,1 . . . a

(1)
k−1,ck−1

ak2 . . . akck is a column word.

Apply Lemma 3.3 on a
(1)
11 . . . a

(1)
1c1
· · · a(1)k−1,1 . . . a

(1)
k−1,ck−1

, we have

a
(1)
11 . . . a

(1)
1c1
· · · a(1)k−1,1 . . . a

(1)
k−1,ck−1

v∗ a(k−1)k−1,1a
(2)
11 . . . a

(2)
1c1
· · · a(2)k−2,1 . . . a

(2)
k−2,ck−2

a
(1)
k−1,2 . . . a

(1)
k−1,ck−1

,

where a
(2)
11 . . . a

(2)
1c1
· · · a(2)k−2,1 . . . a

(2)
k−2,ck−2

a
(1)
k−1,2 . . . a

(1)
k−1,ck−1

is a column word.

Since by the k = 2 case in the proof of Lemma 3.3, we have a
(1)
k1 < a

(1)
k−1,1, then by applying 2.

of Lemma 3.2 inductively, we have a
(k−1)
k1 < a

(k−1)
k−1,1.
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Combining the above, we have

a11 . . . a1c1a21 . . . a2c2 · · · ak1 . . . akck

v∗a(k−1)k1 a
(1)
11 . . . a

(1)
1c1
· · · a(1)k−1,1 . . . a

(1)
k−1,ck−1

ak2 . . . akck

v∗a(k−1)k1 a
(k−1)
k−1,1a

(2)
11 . . . a

(2)
1c1
· · · a(2)k−2,1 . . . a

(2)
k−2,ck−2

a
(1)
k−1,2 . . . a

(1)
k−1,ck−1

ak2 . . . akck

with a
(k−1)
k1 < a

(k−1)
k−1,1 and a

(2)
11 . . . a

(2)
1c1
· · · a(2)k−2,1 . . . a

(2)
k−2,ck−2

a
(1)
k−1,2 . . . a

(1)
k−1,ck−1

ak2 . . . akck is a column

word.

Hence by induction, we have

a11 . . . a1c1a21 . . . a2c2 · · · ak1 . . . akck

v∗a(k−1)k1 a
(1)
11 . . . a

(1)
1c1
· · · a(1)k−1,1 . . . a

(1)
k−1,ck−1

ak2 . . . akck

v∗a(k−1)k1 a
(k−1)
k−1,1a

(2)
11 . . . a

(2)
1c1
· · · a(2)k−2,1 . . . a

(2)
k−2,ck−2

a
(1)
k−1,2 . . . a

(1)
k−1,ck−1

ak2 . . . akck

v∗a(k−1)k1 a
(k−1)
k−1,1a

(k−1)
k−2,1a

(3)
11 . . . a

(3)
1c1
· · · a(3)k−3,1 . . . a

(3)
k−3,ck−3

a
(2)
k−2,1 . . . a

(2)
k−2,ck−2

a
(1)
k−1,2 . . .

· · · a(1)k−1,ck−1
ak2 . . . akck

...

v∗a(k−1)k1 a
(k−1)
k−1,1 . . . a

(k−1)
11 a

(k−1)
12 . . . a

(k−1)
1c1

a
(k−2)
22 . . . a

(k−2)
2c2

· · ·

· · · a(1)k−1,2 . . . a
(1)
k−1,ck−1

ak2 . . . akck

where a
(k−1)
k1 < a

(k−1)
k−1,1 < · · · < a

(k−1)
11 and

a
(k−1)
11 . . . a

(k−1)
1c1

a
(k−2)
22 . . . a

(k−2)
2c2

· · · a(1)k−1,2 . . . a
(1)
k−1,ck−1

ak2 . . . akck is a column word.

Set bi1 := a
(k−1)
i1 and bij := a

(k−i)
ij for 1 < j ≤ ci, 1 ≤ i ≤ k and result follows.

Example 11. We use the same word in Example 10 to illustrate Lemma 3.4 by repeated use of

Lemma 3.3. We first have

w0 = a
(0)
11 . . . a

(0)
16 |a

(0)
21 . . . a

(0)
25 |a

(0)
31 . . . a

(0)
34 |a

(0)
41 |a

(0)
51 = 886531|97643|9764|5|6

and by Example 10, we have
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a
(4)
51 |a

(1)
11 . . . a

(1)
16 |a

(1)
21 . . . a

(1)
25 |a

(1)
31 . . . a

(1)
34 |a

(1)
41 = 1|886533|97644|9765|6

and we apply Example 10 again on the latter part (marked by the rectangle), we have

a
(4)
51 |a

(1)
11 . . . a

(1)
16 |a

(1)
21 . . . a

(1)
25 | a

(2)
41 |a

(2)
31 . . . a

(2)
34 = 1|886533|97644| 5 |9766

a
(4)
51 |a

(1)
11 . . . a

(1)
16 | a

(3)
41 |a

(2)
21 . . . a

(2)
25 |a

(2)
31 . . . a

(2)
34 = 1|886533| 4 |97654|9766

a
(4)
51 a

(4)
41 |a

(2)
11 . . . a

(2)
16 |a

(2)
21 . . . a

(2)
25 |a

(2)
31 . . . a

(2)
34 = 1 3 |886543|97654|9766

and again we apply Example 10 again on the latter part (marked by the rectangle), we have

a
(4)
51 a

(4)
41 |a

(2)
11 . . . a

(2)
16 |a

(2)
21 . . . a

(2)
25 | a

(2)
31 a

(2)
32 a

(2)
33 a

(2)
34 = 13|886543|97654| 9 766

a
(4)
51 a

(4)
41 |a

(2)
11 . . . a

(2)
16 | a

(3)
31 |a

(3)
21 . . . a

(3)
25 |a

(2)
32 a

(2)
33 a

(2)
34 = 13|886543| 7 |99654|766

a
(4)
51 a

(4)
41 a

(4)
31 |a

(3)
11 . . . a

(3)
16 |a

(3)
21 . . . a

(3)
25 |a

(2)
32 a

(2)
33 a

(2)
34 = 13 6 |887543|99654|766

and by repeating the same process again, we get
a
(4)
51 a

(4)
41 a

(4)
31 |a

(3)
11 . . . a

(3)
16 | a

(3)
21 a

(3)
22 . . . a

(3)
25 |a

(2)
32 a

(2)
33 a

(2)
34 = 136|887543| 9 9654|766

a
(4)
51 a

(4)
41 a

(4)
31 a

(4)
21 |a

(4)
11 . . . a

(4)
16 |a

(3)
22 . . . a

(3)
25 |a

(2)
32 a

(2)
33 a

(2)
34 = 136 8 |987543|9654|766

and finally we get

a
(4)
51 a

(4)
41 a

(4)
31 a

(4)
21 |a

(4)
11 a

(4)
12 . . . a

(4)
16 |a

(3)
22 . . . a

(3)
25 |a

(2)
32 a

(2)
33 a

(2)
34 = 1368|987543|9654|766.

So we have:

b51b41b31b21|b11b12 . . . b16|b22 . . . b25|b31 . . . b34 = 1368|987543|9654|766, where

b11b12 . . . b16|b22 . . . b25|b32b33b34 = 987543|9654|766 is a column word with lengths 6, 4, 3.

Using the notation in Lemma 3.4, since

w v∗ bk1bk−1,1 . . . b11b12 . . . b1c1b22 . . . b2c2 · · · bk2 . . . bkck ,

where b11 > b21 > · · · > bk1, the SSAF with basement being εn representing the word w is the same

as that representing bk1bk−1,1 . . . b11b12 . . . b1c1b22 . . . b2c2 · · · bk2 . . . bkck . Denote F (w) as the SSAF

created.

Since bk1bk−1,1 . . . b11 is strictly increasing, by Lemma 15 in [4], they create new cells in ascending

reading order (i.e. one after another) and hence is exactly the first entire row of F (w) as the entries
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are fixed when inserting bk1bk−1,1 . . . b11 into an empty atom, and there are k columns (as w has

k subsequences) and so the first row has length k and hence the row reading word has exactly

bk1, bk−1,1, . . . , b11 as the first subsequence. That means we can apply Lemma 3.4 to find the first

subsequence of the row reading word of F (w).

Since b12 . . . b1c1b22 . . . b2c2 · · · bk2 . . . bkck is a column word, we can apply Lemma 3.4 again and

get the second subsequence of the row reading word of F (w), and we can apply Lemma 3.4 repeatedly

on the remaining bij ’s until we get all the subsequences of the row reading word of F (w). As a result,

we can convert w into the row reading word of F (w) by applying Lemma3.4 repeatedly as described.

We illustrate this by using the example in Example 11:

Example 12. From Example 7 and Example 11, we notice that b51b41b31b21b11 = 13689 which

is exactly the first subsequence of the row word of the SSAF representing the column word w =

886531|97643|9764|5|6. Also one can check that 87543|9654|766 is a column word (by Definition

3.3).

We can apply Lemma 3.4 on 87543|9654|766 as we did in Example 11 on

886531|97643|9764|5|6 and get 589|7643|754|66 which gives the second subsequence of the row word:

589, and by repeating the same process, we get 467|753|64|6, 357|64|6, 46|6 and lastly 6.

As a result, we get 467, 357, 46 and 6 as the third to the last subsequence of the row word (see

Example 7).

3.2 Convert a Column Recording Tableau to a Row Record-

ing Tableau

This section gives an interpretation of the twisted Knuth equivalence using recording tableaux. We

use the insertion in [11] and the generalized Littlewood-Richardson rule in [3]. We also use the

notation (U ←W ) for an SSAF U and a biword W =

x1 x2 . . . xn

y1 y2 . . . yn

 for some positive integer

51



n to denote the pair (U ′, L) where U ′ is the SSAF obtained by (U ← y1y2 . . . yn) while L is the

recording tableau, i.e. by putting xi into the cell created when yi is being inserted. In particular, if

y1y2 . . . yn is a column (resp. row) word, then we call L as a column (resp. row) recording tableau.

By abuse of notation, we sometimes refer (U ←W ) to either V or L (depending on the context).

(Note that if we change the basement εn into the large basement in [3], a column recording

tableau is the same as an LRS defined in Section 4 of [3].)

Lemma 3.5. Let U be an SSAF with basement εn and shape α for some positive integer n and

l(α) ≤ n. Consider the biword W =

2 2 1

a b c

, a ≥ b, c > b (i.e. ab|c is a column word.). Let

L = U ← W be the recording tableau. Let V be the SSAF representing the word abc and a′b′c′

be the row reading word of V (so a′ < b′ and c′ ≤ b′ and abc v∗ a′b′c′). Consider the biword

W̃ =

 1 1 2

a′ b′ c′

 and let L̃ = U ← W̃ be the recording tableau. Then L determines L̃.

Proof. There are two cases to consider: a ≥ c or a < c.

Case(I): a ≥ c > b

Hence we have a′b′c′ = bac.

We first consider L. Since a > b, when we insert ab into U , i.e.

(
U ←

2 2

a b


)

, the

cell created by b is strictly above that created by inserting a (by Lemma 15 in [4]):

(i) The cell appears when inserting b is immediately above that of inserting a:

2
2

(ii) The two cells are the top cells of two distinct columns (by Theorem 16 in [4])

and the cells appear in ascending reading order, (i.e. one after another):

Since c > b, by Lemma 15 in [4], the cell created when inserting c after inserting ab

into U is after the first cell created by inserting b in reading order.
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For (i), we have L =

(a) 2 1
2

or (b) 2
1 2

or (c) 2
2 1

or (d) 2
2

1

(a) is impossible as the cell created by inserting c, i.e. 1 , is not a removable cell

(defined in [4]).

For (b), L̃ = 2
1 1

as the cell created by c′ must be the top cell of some column and

is strictly above that created by b′ but there is only one such cell.

(c) and (d) can be considered as the same case by viewing the cell created by inserting

c is after that created by inserting a (the second 2 in reading order). By the same

argument as (b), we have L̃ = 2
1

1

For (ii), since the reading word of L is contre-lattice by [3] which means it should be

221 or 212, the cell created by inserting c is either the middle in reading order or the

last one in reading order.

Suppose the cell created by inserting c is the middle cell among the three in reading

order, i.e. the reading word of L is 212.

Since c′ = c ≤ a = b′ > a′ = b, so when performing (U ← a′b′c′ = bac) to get L̃, the

cell created by inserting a is after both of that inserted by b and by c, by Lemma 15

of [4], the last cell must be created when a is inserted and hence marked as 1.

If the middle cell (in reading order) is immediately above the last cell, then it cannot

be created by (U ← b) as the last cell is not created if b is inserted before a, and so it

must be marked as 2, i.e. when c′ = c is inserted.

2
1

or 2
1

Suppose the middle cell (in reading order) is not immediately above the last cell, then

all three cells are the top cell of three distinct columns. Suppose the middle cell is
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marked as 1 in L̃, meaning that when we insert b before inserting a, the cell created is

after the cell created by b when we first insert a into U .

1
1

or 1
1

or 1
1

or 1
1

That means the bumping sequence for (U ← a) involves some cell in the bumping

sequence in (U ← b) and this implies the cell created by (U ← a) is the same as

(U ← b) (because the bumping sequence has the same ending subsequence starting

from the common cell and hence creating the same final cell), and this leads to a

contradiction.

Therefore we have the reading order (from first to last in reading order) of L̃ = 121.

Now consider the case when L has the reading word 221.

By the same argument, we know that the last cell in L̃ is created when b′ = a is

inserted. If a′ = b creates the first cell among the three in reading order as b does in L

after a is inserted, then the insertion of (U ← a) has no common cell in the bumping

sequence of (U ← b). That means when we insert a after inserting b, the bumping

sequence is the same as inserting a before inserting b (this is true because the bumping

sequence of b is a decreasing sequence, so inserting b into U would not affect the first

(in reading order) cell in U containing an entry larger than a as a > b.). That means

(U ← ab) is the same as (U ← ba). This leads to a contradiction as we assumed a

create different cells in the two cases (the middle and the last cell respectively).

So we know the middle cell is marked as 1 in L̃. So the reading word of L̃ is 211.

Case(II): c > a ≥ b

Then a′b′c′ = acb. Hence the first cells created in L and L̃ are always the same. Note

that c > a meaning the cell created by inserting a = a′ is not the last (in reading

order) cell, and a ≤ b meaning that the cell created by inserting a is not the first (in

reading order) cell either. As a result, we know that the middle cell must be created
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when a is inserted. Since the first (in reading order) is created in L when inserting b

while the last (in reading order) cell is created in L̃ when inserting b′ = c is inserted,

we know the first cell of L is marked as 2 while the last cell in L̃ must be marked as 1

and that means the reading word of L is 221 and that of L̃ is 211.

This shows that if the reading word of L is 221 or when L is of the form as Case(I)(i)

then the reading word of L̃ is 211, otherwise the reading word of L̃ is 121.

Hence L determines L̃.

Lemma 3.6. Let U be an SSAF with basement εn and shape α for some positive integer n and

l(α) ≤ n. Consider the biword W =

 2 2 · · · 2 1

a1 a2 · · · ak b

, a1 ≥ a2 ≥ · · · ≥ ak, b > ak (i.e.

a1a2 . . . ak|b is a column word ). Let L = U ← W be the recording tableau. If b > a1, then L has

reading word 22 . . . 21, i.e. b creates the last cell in reading order and the insertion of a2 . . . ak is

independent of the insertion of b.

Proof. Since a1a2 . . . akb v∗ a1ba2 . . . ak, we have

(U ← a1a2 . . . akb) = (U ← a1ba2 . . . ak).

When k = 2, the result follows by Case(II) in the proof of Lemma 3.5.

For k > 2, since a1a2 . . . akb v∗ a1ba2 . . . ak, we have (U ← a1a2 . . . akb) = (U ← a1ba2 . . . ak) =

((U ← a1ba2) ← a3 . . . ak). By the case when k = 2, we know b creates a cell after both a1 and

a2 (and a3 . . . ak create cells with decreasing reading order each of which has an order smaller than

that of the cell created by a2) and result follows.

Example 13. Let W =

2 2 2 2 2 2 1

8 8 6 5 3 1 9

 where a1 = 8 < 9 = b. Let n = 9 and U be an

SSAF with basement ε9 = 123456789 and shape α = (1, 1, 0, 0, 3, 0, 2, 0, 6) :
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U =

1
2
2

1 6
5 4 8

1 2 5 7 9
1 2 3 4 5 6 7 8 9

Therefore , (U ←W ) means:

1
2
2

1 6
5 4 8

1 2 5 7 9
1 2 3 4 5 6 7 8 9

←

2 2 2 2 2 2 1

8 8 6 5 3 1 9


which results in

1
3
5

1 6
2 8
2 1 8
5 6 9

1 2 4 5 7 8 9
1 2 3 4 5 6 7 8 9

2
2

2
2

2

2 1
1 2 3 4 5 6 7 8 9

When 9 is inserted, it creates the last cell (we marked the cell red) in reading order among all cells

created, and one can see this by reading the recording tableau where the cell is marked as 1, which

is the last cell in reading order among all cells.

Also, note that the bumping route of 9 starts from the second row of U while those of a2, . . . , a6 =

8, 6, 5, 3, 1 starts from the third row. Hence the insertion of 9 does not affect the bumping routes of

inserting a2, . . . , a6.

Lemma 3.7. Let U be an SSAF with basement εn and shape α for some positive integer n and

l(α) ≤ n. Consider the biword W =

 2 2 · · · 2 1

a1 a2 · · · ak b

, a1 ≥ a2 ≥ · · · ≥ ak, b > ak (i.e.

a1a2 . . . ak|b is a column word ). Let L = (U ←W ) be the recording tableau. If i = min
1≤j≤k

{j : b > aj},

then the cell created by inserting am for m > i is not affected by the insertion of b.

Proof. Since (U ← a1a2 . . . akb) = ((U ← a1a2 . . . ai−1)← ai . . . akb). By applying Lemma 3.6 with

the U in the lemma being (U ← a1 . . . ai−1) and result follows.
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Lemma 3.8. Let U be an SSAF with basement εn and shape α for some positive integer n and

l(α) ≤ n. Consider the biword W =

 2 2 · · · 2 1

a1 a2 · · · ak b

, a1 ≥ a2 ≥ · · · ≥ ak, b > ak (i.e.

a1a2 . . . ak|b is a column word ). Let L = (U ←W ) be the recording tableau. Suppose b ≤ ak−1. Let

L̃ = (U ← W̃ ) where W̃ =

 1 1 2 · · · 2 2

ak a1 a2 · · · ak−1 b

, then L determines L̃.

Proof. When k = 2, this is proved by Case(I) in Lemma 3.5.

For k > 2, since a1 . . . akb v∗ aka1 . . . ak−1b, L and L̃ has the same shape.

Also, a1 . . . akb v∗ a1 . . . ak−1akb, we have

(U ← a1 . . . ak−1akb) = ((U ← a1 . . . ak−2)← ak−1akb).

By applying the case when k = 2 on (U ← a1 . . . ak−2) and ak−1akb being the length-3-word inserted,

we know the order of the cell being created which represents ((U ← a1 . . . ak−2) ← ak−1akb) =

((U ← a1 . . . ak−2) ← akak−1b) and so we know which one among the three is the last cell being

created (by Lemma 3.5, the last cell being created may either be the first or second cell in reading

order among the three cells created). By marking that cell as 2 in L̃ and then consider the first two

cells being created we know how the cells are being created by the insertion on ((U ← a1 . . . ak−2)←

akak−1) = (U ← a1 . . . ak−2akak−1) = (U ← aka1 . . . ak−2ak−1) by induction (as ak−2 ≤ ak−1 < ak

for ak < b ≤ ak−1) and together with the last cell marked by 2 as mentioned, we know how to label

the entries of the recording tableau L̃ for (U ← aka1 . . . ak−2ak−1b).

Example 14. Let U as in Example 13 and let W =

2 2 2 2 1

9 7 6 4 5

.

Then W̃ =

2 2 2 2 1

4 9 7 6 5

.

(U ←W ) means:
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1
2
2

1 6
5 4 8

1 2 5 7 9
1 2 3 4 5 6 7 8 9

←

2 2 2 2 1

9 7 6 4 5



which results in

1
5

2 6
2 4 1 7
5 6 4 9

1 2 5 7 8 9
1 2 3 4 5 6 7 8 9

2
2 1

2
2

1 2 3 4 5 6 7 8 9

=: L

We illustrate the proof of Lemma 3.8 to get L̃ from L.

Consider the last three cells created which are marked green in L:

2
2 1

2
2

1 2 3 4 5 6 7 8 9

⇒
2

1© 2©
2
2

1 2 3 4 5 6 7 8 9

We get the first cell (in reading order) in L̃ (the yellow cell) marked as 2 by applying Case (ii)

in the proof of Lemma 3.5 as we know the green cells would have reading 211 in L̃ which implies

the first cell in reading order among the three green cells in L must be marked with 2 in L̃ while the

two cells appear in the order as circled (i.e. the one marked as 1 appear before the one marked

with 2 when we insert a4a3b = 465 to get L̃.)

Hence we can treat the cell marked with 2 as the last cell created among the remaining 4 cells

in L̃ to be filled, and so we mark that cell as 1 ( treating it as the new b being inserted as 4 < 6 < 7

). Now we have the three new lastly-created cells marked green:

2
2 1

2
2

1 2 3 4 5 6 7 8 9

⇒
2

1© 2
2©
2

1 2 3 4 5 6 7 8 9

Again, we get the second (in reading order) cell among the three green cells (the new yellow cell

) marked as 2 by applying Case (ii) in the proof of Lemma 3.5 as we know the green cells would
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have reading 121 in L̃ which implies the second cell in reading order among the three green cells in

L must be marked 2 in L̃ while the two cells appear in the order as circled (i.e. the one marked with

1 appears before the one marked with 2 when we insert a4a2a3 = 476 to get L̃.)

Hence we can, again, treat the cell marked with 2 as the last cell created among the remaining

three cells in L̃ to be filled, and so mark it as 1 and the other two cells as 2 by a similar argument

as the previous step. Now we have the three new lastly-created cells marked green:

2
2 2

1
2

1 2 3 4 5 6 7 8 9

⇒
2

1 2
2
1

1 2 3 4 5 6 7 8 9

= L̃

We get the remaining entries of L̃ by applying Lemma 3.5 again as we know the reading word

among these three cells would change from 212 to 121.

One can verify that L̃ is indeed the recording tableau of (U ← W̃ ).

Lemma 3.9. Let U be an SSAF with basement εn and shape α for some positive integer n and

l(α) ≤ n. Consider the biword W =

 2 2 · · · 2 1

a1 a2 · · · ak b

, a1 ≥ a2 ≥ · · · ≥ ak, b > ak (i.e.

a1a2 . . . ak|b is a column word ). Let L = (U ← W ) be the recording tableau. Let L̃ = (U ← W̃ )

where W̃ =

1 1 2 · · · 2

b′ a′1 a′2 · · · a′k

, such that b′ = ai, where i = min
1≤j≤k

{j : b > aj} and b′ < a′1,

a′1 ≥ a′2 ≥ · · · ≥ a′k (one can verify that b′a′1 . . . a
′
k is indeed the row reading word of the SSAF

representing the word a1a2...akb by 1. in Lemma 3.2), then L determines L̃.

Proof. If i = k, then we are done by Lemma 3.8.

If i = 1, then by 1. in Lemma 3.2, we have b′a′1 . . . a
′
k = a1ba2 . . . ak and hence by Lemma 3.6, b

would create the last cell in reading order in L̃ when being inserted and hence we know that which

two cells are created by a1 and b in L̃ and hence we know how to label the entries by marking those

two cells as 1 and the rest as 2.
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Suppose i < k then by 1. in Lemma 3.2, we have

b′a′1 . . . a
′
k = aia1 . . . ai−1bai+1 . . . ak.

Now by Lemma 3.7, we know all aj , j > i creates create the same cells in L and L̃ and since

a1 . . . ai−1aib v∗ aia1 . . . ai−1b, we just need to first apply Lemma 3.8 on (U ← a1 . . . aib) as the

insertion recorded by L in the lemma in order to find the first i+1 cells created in L̃ by the insertion

(U ← aia1 . . . ai−1b) and then label the rest of cells created by ((U ← aia1 . . . ai−1b)← ai+1 . . . ak)

as 2 and get the entries of L̃ and result follows.

Lemma 3.9 gives a recording tableau interpretation of 1. in Lemma 3.2 using L and L̃.

Lemma 3.10. Let U be an SSAF with basement εn and shape α for some positive integer n and

l(α) ≤ n. Let w0 = a11 . . . a1c1 |a21 . . . a2c2 | · · · |ak1 . . . akck with k ≤ n be a column word and using

the notation in Lemma 3.3 while we assume (ij) = 0 for 1 ≤ j ≤ cr, 1 ≤ r ≤ k, the recording

tableau L of (U ←W0) determines the recording tableau L̃m to (U ←Wm) for 0 ≤ m ≤ k−1, where

L := L̃0 and Wm is a biword with the lower word being wm and the upper word has entry k+ 1− t if

the lower word entry just below it is a
(s)
tj for s = it, it + 1, and 1(1) if m > 0 and the entry is aik+mk1 .

Proof. Suppose k = 2 then

(U ← w0) = ((U ← a11 . . . a1c1a21)← a22 . . . a2c2) =
(
((U ← a

(1)
21 )← a

(1)
11 . . . a

(1)
1c1

)← a22 . . . a2c2
)

and by Lemma 3.9 we know how the cells are created in ((U ← a
(1)
21 ) ← a

(1)
11 . . . a

(1)
1c1

). So giving

the recording tableau L of (U ← a11 . . . a1c1a21), we know how the cells are created by (U ←

a
(1)
21 a

(1)
11 . . . a

(1)
1c1

). Now inserting the rest of the sequence a22 . . . a2c2 and which creates in L̃1 the

same last (c2 − 1) cells as in L, we know how to label the recording tableau L̃1.

Suppose k > 2, then

(U ← w0) = (U ← a11 . . . a1c1a21 . . . a2c2 · · · ak1 . . . akck)

= ((U ← a11 . . . a1c1 · · · ak−2,1 . . . ak−2,ck−2
)← ak−1,1 . . . ak−1,ck−1

ak1 . . . akck) and by the argument
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with

(U ← a11 . . . a1c1 · · · ak−2,1 . . . ak−2,ck−2
)

being the U to be considered for k = 2, we know how the cells are created in L̃1 for

((U ← a11 . . . a1c1 · · · ak−2,1 . . . ak−2,ck−2
)← a

(1)
k1 a

(1)
k−1,1 . . . a

(1)
k−1,ck−1

ak2 . . . akck)

and by the same argument, we know how the cells are created in L̃2 for

((U ← a11 . . . a1c1 · · · ak−3,1 . . . ak−3,ck−3
) ← a

(2)
k1 a

(1)
k−2,1 . . . a

(1)
k−2,ck−2

a
(1)
k−1,1 · · · a

(1)
k−1,ck−1

ak2 . . . akck)

and result follows by induction.

Example 15. We use the words in Example 10 and the same U as in Example 13 to illustrate

Lemma 3.10.

Recall that in Example 10, we have

w0 = a
(0)
11 . . . a

(0)
16 |a

(0)
21 . . . a

(0)
25 |a

(0)
31 . . . a

(0)
34 |a

(0)
41 | a

(0)
51 = 886531|97643|9764|5| 6

w1 = a
(0)
11 . . . a

(0)
16 |a

(0)
21 . . . a

(0)
25 |a

(0)
31 . . . a

(0)
34 | a

(1)
51 |a

(1)
41 = 886531|97643|9764| 5 |6

w2 = a
(0)
11 . . . a

(0)
16 |a

(0)
21 . . . a

(0)
25 | a

(2)
51 |a

(1)
31 . . . a

(1)
34 |a

(1)
41 = 886531|97643| 4 |9765|6

w3 = a
(0)
11 . . . a

(0)
16 | a

(3)
51 |a

(1)
21 . . . a

(1)
25 |a

(1)
31 . . . a

(1)
34 |a

(1)
41 = 886531| 3 |97644|9765|6

w4 = a
(4)
51 |a

(1)
11 . . . a

(1)
16 |a

(1)
21 . . . a

(1)
25 |a

(1)
31 . . . a

(1)
34 |a

(1)
41 = 1 |886533|97644|9765|6

.

Therefore, we now have
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

W0 =

5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2 1

8 8 6 5 3 1 9 7 6 4 3 9 7 6 4 5 6



W1 =

5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 1(1) 2

8 8 6 5 3 1 9 7 6 4 3 9 7 6 4 5 6



W2 =

5 5 5 5 5 5 4 4 4 4 4 1(1) 3 3 3 3 2

8 8 6 5 3 1 9 7 6 4 3 4 9 7 6 5 6



W3 =

5 5 5 5 5 5 1(1) 4 4 4 4 4 3 3 3 3 2

8 8 6 5 3 1 3 9 7 6 4 4 9 7 6 5 6



W4 =

 1(1) 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2

1 8 8 6 5 3 3 9 7 6 4 4 9 7 6 5 6



.

We now show how to get L̃1 to L̃4 from L = L̃0.

For U ←W0:

1
2
2

1 6
5 4 8

1 2 5 7 9
1 2 3 4 5 6 7 8 9

←

5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2 1

8 8 6 5 3 1 9 7 6 4 3 9 7 6 4 5 6


which results in

62



5

6

1 4 7

3 5 1 7

4 6 2 8

5 6 3 9

1 2 5 6 8 9

1 2 4 5 7 8 9

1 2 3 4 5 6 7 8 9

5

5

4 3

5 4 2

5 4 3

5 3

4 1 3

5 4

1 2 3 4 5 6 7 8 9

= L = L̃0.

To get L̃0, we just consider the last (in reading order) cell containing 1 and all cells containing

2 and 1 and apply Lemma 3.10. Note that in this case since there are only two cells involved, we

can simply move 1 to the cell with a smaller reading order cell and mark as 1(1) :

5

5

4 3

5 4 2

5 4 3

5 3

4 1 3

5 4

1 2 3 4 5 6 7 8 9

⇒

5

5

4 3

5 4 1(1)

5 4 3

5 3

4 2 3

5 4

1 2 3 4 5 6 7 8 9

= L̃1.

From L̃1 we get L̃2 by considering the cell containing 1(1) and all the cells containing 3 and apply

Lemma 3.10 to find the new position of 1(1):

5

5

4 3

5 4 1(1)

5 4 3

5 3

4 2 3

5 4

1 2 3 4 5 6 7 8 9

⇒

5

5

4 1(1)

5 4 3

5 4 3

5 3

4 2 3

5 4

1 2 3 4 5 6 7 8 9

= L̃2.

Then consider the cells with 4 and also the cell with 1(1) in L̃2, we get L̃3 by applying Lemma

3.10 to find the new position of 1(1):
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5

5

4 1(1)

5 4 3

5 4 3

5 3

4 2 3

5 4

1 2 3 4 5 6 7 8 9

⇒

5

5

1(1) 4

5 4 3

5 4 3

5 3

4 2 3

5 4

1 2 3 4 5 6 7 8 9

= L̃3.

By the same argument and consider the cells with 5 and also the cell with 1(1), we get L̃4:

5

5

1(1) 4

5 4 3

5 4 3

5 3

4 2 3

5 4

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

5 4 3

5 3

4 2 3

5 4

1 2 3 4 5 6 7 8 9

= L̃4.

We describe a more direct way to get L = L̃0 from L̃4. Note that the reading word of L is a

contre-lattice word, we can always find a 2 before (in reading order) 1. By the last part in the proof

of Lemma 3.5, we know that, except for the case when L is of the form of Case(I)(i) , the first cell

created in L̃ (which is the first cell in reading order containing a 1) is the cell with largest reading

order containing 2 in L before the cell containing 1 in L, and so we put 1(1) into that cell in L̃.

In short, the red cell with 1(1) is always interchanged with the last green cell before it in reading

order, except for the case when that green cell is immediately above the next green cell (which must

be after the red cell if it exists) in which the red cell stays the same and compare to the next set of

green cells (if available).

Lemma 3.11. Let U be an SSAF with basement εn and shape α for some positive integer n and

l(α) ≤ n. Let w = a11 . . . a1c1 |a21 . . . a2c2 | · · · |ak1 . . . akck with k ≤ n be a column word and using

the notation in Lemma 3.4, the recording tableau L of (U ←W ) determines the recording tableau L̃
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of (U ← W̃ ), where

W =

 k k . . . k · · · 1 1 . . . 1

a11 a12 . . . a1c1 · · · ak1 ak2 . . . akck


and

W̃ =

1(1) 2(1) . . . k(1) k k . . . k · · · 1 1 . . . 1

bk1 bk−1,1 . . . b11 b12 b13 . . . b1c1 · · · bk2 bk3 . . . bkck

 .

Proof. As in the proof of Lemma 3.4 which depends mostly on Lemma 3.3, we apply Lemma 3.10

(which is like the tableaux version of Lemma 3.3) to get the result.

Given L, by Lemma 3.10, we can get L̃k−1 and if we ignore all the 1 entries (including 1(1)) in

L̃k−1, we get a new column recording tableau L′ with entries 2, . . . k, and we apply Lemma 3.10

again (treating r in L′ as r − 1 in L when we apply Lemma 3.10) and get a L̃′k−2 with an entry

2(1). By changing the corresponding entries of L̃ with those in L̃′k−2, we have 2(2) in a cell after the

cell containing 1(1) in reading order (because a
(k−1)
k1 < a

(k−1)
k−1,1 and apply Lemma 15 of [4] ). Result

follows by repeating this process until (k − 1)(1) is formed and then convert the first k as k(1).

Example 16. We use the same word in Example 7 and the same U in Example 13, which is also

the U and the word we used as w0 in Example 15, to illustrate Lemma 3.11.

By Example 11,

W̃ =

1(1) 2(1) 3(1) 4(1) 5(1) 5 5 5 5 5 4 4 4 4 3 3 3

1 3 6 8 9 8 7 5 4 3 9 6 5 4 7 6 6

.

We continue Example 15 to illustrate Lemma 3.11 to get L̃.

We mark the cell which is being moved and added subscript (1) as green and the the cells under

consideration to get the new position of the green cell as yellow and mark the final cell of the

subscripted green cell as red.

By Example 15, we get the position 1(1) and we continue using the same process:
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5

5

4 3

5 4 2

5 4 3

5 3

4 1 3

5 4

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

5 4 3

5 3

4 2 3

5 4

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

5 4 3

5 3

4 2(1) 3

5 4

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

5 4 3

5 3

2(1) 4 3

5 4

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

5 4 3

2(1) 3

5 4 3

5 4

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

5 4 3

2(1) 3

5 3(1) 4

5 4

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

5 4 3

2(1) 3

3(1) 5 4

5 4

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

5 4 3

2(1) 3

3(1) 5 4

4(1) 5

1 2 3 4 5 6 7 8 9
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⇒

5

1(1)

5 4

5 4 3

5 4 3

2(1) 3

3(1) 5 4

4(1) 5(1)

1 2 3 4 5 6 7 8 9

:= L̃.

One can verify that L̃ is actually the recording tableau of (U ← W̃ ).

Lemma 3.12. Let U be an SSAF with basement εn and shape α for some positive integer n and

l(α) ≤ n. Let w = a11 . . . a1c1 |a21 . . . a2c2 | · · · |ak1 . . . akck with k ≤ n be a column word. Let V be the

SSAF representing w (i.e. inserting w into an empty atom). Let w̃ = x11x12 . . . xr1 · · ·xc1,1 . . . xc1,rc1

be the row reading word of V (as V has c1 rows and k columns and so r1 is k), where k = r1 ≥

r2 ≥ · · · ≥ rc1 > 0 are the row lengths of V from bottom to top. Then the recording tableau L of

(U ←W ) determines the recording tableau R of (U ← W̃ ), where

W =

 k k . . . k · · · 1 1 . . . 1

a11 a12 . . . a1c1 · · · ak1 ak2 . . . akck



W̃ =

 1 1 . . . 1 · · · c1 c1 . . . c1

x11 x12 . . . x1r1 · · · xc1,1 xc1,2 . . . xc1,rc1



.

Proof. By Lemma 3.11 and the corresponding word in Lemma 3.4, given L, we know how to enter

all the 1’s in R, which are those cells marked 1(1), 2(1), . . . , k(1) after applying Lemma 3.11 as the

bk1bk−1,1 . . . b11 = x11x12 . . . x1r1 (by the argument after Lemma 3.4).

We remove the cells from L̃ in Lemma 3.11 to create a new L to apply Lemma 3.11 on, we can

get the second row entries (as described in the paragraphs after Lemma 3.4),and hence we know

how to put all the 2’s into R. By the same argument, we can fill in all entries in R and hence L

determines R.
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Example 17. We continue with the L̃ in Example 16 to illustrate Lemma 3.12.

We mark the final position of the subscripted cells a different color for a different subscript.

Starting with what we get in Example 16:

5

1(1)

5 4

5 4 3

5 4 3

2(1) 3

3(1) 5 4

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

5 3(2) 3

2(1) 4

3(1) 5 4

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

3(2) 5 3

2(1) 4

3(1) 5 4

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

3(2) 5 3

2(1) 4

3(1)4(2) 5

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 4 3

3(2) 5 3

2(1) 4

3(1)4(2) 5(2)

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

5 3(3) 3

3(2) 5 4

2(1) 4

3(1)4(2) 5(2)

4(1) 5(1)

1 2 3 4 5 6 7 8 9
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⇒

5

1(1)

5 4

3(3) 5 3

3(2) 5 4

2(1) 4

3(1)4(2) 5(2)

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

3(3) 5 3

3(2) 4(3) 4

2(1) 5

3(1)4(2) 5(2)

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 4

3(3) 5 3

3(2) 4(3) 4

2(1)5(3)

3(1)4(2) 5(2)

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

5 3(4)

3(3) 5 4

3(2) 4(3) 4

2(1)5(3)

3(1)4(2) 5(2)

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

3(4) 5

3(3) 5 4

3(2) 4(3) 4

2(1)5(3)

3(1)4(2) 5(2)

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

3(4) 5

3(3) 4(4) 4

3(2) 4(3) 5

2(1)5(3)

3(1)4(2) 5(2)

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

3(4) 5

3(3) 4(4) 4

3(2) 4(3)5(4)

2(1)5(3)

3(1)4(2) 5(2)

4(1) 5(1)

1 2 3 4 5 6 7 8 9

⇒

5

1(1)

3(4) 4(5)

3(3) 4(4) 5

3(2) 4(3)5(4)

2(1)5(3)

3(1)4(2) 5(2)

4(1) 5(1)

1 2 3 4 5 6 7 8 9
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⇒

5(6)

1(1)

3(4) 4(5)

3(3) 4(4)5(5)

3(2) 4(3)5(4)

2(1)5(3)

3(1)4(2) 5(2)

4(1) 5(1)

1 2 3 4 5 6 7 8 9

Now by replacing the entry of each cell with the subscript number, we get

R =

6

1

4 5

3 4 5

2 3 4

1 3

1 2 2

1 1

1 2 3 4 5 6 7 8 9

.

One can verify that R can be obtained by using the row word mentioned in Example7.

3.3 Decomposition of the product of a dominating monomial

and an atom into a positive sum of atoms

We now prove Theorem 3.1 mentioned in the beginning of this Chapter. We rephrase the Theorem

in a more precise form as follows.

Theorem 3.13. Let λ be a partition and α be a weak composition. Let Aλ and Aα be atoms of

shape λ and α respectively. Then

Aλ · Aα =
∑

β�|λ|+|α|,λ⊆β

cβλαAβ

where cβλα is the number of distinct LRS of shape β/λ created by column words whose corresponding

SSAF has shape α.
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Proof. Since Aλ = xλ (there is exactly one SSAF with shape λ, denoted by Uλ) and Aα =∑
F∈SSAF (α)

xF , we have

Aλ · Aα =
∑

F∈SSAF (α)

xλxF .

To prove the theorem, we only need to check that given a LRS L of shape β/λ created by column

words whose corresponding SSAF has shape α, if there is some column word

w = a11 . . . a1c1 |a21 . . . a2c2 | · · · |ak1 . . . akck

and biword

W =

 k k . . . k · · · 1 1 . . . 1

a11 a12 . . . a1c1 · · · ak1 ak2 . . . akck


such that (Uλ ←W ) creates the same L, then the SSAF corresponding to w also has shape α.

First consider the last cell in reading order among all those containing entry k in L, that means

it is the very first entry inserted. Since a11 must be inserted in a cell immediately above the cell

(including those in basement) containing a11, the position of that cell fixes the value of a11.

Now consider all the cells with k and also the last cell in reading order among all those containing

the entry k − 1, then these cells are created by Uλ ← a11 . . . a1c1a21. By Lemma3.12, we know the

corresponding row recording tableau and hence we know which two cells are the first two entries

being inserted using the corresponding row word. Note that the first row consists of distinct entries

and is inserted in ascending order using the row word, then by Lemma 15 in [4], we know the cells

are created in ascending reading order (one after another in reading order) and so they must be

the cells immediately above those in Uλ, and hence the value inside each of those cells in the SSAF

created by inserting the row word into Uλ is exactly the value inside the cell just below it. Hence we

know what the first two row entries of the corresponding SSAF of a11a12 . . . a1c1a21 are. Since we

already know the first row entry, which is the lowest entry of the column corresponding to a11 . . . a1c1

is, we now know what the lowest entry of the second column (corresponding to a11 . . . a1c1a21 and

hence the same for a11 . . . a1c1a21 . . . a2c2) is.
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We can repeat the same process until we get all the last entries of the k columns and hence fix

the shape of the SSAF corresponding to w. Since we read those entries just by considering L, this

shows that L fixes the shape of the corresponding SSAF of w and result follows.

Example 18. Pick λ = 4332221 and α = (1, 0, 1, 0, 0, 4, 0, 6, 5).

Let β = (5, 3, 5, 2, 4, 6, 1, 6, 2).

Let U =

1

1 2 3

1 2 3 4 5 6

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9

One can first check that a recording tableaux L (which is also an LRS if we change the basement)

of shape β/λ is created when the column word in Example 7 whose corresponding SSAF has shape

α is inserted into U . Indeed, we have

L =

5 4

3 2 5 4

3 1 5 4

3 5 4

5 3

5 4

1 2 3 4 5 6 7 8 9

If a column word w would create the same L when inserted in U , we know that it has column

lengths 6, 5, 4, 1, 1, and hence we can break it into 5 subsequences:

w = a11 . . . a16|a21 . . . a25|a31 . . . a34|a41|a51

satisfying the conditions of being a column word in Definition 3.3. Let F (w) be the SSAF corre-

sponding to w, i.e. the SSAF created when inserting w into an empty SSAF with basement being

1 2 3 4 . . . .

Consider the cells with entry 5 in L:
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5 4

3 2 5 4

3 1 5 4

3 5 4

5 3

5 4

1 2 3 4 5 6 7 8 9

,

the largest in reading order (marked as red) is created when a11 is inserted in U . Note that as

U is a partition shaped SSAF, a11 must be placed immediately above the cell (including basement)

containing the entry a11. Hence a11 must be 8. That means the column in F(w) corresponding to

a11 . . . a16 is above the basement entry 8.

Next consider the cells with entry 5 and the last cell in reading order containing 4:

5 4

3 2 5 4

3 1 5 4

3 5 4

5 3

5 4

1 2 3 4 5 6 7 8 9

,

by applying Lemma 3.11, we know the first two cells created when inserting the row word correspond-

ing to the column word a11 . . . a16a21 must be the ones marked red as below:

5 4

3 2 5 4

3 1 5 4

3 5 4

5 3

5 4

1 2 3 4 5 6 7 8 9

,

and so we know the two numbers in the row word must be 8 and 9, and since we already know 8

is the basement entry which the new cell created is above, when inserting a11 . . . a16 and hence we

know the second column of F (w) when inserting a21 . . . a25 is above the basement entry 9.

Apply Lemma 3.11 on the cells with entries 4, 5 and also the last cell in reading order with entry
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3, we know the first three cells created when inserting the corresponding row word of the column

word a11 . . . a16a21 . . . a25a31 into U , and we mark them red as shown:

5 4

3 2 5 4

3 1 5 4

3 5 4

5 3

5 4

1 2 3 4 5 6 7 8 9

,

That means the first three numbers in the corresponding row word is 6, 8, 9 and since we already

know the first two columns are above basement entries 8 and 9, we can conclude that the third column

created in F (w) when inserting a31 . . . a34 is above the basement entry 6.

Continue with the same process and we have:

5 4

3 2 5 4

3 1 5 4

3 5 4

5 3

5 4

1 2 3 4 5 6 7 8 9

and

5 4

3 2 5 4

3 1 5 4

3 5 4

5 3

5 4

1 2 3 4 5 6 7 8 9

.

Therefore we know the shape of F (w) is (1, 0, 1, 0, 0, 4, 0, 6, 5) which is exactly α.

3.4 Decomposition of the product of a dominating monomial

and a key into a positive sum of keys

We would adapt the notations and apply the results in [3] to prove the key-positivity property of

the product of a dominating monomial and a key. However, we will still use α instead of α∗ which

[3] uses to denote the reverse of α.

Lemma 3.14. For any given partition λ and weak compositions β, γ such that λ ⊆ β, Let
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S1 :=

{
K

∣∣∣∣∣
K is a LRK of shape δ/λ with content created ωγ(γ) and φ(K) is an LRS created

by a column word whose corresponding SSAF has a shape ≥ γ and basement shape

λ, δ ≤ β

}
,

S2 :=

{
L

∣∣∣∣ L is an LRS of shape β/λ created by a column word whose corresponding SSAF

has shape α, α ≥ γ

}

(where φ is defined in the proof in Theorem 6.1 in [3] (see appendix). Then φ|S1 : S1 → S2 is a

bijection.)

Proof. Let K ∈ S1. Then by fixing β, we know φ(K) has an overall shape β. Hence φ(K) has shape

β/λ and thus φ(K) ∈ S2.

Therefore we have φ(S1) ⊆ S2.

Since φ and hence φ|S1
is injective, it remains to check φ|S1

: S1 → S2 is surjective.

Let L ∈ S2. Since L is created by a column word whose corresponding SSAF has shape α and

α ≥ γ, we know L has content ωγ(γ). Then by the proof in Theorem 6.1 in [3], φ−1(L) is an LRK

of shape δ/λ for some δ ≤ β and has the same column sets as L. Hence φ−1(L) ∈ S1. Therefore for

any L ∈ S2, we can find an LRK, namely, φ−1(L) ∈ S1 such that φ|S1(φ−1(L)) = L.

We thus have φ|S1
is surjective and result follows.

Theorem 3.15. Let λ be a partition and γ be a weak composition. Let Aλ and κγ be an atom of

shape λ and a key of shape γ respectively. Then

Aλ · κγ =
∑
α

bαλγκα

where bαλγ is the number of distinct LRK of shape α/λ with content ωγ(γ) and the image under φ

is an LRS with basement shape λ created by a column word whose corresponding SSAF has shape ρ

for some ρ ≥ γ.
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Proof. By Theorem 1 and Theorem 3.13, we have

Aλ · κγ = Aλ ·
∑
α≥γ

Aα =
∑
α≥γ

(Aλ · Aα) =
∑
α≥γ

∑
β�|λ|+|α|
β⊇λ

cβλαAβ =
∑
β⊇λ

∑
α≥γ

α�|β|−|λ|

cβλαAβ .

Also, by Theorem 1, we have

∑
δ

bδλγκδ =
∑
δ

∑
β≥δ

bδλγAβ =
∑
β

(
∑
δ≤β

bδλγ)Aβ .

Hence to prove the theorem, we only need to prove

∑
α≥γ

α�|β|−|λ|

cβλα =
∑
β≥δ

bδλγ

which follows from Lemma 3.14 as |S2| =
∑
α≥γ

α�|β|−|λ|

cβλα and |S1| =
∑
β≥δ

bδλγ

3.5 Decomposition of the product of a Schur function and a

Demazure character

It is proved in [3] that the product of a Schur function and a Demazure character is key-positive

using tableaux-combinatorics. In this section, we give another proof using linear operators.

Lemma 3.16. If f is atom-positive, then πif is also atom positive for all positive integers i.

Proof. Let f = A0(x) +
∑
I,

Iis a reduced word

θIAI(x) where A0(x) =
∑
λ∈Par

aλx
λ with aλ ∈ Z≥0 and

AI(x) =
∑
λ∈Par

aIλx
λ with aIλ ∈ Z≥0 for any reduced word I.

Let σI be the permutation corresponding to a reduced word I. Then by Lemma 1.7, |l(siσI)−

l(σ)| = 1. If l(siσI) = l(σI)−1, then by Lemma 1.8, there exists a reduced word of σI starting with

i. Hence πiθI = 0 by item 5. of Proposition 2.1. If l(siσI) = l(σI) + 1, then iI is also a reduced

word and hence πiθI = (1 + θi)θI = θI + θiI .
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As a result,

πif = πi(A0(x)+
∑
I

Iis a reduced word

AI(x)) = A0(x)+θi(A0(x))+
∑
I,

iIis a reduced word

(θIAI(x)+θiIAI(x)).

Since A0(x) and AI(x) are sums of dominating monomials with nonnegative integer coefficients,

πif is also atom positive.

Lemma 3.17. Let σ = n, n− 1, . . . , 1 ∈ Sn. Then πiπσ = πσ and hence θiσ = 0.

Proof. By Corollary 1.10, there exists a reduced word of σ starting with i and hence by item 5. of

Proposition 2.1, we have πiπi = πi which implies πiπσ = πσ.

Hence θiπσ = (πi − 1)πσ = πiπσ − πσ = πσ − πσ = 0.

Theorem 3.18. The product of a key and a Schur function is key positive.

Proof. Let σ = n, n − 1, . . . , 1 ∈ Sn and λ, µ be partitions with length at most n. By item 2 of

Theorem 2.8, we have sλ = πσ(xλ).

Let I = i1i2 . . . ik be a reduced word of some permutation in Sn. We prove that πI(x
µ)×πσ(xλ)

is key positive.

By Lemma 2.6,

πik(xµ × πσ(xλ))

= πik(xµ)× πσ(xλ) + sik(xµ)× (θikπσ(xλ))

= πik(xµ)× πσ(xλ)

.
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πik−1
πik(xµ × πσ(xλ))

= πik−1
(πik(xµ)× πσ(xλ))

= (πik−1
πik(xµ))× πσ(xλ) + sik−1

πik(xµ)× θik−1
πσ(xλ)

= (πik−1
πik(xµ))× πσ(xλ)

Inductively, we get

πI(x
µ)× πσ(xλ) = πi1πi2 · · ·πik(xµ)× πσ(xλ) = πi1πi2 · · ·πik(xµ × πσ(xλ)).

By Lemma 2.5, πσ(xλ) =
∑
γ≤σ

θγ(xλ) =
∑
γ∈Sn

θγ(xλ) which implies xµ × πσ(xλ) =
∑
γ∈Sn

xµ ×

θγ(xλ). Therefore by Theorem 3.13, xµ × πσ(xλ) is atom positive. By Lemma 3.16, we know

πik(xµ × πσ(xλ)) is atom-positive. Inductively applying Lemma 3.16, πi1πi2 · · ·πik(xµ × πσ(xλ)) is

also atom-positive.
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Chapter 4

Atom positivity of the product of

two key polynomials whose

basements have length at most 3

In this section, we prove Conjectue 1 for l(α), l(β) ≤ 3. Note that if l(α) < 3, we can always add

zero parts to it to increase the length to 3. Hence, we can assume l(α) = 3. Similarly, we can

assume l(β) = 3.

Let λα = ωα(α) and λβ = ωβ(β). We claim that we can consider l(λα), l(λβ) ≤ 2, i.e. both α

and β have at least one zero part.

First note that for integers r ≥ 0 and a ≥ b ≥ c ≥ 0, (x1x2x3)rθτ (xa1x
b
2x
c
3) = θτ (xa+r1 xb+r2 xc+r3 )

and πτ (xa1x
b
2x
c
3) = (x1x2x3)cπτ (xa−c1 xb−c2 ) for any τ ∈ S3. That means the monomial (x1x2x3)r

times any atom is still an atom, and same for the case for key. We can also interpret this by

considering fillings, as multiplying (x1x2x3)r to an atom or a key is just adding r bottom rows to

the diagram and there is only one way to fill in these cells in an atoms or a key.

Suppose Conjectue 1 is true for l(λα), l(λβ) ≤ 2. Then for any ω, τ ∈ S3 and integers a ≥ b ≥
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c ≥ 0, s ≥ t ≥ u ≥ 0,

πω(xa1x
b
2x
c
3) · πτ (xs1x

t
2x
u
3 ) = (x1x2x3)c+u

(
πω(xa−c1 xb−c2 ) · πτ (xs−u1 xt−u2 )

)
= (x1x2x3)c+u

(∑
γ

cγAγ
)

=
∑
γ

cγ((x1x2x3)c+uAγ)

=
∑
γ

cγAγ′

where cγ are all nonnegative integers and (x1x2x3)c+uAγ = Aγ′ with γ′ = γ+(c+u, c+u, c+u)

(i.e. γ′ can be obtained by adding c+ u to each part of γ).

As a result, we now only consider compositions of length 3 and with at most two nonzero parts.

4.1 Polytopes

In this section, we introduce another way to view Demazure atoms and characters.

For each weak composition with length k, we can view it as a lattice point in Zk≥0. We will focus

on the case k = 3. (Everything in this section applies for any positive integer k.) Hence we have

the bijection:

α↔ (α1, α2, α3) ∈ Z3
≥0 ↔ xα = xα1

1 xα2
2 xα3

3 .

Consider the Coxeter arrangement (of type A2) in R3:

Cox(3) = {ai − aj : 1 ≤ i < j ≤ 3}
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a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

R1 : a1 ≥ a2 ≥ a3;

R2 : a1 ≥ a3 ≥ a2;

R3 : a2 ≥ a1 ≥ a3;

R4 : a3 ≥ a1 ≥ a2;

R5 : a2 ≥ a3 ≥ a1;

R6 : a3 ≥ a2 ≥ a1;

4.1.1 Demazure characters and polytopes

Let α be a weak composition with λα = (m,n, 0), for some integers m ≥ n ≥ 0. Then there are

exactly 6 key polynomials obtained from λα, namely:

xλα , π1x
λα , π2x

λα , π21x
λα , π12x

λα , π121x
λα .
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We now plot each of these 6 key polynomials in the Coxeter arrangement:

Case 1. xλα = xm1 x
n
2 , so it corresponds to the point (m,n, 0) in R1:

a1 = a2

a2 = a3 R1

(m,n, 0)

Case 2. π1x
λα = π1(xm1 x

n
2 ) = xm1 x

n
2 + xm−11 xn+1

2 + · · ·+ xn1x
m
2

Therefore it corresponds to the line joining (m,n, 0) and (n,m, 0). That is, each monomial

corresponds to a lattice point (and vice versa) on the line obtained by joining (m,n, 0) and its

reflection along a1 = a2.

a1 = a2

a1 = a3a2 = a3 R1 R3

(m,n, 0) (n,m, 0)

Case 3. π2x
λα = π2(xm1 x

n
2 ) = xm1 x

n
2 + xm1 x

n−1
2 x3 + · · ·+ xm1 x

n
3

Therefore it corresponds to the line joining (m,n, 0) and (m, 0, n). That is, each monomial

corresponds to a lattice point (and vice versa) on the line obtained by joining (m,n, 0) and its

reflection along a2 = a3.
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a1 = a2

a1 = a3

a2 = a3 R1

R2

(m,n, 0)

(m, 0, n)

Case 4. π21x
λα = π2π1(xm1 x

n
2 ) = π2(xm1 x

n
2 + xm−11 xn+1

2 + · · ·+ xn1x
m
2 )

Since π2(xm1 x
n
2 + xm−11 xn+1

2 + · · ·+ xn1x
m
2 ) = π2(xm1 x

n
2 ) + π2(xm−11 xn+1

2 ) + · · ·+ π2(xn1x
m
2 ), we

can apply the same correspondence in Case 3. for each key in the summand. Therefore π21x
λα

corresponds to the m− n+ 1 lines obtained by reflecting each lattice point on the line joining

(m,n, 0) and (m, 0, n) along a2 = a3. That is, each monomial corresponds to a lattice point

(and vice versa) in the trapezoid obtained by first reflecting (m,n, 0) along the line a1 = a2

followed by reflecting the resulting line along a2 = a3 as shown below:

First reflect along a1 = a2 and get a line joining (m,n, 0) and (m, 0, n):

a1 = a2

a1 = a3a2 = a3 R1 R3

(m,n, 0) (n,m, 0)
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Then reflect the line along a2 = a3:

a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n)

(n, 0,m)

Note that there is another case where the trapezoid does not have any point in R5 or R6:
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a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n)

(n, 0,m)

Indeed, the trapezoid has at least a point in R5 or R6 if and only if m ≥ 2n (one can prove

that by locating the mid-point of the line joining (n,m, 0) and (n, 0,m).)

Case 5. π12x
λα = π1π2(xm1 x

n
2 ) = π1(xm1 x

n
2 + xm1 x

n−1
2 x3 + · · ·+ xm1 x

n
3 )

Similar to Case 4., it corresponds to the lattice points in the trapezoid formed by first reflecting

(m,n, 0) along a2 = a3 followed by reflecting the resulting line along a1 = a2. The trapezoid

has at least a point in R4 or R6 if and only if 2n ≥ m. The trapezoid is as follows (we just

shade the region using dotted pattern for convenience, but the actual correspondence should

be lattice points in the shaded region including the boundary):

For 2n < m:
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a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n) (n, 0,m)

For 2n ≥ m:
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a1 = a2

a1 = a3a2 = a3

R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n) (n, 0,m)

Case 6. π121x
λα = π1π2π1(xm1 x

n
2 ) = π1(π2π1(xm1 x

n
2 ))

First recall that by Proposition 2.1 πisi = (1 + θi)si = si + θisi = si − θi, hence πisi + πi =

si − θi + (1 + θi) = si + 1.

For example, when i = 1, π1(xa1x
b
2) + π1(xb1x

a
2) = xa1x

b
2 + xb1x

a
2 for any and any integers

a ≥ b ≥ 0. Hence π1(xb1x
a
2) = xa1x

b
2 + xb1x

a
2 − π1(xa1x

b
2).

We can plot π1(xb1x
a
2) as:
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a1 = a2

a1 = a3a2 = a3 R1 R3

(a, b, 0) (b, a, 0)
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

and π1(xa1x
b
2) + π1(xb1x

a
2) as

a1 = a2

a1 = a3a2 = a3 R1 R3

(a, b, 0) (b, a, 0)

Now consider π121(xm1 x
n
2 ) = π1(π21(xm1 x

n
2 )).

By Case 4., we have π21(xm1 x
n
2 ) as a trapezoid as follows:

88



a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n)

(n, 0,m)

Apply π1 to each lattice points in the trapezoid is equivalent to reflecting the trapezoid along

a1 = a2 and get a hexagon with multiplicities on the points. Consider the multiplicity of

a lattice point (a1, a2, a3) in the hexagon with a1 ≥ a2. The multiplicity of its ‘a1 = a2’-

reflection, namely, (a2, a1, a3) is the same. Recall that for each ‘a1 = a′2 - reflection pair in

the trapezoid region (i.e. (a.b, c) and (b, a, c)), applying π1 to both of them results in the

two points themselves. So the multiplicity of the lattice points increases by 1 ‘horizontally’

from the boundary, starting from 1, until it first hits the line joining (m,n, 0) and (0, n,m) or

the line joining (n,m, 0) and (n, 0,m) (i.e. hit either of the lines in region a1 > a2), then it

becomes stable. Here is an example for m ≥ 2n:
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a1 = a2

a1 = a3a2 = a3
R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n)

(n, 0,m)

(0,m, n)

(0, n,m)

1 2 3 4 n+ 1

The monomials corresponding to the lattice points on the red boundary have coefficient 1

in the key polynomial, and those monomial corresponding to the lattice points on the blue

boundary have coefficient 2 and so on, while those corresponding to the lattice points in the

inner most triangle (the orange region) have coefficient n + 1 for m ≥ 2n (and m − n + 1 if

m ≤ 2n).

If we also plot the multiplicity (with xy -plane being the Coxeter arrangement and z-axis

represents the multiplicity), we get a polytope as follows:
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a1 = a2

a2 = a3

a1 = a3

Note: One can also start with π12 and apply π2 on each lattice point in the trapezoid corre-

sponding to π12 and form π212 to check that π121 = π212.

4.1.2 Demazure atoms and polytopes

In this section, we will discuss how one can obtain a polytope from a Demazure atom. Again, we

focus on the case where the shape of the atom is a weak composition of length 3 with at least one

zero part.

Let α be a weak composition with λα = (m,n, 0), for some integers m ≥ n ≥ 0. Then there are

exactly 6 key polynomials obtained from λα, namely:

xλα , θ1x
λα , θ2x

λα , θ21x
λα , θ12x

λα , θ121x
λα .

We now plot each of these 6 Demazure atoms in the Coxeter arrangement:

Case 1. xλα = xm1 x
n
2 , so it corresponds to the point (m,n, 0) in R1:

a1 = a2

a2 = a3 R1

(m,n, 0)
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Case 2. θ1x
λα = θ1(xm1 x

n
2 ) = xm−11 xn+1

2 + xm−21 xn+2
2 + · · ·+ xn1x

m
2

Hence each monomial corresponds to a lattice point except (m,n, 0) (and vice versa) on the

line obtained by joining (m,n, 0) and its reflection along a1 = a2.

a1 = a2

a1 = a3a2 = a3 R1 R3

(m,n, 0) (n,m, 0)

This also shows that π1 = θ1 + 1

Case 3. θ2x
λα = θ2(xm1 x

n
2 ) = xm1 x

n−1
2 x3 + xm1 x

n−2
2 x23 + · · ·+ xm1 x

n
3

Therefore it corresponds to the line joining (m,n, 0) and (m, 0, n) excluding (m,n, 0). That

is, each monomial corresponds to a lattice point except (m,n, 0) (and vice versa) on the line

obtained by joining (m,n, 0) and its reflection along a2 = a3.

a1 = a2

a1 = a3

a2 = a3 R1

R2

(m,n, 0)

(m, 0, n)
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This also shows π2 = θ2 + 1

Case 4. θ21x
λα = θ2θ1(xm1 x

n
2 ) = θ2(xm−11 xn+1

2 + xm−21 xn+2
2 + · · ·+ xn1x

m
2 )

Since θ2(xm−11 xn+1
2 +xm−21 xn+2

2 +· · ·+xn1xm2 ) = θ2(xm−11 xn+1
2 )+θ2(xm−21 xn+2

2 )+· · ·+θ2(xn1x
m
2 ),

we can apply the same correspondence in Case 3. for each atom in the summand. Therefore

θ21x
λα corresponds to the m − n + 1 lines obtained by reflecting each lattice point except

(m,n, 0) on the line joining (m,n, 0) and (m, 0, n) along a2 = a3. That is, each monomial

corresponds to a lattice point (and vice versa) in the ‘semi-open’ trapezoid obtained by first

reflecting (m,n, 0) along the line a1 = a2 followed by reflecting the resulting line along a2 = a3

as shown below:

First reflect along a1 = a2 and get a line joining (m,n, 0) and (m, 0, n):

a1 = a2

a1 = a3a2 = a3 R1 R3

(n,m, 0)(m,n, 0)

Then reflect the line along a2 = a3:
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a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n)

(n, 0,m)

Note that there is another case where the trapezoid does not have any point in R5 or R6:
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a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n)

(n, 0,m)

As Case 4 in Section 4.1.1, the trapezoid has at least a point in R5 or R6 if and only if m ≥ 2n

(one can prove that by locating the mid-point of the line joining (n,m, 0) and (n, 0,m).)

Again, we can illustrate π21 = 1 + θ1 + θ2 + θ21:
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a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

(xm1 x
n
2 ) : (m,n, 0) (n,m, 0)

(m, 0, n)

(n, 0,m)

θ1(xm1 x
n
2 )

θ2(xm1 x
n
2 )

Case 5. θ12x
λα = θ1θ2(xm1 x

n
2 ) = θ1(xm1 x

n−1
2 x3 + xm1 x

n−2
2 x23 + · · ·+ xm1 x

n
3 )

Similar to Case 4., it corresponds to the lattice points in the semi-open trapezoid formed by

first reflecting (m,n, 0) along a2 = a3 followed by reflecting the resulting line along a1 = a2.

The trapezoid has at least a point in R4 or R6 if and only if 2n ≥ m. The trapezoid is as follows

(we just shade the region using dotted pattern for convenience, but the actual correspondence

should be lattice points in the shaded region including the solid boundaries.):

For 2n < m:
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a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n) (n, 0,m)

For 2n ≥ m:
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a1 = a2

a1 = a3a2 = a3

R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n) (n, 0,m)

We again illustrate how to decompose π12 into 1 + θ1 + θ2 + θ12.
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a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n) (n, 0,m)

θ2(xm1 x
n
2 )

θ1(xm1 x
n
2 )

Case 6. θ121x
λα = θ1θ2θ1(xm1 x

n
2 ) = θ1(θ2θ1(xm1 x

n
2 ))

First recall that by Proposition 2.1 θisi = −θi, hence θisi + θi = 0.

For example, when i = 1, θ1(xa1x
b
2) + θi(x

b
1x
a
2) = 0 for any and any integers a ≥ b ≥ 0.

We can plot θ1(xb1x
a
2) as:

a1 = a2

a1 = a3a2 = a3 R1 R3

(a, b, 0) (b, a, 0)
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Now consider θ121(xm1 x
n
2 ) = θ1(θ21(xm1 x

n
2 )).
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By Case 4., we have θ21(xm1 x
n
2 ) as a trapezoid as follows:

a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n)

(n, 0,m)

Apply θ1 to each lattice points in the semi-open trapezoid is equivalent to reflecting the

trapezoid along a1 = a2 and get a hexagon with multiplicities on the points. Recall that each

”‘a1 = a′2 - reflection pair in the trapezoid region (i.e. (a.b, c) and (b, a, c)) vanishes under

θ1. Hence the multiplicity stays constant along the horizontal line perpendicular to the line

a1 = a2. Here is an example for m ≥ 2n:
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a1 = a2

a1 = a3a2 = a3
R1

R2

R3

R4

R5

R6

(m,n, 0) (n,m, 0)

(m, 0, n)

(n, 0,m)

(0,m, n)

(0, n,m)

0 n

The monomials corresponding to the lattice points on the red boundary have coefficient 1

in the key polynomial, and those monomial corresponding to the lattice points on the blue

boundary have coefficient 2 and so on, while those corresponding to the lattice points in the

inner most triangle (the orange region) have coefficient n for m ≥ 2n (and m−n for m ≤ 2n).

If we also plot the multiplicity, with xy -plane being the Coxeter arrangement and z-coordinates

being the multiplicity, we get a polytope similar to the one in Case 6 in Section 4.1.1 but with

different heights (as not all the multiplicity of the monomials in an atom is the same as those

in keys).

One can verify that θ121 = θ212 by starting with θ12 instead. Also one can get the decom-

position π121 = 1 + θ1 + θ2 + θ12 + θ21 + θ121 by putting the figures shown in this section

together.
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4.2 Products of two Demazure characters

Let m ≥ n ≥ 0 and k ≥ l ≥ 0 be integers.

xk1x
l
2 π1(xk1x

l
2) π2(xk1x

l
2) π21(xk1x

l
2) π12(xk1x

l
2) π121(xk1x

l
2)

xm1 x
n
2 3.13 3.13 3.13 3.13 3.13 3.13/3.18

π1(xm1 x
n
2 ) (i) 4.2.1 4.2.2 (ii) 3.18

π2(xm1 x
n
2 ) (iii) (iv) 4.2.3 3.18

π21(xm1 x
n
2 ) (v) 4.2.4 3.18

π12(xm1 x
n
2 ) (vi) 3.18

π121(xm1 x
n
2 ) 3.18

Table 4.1: Decomposition of products of keys into atoms

In the following sections, we will first state the result and one can verify by expanding both sides

directly. We will state some other methods (either using operators or polytopes) to verify or interpret

the decomposition in the first two sections. These methods are applicable to all cases.

Also, we denote the indicator function as 1S =


1 if ((m,n), (k, l)) ∈ S

0 otherwise.

4.2.1 π1(x
m
1 x

n
2 )× π2(xk1xl2)

π1(xm1 x
n
2 )× π2(xk1x

l
2) =

min{m−n,k}∑
s=0

min{l,s+n}∑
t=max{0,s−(k−l)}

xm+k−s
1 xn+l+s−t2 xt3

+ 1{m−n>k−l}

min{l,(m−n)−(k−l)}∑
t=0

θ1(xm+l−t
1 xk+n2 xt3)

+ 1{l>n}

min{l−n,m−n}∑
s=0

θ2(xm+k−s
1 xl2x

n+s
3 )

We can also use polytopes to verify the atom positivity of π1(xm1 x
n
2 )× π2(xk1x

l
2).

The polytope corresponding to π1(am1 x
n
2 ) is the line:
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(m,n, 0) (n,m, 0)

a1 = a2

a1 = a3a2 = a3 R1 R3

The polytope corresponding to π2(ak1x
l
2) is the line:

a1 = a2

a1 = a3

a2 = a3 R1

R2

(k, l, 0)

(k, 0, l)

Hence the product is a parallelogram:
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(m+ k, n+ l, 0) (n+ k,m+ l, 0)

(m+ k, n, l) (n+ k,m, l)

There are different possible positions for the parallelogram:

1. The whole parallelogram lies in R1:

a1 = a2

a2 = a3

R1

(m+ k, n+ l, 0) (n+ k,m+ l, 0)

(m+ k, n, l) (n+ k,m, l)

This case corresponds to m− n ≤ k − l and l ≤ n in the expansion.

2. The parallelogram lies in R1 and R3:
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a1 = a2

a2 = a3

a1 = a3

R1 R3

(m+ k, n+ l, 0) (n+ k,m+ l, 0)

(m+ k, n, l) (n+ k,m, l)

Then we can decompose the parallelogram as:

a1 = a2

a2 = a3

a1 = a3

R1 R3

(m+ k, n+ l, 0) (n+ k,m+ l, 0)

(m+ k, n, l) (n+ k,m, l)

θ1

Here the green region is obtained by applying θ1 on each lattice point on the black line. Notice

that the black line is in R1, meaning that every monomial corresponding to the a lattice point

is a dominating monomial.

Hence we can decompose the parallelogram into the yellow region in R1 and θ1 of the black
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line, all of which are positive sum of atoms.

This corresponds to the case when m− n > k− l and l ≤ n. Note that there are two different

cases for the positions for the line a1 = a2, either (n + k,m, l) is on the left of the line or on

the right of the line. They correspond to the two cases in min{l, (m − n) − (k − l)} in the

upper limit of the summation. In fact, one can locate the black line simply by flipping along

a1 = a2 the boundary of the parallelogram which lies in R3.

3. The parallelogram lies in R1 and R2:

a1 = a2

a2 = a3

R1

(m+ k, n+ l, 0) (n+ k,m+ l, 0)

(m+ k, n, l) (n+ k,m, l)

θ2

This case corresponds to m− n ≤ k − l and l > n in the expansion.

Similar to the previous case when the parallelogram lies in R1 and R3, we can decompose the

parallelogram into the yellow region which corresponds to a sum of dominating monomials and

the green region which corresponds to θ2 of a sum of dominating monomials (corresponding

to the lattice points on the black line obtained by reflecting along the line a2 = a3 the ‘base’
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of the parallelogram in R2.

Again there are also two cases: either (n + k,m, l) is above or below the line a2 = a3, corre-

sponding to the upper limit min{l−n,m−n} of the summation in the third summand in the

expansion.

4. The parallelogram lies in R1, R2 and R3:

a1 = a2

a2 = a3

R1

(m+ k, n+ l, 0) (n+ k,m+ l, 0)

(m+ k, n, l) (n+ k,m, l)

θ2
θ1

This case corresponds to m − n > k − l and l > n in the expansion and the three regions

correspond to the three summands in the expansion.

4.2.2 π1(x
m
1 x

n
2 )× π21(xk1xl2)

We first write the decomposition of (xm1 x
n
2 )× π121(xk1x

l
2) as follows:

(xm1 x
n
2 )× π121(xk1x

l
2) = A0(x) + θ1A1(x) + θ2A2(x) + θ21A21(x) + θ12A12(x) + θ121A121(x),

where AI(x) =
∑
λ∈Par

aIλx
λ with aIλ ∈ Z for I ∈ {0, 1, 2, 12, 21, 121}.

By Theorem 3.18, (xm1 x
n
2 )× π121(xk1x

l
2) is key positive and hence atom positive.
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i.e. AI(x) is a sum of dominating monomials with integer coefficients. Then

π1(xm1 x
n
2 )× π21(xk1x

l
2) = A0(x) +

min{m,k}∑
r=0

min{r,m−n,k−l}∑
s=max{0,r−(n+l)}

θ1(xm+k−r
1 xn+l+s2 xr−s3 )

+θ2A2(x) + 1{min{m,k}≥n+l}

min{m,k}∑
r=n+l+1

θ12(xm+k−r
1 xr2x

n+l
3 )

+θ21A21(x) + 1{k>m>n+l}θ121(xk1x
m
2 x

n+l
3 ).

One can check the coefficients using polytopes as in Section 4.2.1. We will show a case where

k > m > n+ l as an example (Note that even k > m > n+ l has several subcases). Other cases can

be easily deduced similarly.

π21(xk1x
l
2) corresponds to:

a1 = a2

a1 = a3a2 = a3 R1

R2

R3

R4

R5

R6

(k, l, 0) (l, k, 0)

(k, 0, l)

(l, 0, k)

So π1(xm1 x
n
2 )× π21(xk1x

l
2) is equivalent to m− n + 1 trapezoids along the line perpendicular to

a1 = a2 as follows:
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(k +m, l + n, 0)
(l + n, k +m, 0)

(k +m,n, l)

(l +m,n, k) (l + n,m, k)

We can draw the product as:

1 2 3 4

1 + min{k − l,m− n}

a1 = a2

a2 = a3

1 + min{k − l,m− n}

(k +m, l + n, 0) (l + n, k +m, 0)

(k +m,n, l)

(l +m,n, k) (l + n,m, k)
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Here the number next to each line represents the multiplicity of the lattice points lying on that

line (i.e. the number of trapezoids that the lattice point lies, which is also equal to the coefficient

of the monomial corresponding to that lattice point) like what we have shown in Case 6. in Section

4.1.1. Also all the lattice points in the red region have the maximum multiplicity.

We can now decompose the polytope (with multiplicity) as follows:
a1 = a2

a2 = a3

(k +m, l + n, 0) (l + n, k +m, 0)

(k +m,n, l)

(l +m,n, k) (l + n,m, k)

θ1

θ2

θ21

θ12 (k,m, l + n)

θ121

(l + n,m, k)

One can check that the multiplicity of each lattice point in the original yellow region is at least the

multiplicity of the sum of the multiplicities in all other colored regions. This ensures the remaining

points in R1 still corresponds to a positive sum of dominating monomials (i.e. A0 is a positive sum

of some dominating monomials).

We can also check some of the coefficients by using operators.

Suppose

π1(xm1 x
n
2 )× π21(xk1x

l
2)

= B0(x) + θ1B1(x) + θ2B2(x) + θ21B21(x) + θ12B12(x) + θ121B121(x).

110



By Lemma 2.6 and Proposition 2.1, after applying π1 on both sides, we get:

π1(π1(xm1 x
n
2 )× π21(xk1x

l
2))

= π1(π21(xk1x
l
2)× π1(xm1 x

n
2 ))

= π121(xk1x
l
2)× π1(xm1 x

n
2 ) + s1π21(xk1x

l
2)× θ1π1(xm1 x

n
2 )

= π121(xk1x
l
2)× π1(xm1 x

n
2 )

and

π1(B0(x) + θ1B1(x) + θ2B2(x) + θ21B21(x) + θ12B12(x) + θ121B121(x))

= π1B0(x) + π1θ2B2(x) + π1θ21B21(x).

Therefore π1(π1(xm1 x
n
2 )× π21(xk1x

l
2)) = π1B0(x) + π1θ2B2(x) + π1θ21B21(x).

Now apply π1 on both sides of

(xm1 x
n
2 )× π121(xk1x

l
2) = A0(x) + θ1A1(x) + θ2A2(x) + θ21A21(x) + θ12A12(x) + θ121A121(x),

we get

π1((xm1 x
n
2 )× π121(xk1x

l
2))

=π1(A0(x) + θ1A1(x) + θ2A2(x) + θ21A21(x) + θ12A12(x) + θ121A121(x))

=π1A0(x) + π1θ2A2(x) + π1θ21A21(x).

Since

π1((xm1 x
n
2 )× π121(xk1x

l
2))

=π1(xm1 x
n
2 )× π121(xk1x

l
2) + s1(xm1 x

n
2 )× θ1π121(xk1x

l
2)

=π1(xm1 x
n
2 )× π121(xk1x

l
2),

we can conclude that

π1A0(x) + π1θ2A2(x) + π1θ21A21(x) = π1B0(x) + π1θ2B2(x) + π1θ21B21(x).
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Expand both sides as a sum of atoms:

A0(x) + θ1A0(x) + θ2A2(x) + θ1θ2A2(x) + θ21A21(x) + θ1θ21A21(x)

=B0(x) + θ1B0(x) + θ2B2(x) + θ1θ2B2(x) + θ21B21(x) + θ1θ21B21(x)

and thus

A0(x) + θ1A0(x) + θ2A2(x) + θ12A2(x) + θ21A21(x) + θ121A21(x)

=B0(x) + θ1B0(x) + θ2B2(x) + θ12B2(x) + θ21B21(x) + θ121B21(x).

Since the set of all atoms form a basis by item 3 in Theorem 2.8, we have A0 = B0, A2 = B2

and A21 = B21.

4.2.3 π2(x
m
1 x

n
2 )× π12(xk1xl2)

With the same notation in Section 4.2.2, we have

π2(xm1 x
n
2 )× π12(xk1x

l
2)

= A0(x) + θ1A1(x) +

min{m,k}∑
r=0

min{n+l,m+k−r}∑
s=max{l,n,r,(n+l)−r}

θ2(xm+k+n+l−s−r
1 xs2x

r
3) + θ12A12(x)

+ 1{n+l≥max{m,k}}

min{m,k}∑
r=m+k−n−l

θ21(xn+l1 xm+k−r
2 xr3) + 1{n+l>k>m}θ121(xn+l1 xk2x

m
3 ).

4.2.4 π12(x
m
1 x

n
2 )× π21(xk1xl2)

With the same notation in Section 4.2.2, we have

π12(xm1 x
n
2 )× π21(xk1x

l
2)

= (1 + θ1 + θ2)A0(x) + θ21A1(x) + θ12A2(x)1{m+l>k>n} +

min{m−n,l}∑
t=0

θ121(xm+l−t
1 xk2x

n+t
3 ).
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4.2.5 All other cases in the table

We will complete the verification for all other unknown cases in the tables by applying Lemma 3.16

and Lemma 2.6 on verified cases.

(i) As

π1(xm1 x
n
2 )× π1(xk1x

l
2)

= π1(xm1 x
n
2 × π1(xk1x

l
2))

= π1(xm1 x
n
2 × xk1xl2 + xm1 x

n
2 × θ1(xk1x

l
2)),

result follows by Theorem 3.13.

(ii)

π1(xm1 x
n
2 )× π12(xk1x

l
2)

= π1(xm1 x
n
2 × π12(xk1x

l
2))

= π1

(
xm1 x

n
2 × (xk1x

l
2 + θ1(xk1x

l
2) + θ2(xk1x

l
2) + θ12(xk1x

l
2))
)
,

result follows by Theorem 3.13.

Alternatively, one can use the fact that

π1(xm1 x
n
2 ) × π12(xk1x

l
2) = π1(π1(xm1 x

n
2 ) × π2(xk1x

l
2)) = π1(π2(xk1x

l
2) × π1(xm1 x

n
2 )) by putting

f = π2(xk1x
l
2), g = π1(xm1 x

n
2 ) and i = 1 in Lemma 2.6 and claim π1(xm1 x

n
2 )×π12(xk1x

l
2) is atom

positive by applying Lemma 3.16 on

π1(xm1 x
n
2 )× π2(xk1x

l
2) which is verified as atom positive in Section 4.2.1.

(iii)

π2(xm1 x
n
2 )× π2(xk1x

l
2)

= π2(xm1 x
n
2 × π2(xk1x

l
2))

= π2(xm1 x
n
2 × xk1xl2 + xm1 x

n
2 × θ2(xk1x

l
2)),
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result follows by Theorem 3.13.

(iv) As

π2(xm1 x
n
2 )× π21(xk1x

l
2)

=π2(xm1 x
n
2 × π21(xk1x

l
2))

=π2(xm1 x
n
2 × xk1xl2 + xm1 x

n
2 × θ1(xk1x

l
2) + xm1 x

n
2 × θ2(xk1x

l
2) + xm1 x

n
2 × θ21(xk1x

l
2))

and result follows by Theorem 3.13.

Similar to Case (ii), one can also use the fact that

π2(xm1 x
n
2 )× π21(xk1x

l
2) = π2(π2(xm1 x

n
2 )× π1(xk1x

l
2)) = π2(π1(xk1x

l
2)× π2(xm1 x

n
2 ))

and claim π1(xm1 x
n
2 )× π12(xk1x

l
2) is atom positive.

(v) π21(xm1 x
n
2 ) × π21(xk1x

l
2) = π2(π1(xm1 x

l
2) × π21(xk1x

l
2) and result follows by the case in Section

4.2.2.

(vi) π12(xm1 x
n
2 ) × π12(xk1x

l
2) = π1(π2(xm1 x

l
2) × π12(xk1x

l
2) and result follows by the case in Section

4.2.3.
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Appendix A

Bijection between LRS and LRK

We will illustrate the map φ in Section 6 in [3] without proof. The definition and examples are

mostly adapted from [3].

Definition A.1. A word w = w1w2w3 . . . is called contre-lattcie if for any initial sequence w1 . . . wi,

there are at least as many occurrences of the number k as the number of k − 1 for each 1 < k ≤

max{wm : 1 ≤ m ≤ i}. We call w a regular contre-lattice word if w is contre-lattice and contains

the number 1.

Example 19. 3231321 is a regular contre-lattice word while 3132321 is not.

Definition A.2. Let δ, γ be weak compositions. A Littlewood-Richardson skew skyline tableau (LRS)

of shape δ/γ is an SSAF of shape δ/γ with basement entry of the ith-column is bi = 2n + 1 − i,

where n = l(δ) = l(γ), whose reading word (obtained by reading the entries in the cells in ascending

reading order) is a regular contre-lattice word. We use LRS(n) to denote the set of LRS with entries

in [n].

Definition A.3. Let δ, γ be weak compositions. A Littlewood-Richardson skew key (LRK) of shape

δ/γ is an SSAF of shape δ/γ with basement entry of the ith-column is bi = n+ i, where n = l(δ) =
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l(γ), whose reading word (obtained by reading the entries in the cells in ascending reading order) is

a regular contre-lattice word. We use LRK(n) to denote the set of LRK with entries in [n].

Example 20. An LRS (left) and an LRK (left) with reading word 3231321.

3

2 3

1 8 3

10 8 2 6

10 1 8 7 6

10 9 8 7 6

3 2

3 1 10

3 2 9 10

6 1 8 9 10

6 7 8 9 10

We now describe the map φ in Section 6 in [3].

Given an LRK K of shape δ/γ with basement entry of the ith-column is bi = n + i where

n = l(δ) = l(γ), and fix any permutation of δ. Then we can find a unique LRS of overall shape

σ whose set of entries of each row is the same as that of the given LRK. We can find this LRS by

successively filling the rightmost column strip in the unfilled portion of the diagram for the set of

rows containing the smallest entry of K at each step. Here a column strip means a sequence of cells

chosen in such a way that they appear in the topmost portion of the diagram (i.e. if a cell is chosen,

wither it is the top cell of that column or all cells above it are chosen).

Conversely, given a LRS L of shape δ/β and fix a rearrangement of β, say, γ such that γ ≤ β,

then we can find the corresponding LRK with basement shape γ as follows:

Consider the basement diagram K0 with basement shape γ on which we will build the desired

LRK. Consider the bottom row of L and start from the largest entry. Place this entry to the leftmost

available cell in the lowest row of K0 and call the resulting filling as K1. Then place the second

largest entry of the bottom row of L to the leftmost available cell in the lowest row of K1, and so

on until all entries of the bottom row of L is filled into the bottom row of the basement diagram.

Repeat this process with each column from the bottom to the top until all non-basement entries of

L have been placed into the diagram.

We illustrate this process by using the LRK in Example 20.

Example 21. Consider the LRK
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3 2

3 1 10

3 2 9 10

6 1 8 9 10

6 7 8 9 10

and fix σ = (2, 4, 1, 4, 3). Then we can get a LRS by filling the entries as

shown below:

10 9 8 7 6

→
1

1

10 9 8 7 6

→

2

1

2

1

10 9 8 7 6

→

3 2

3 1

3 2

1

10 9 8 7 6

→

3 2

10 3 1

10 9 3 2

10 9 1 7 6

10 9 8 7 6

Conversely, if we start from

3 2

10 3 1

10 9 3 2

10 9 1 7 6

10 9 8 7 6

and fix γ = (3, 2, 1, 0, 1), we can build the LRK as follows:

10

9 10

6 8 9 10

6 7 8 9 10

→
10

9 10

6 1 8 9 10

6 7 8 9 10

→
10

3 9 10

6 1 8 9 10

6 7 8 9 10

→
10

3 2 9 10

6 1 8 9 10

6 7 8 9 10

→
3 10

3 2 9 10

6 1 8 9 10

6 7 8 9 10

→
3 1 10

3 2 9 10

6 1 8 9 10

6 7 8 9 10
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→

3

3 1 10

3 2 9 10

6 1 8 9 10

6 7 8 9 10

→

3 2

3 1 10

3 2 9 10

6 1 8 9 10

6 7 8 9 10

and we get back the LRK we started from.
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Exp. No. 797, 4, 189–207. Séminaire Bourbaki, Vol. 1994/95.

[10] Marshall, D. Symmetric and nonsymmetric Macdonald polynomials. Ann. Comb. 3, 2-4

(1999), 385–415. On combinatorics and statistical mechanics.

[11] Mason, S. A decomposition of Schur functions and an analogue of the Robinson-Schensted-

Knuth algorithm. Sém. Lothar. Combin. 57 (2006/08), Art. B57e, 24.

[12] Mason, S. An explicit construction of type A Demazure atoms. J. Algebraic Combin. 29, 3

(2009), 295–313.

[13] Watanabe, M. Tensor product of Kraskiewicz and Pragacz’s modules. ArXiv e-prints (Oct.

2014).

120


	Introduction
	Symmetric group
	Demazure atoms and characters
	Linear operators
	Semi-Standard Augmented filling
	Demazure atoms and Demazure characters

	Decomposition of products of Demazure atoms and characters
	Convert a column word to a row word
	Convert a Column Recording Tableau to a Row Recording Tableau
	Decomposition of the product of a dominating monomial and an atom into a positive sum of atoms
	Decomposition of the product of a dominating monomial and a key into a positive sum of keys
	Decomposition of the product of a Schur function and a Demazure character

	Atom positivity of the product of two key polynomials whose basements have length at most 3
	Polytopes
	Demazure characters and polytopes
	Demazure atoms and polytopes

	Products of two Demazure characters
	Product case 1 section
	Product case 2 section
	Product case 3 section
	Product case 4 section
	All other cases in the table


	Appendix
	Bijection between LRS and LRK

