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Abstract. If t is a positive integer, then a partition of a non-negative integer n is a t−core if none
of the hook numbers of the associated Ferrers-Young diagram is a multiple of t. These partitions arise
in the representation theory of finite groups and also in the theory of class numbers. We prove that
if t = 2, 3, or 4, then two different t−cores are rook equivalent if and only if they are conjugates. In
the special case when t = 4, since c4(n) = 1

2
h(−32n − 20) when 8n + 5 is square-free, the above result

suggests a new method of approaching Gauss’ class number problem for these discriminants. Unlike
the cases where 2 ≤ t ≤ 4, it turns out that when t ≥ 5 there are distinct rook equivalent t−cores which
are not conjugates. In fact, we conjecture that for all such t, there exists a constant N(t) for which
every integer n ≥ N(t) has the property that there exists a pair of distinct rook equivalent t−cores of
n which are not conjugates.

1. Introduction

A Ferrers board is a subset of an N ×N chessboard of squares whose rows are non-increasing in
length. The number of Ferrers boards with n squares is p(n), the number of partitions of n. The
squares of a Ferrers board are labelled with coordinates (i, j) as we would label the entries in a
matrix.

Rooks are formal objects which are placed on the squares of a Ferrers board. A legal placement
of k rooks on a Ferrers board is any placement of k rooks (one per square) with the property
that no two rooks are in a common row or column. If k exceeds the number of rows or columns
in a Ferrers board, then there is no such legal placement. Early applications of this notion were
investigated by Kaplansky and Riordian in [8].

If B is a Ferrers board, then let rk(B) be the number of legal placements of k rooks on B.

Definition 1. Two Ferrers boards B1 and B2 are rook equivalent if rk(B1) = rk(B2) for every
positive integer k.

In particular if B1 and B2 are rook equivalent, then since r1(B) is the number of squares on a
board B, it follows that B1 and B2 have the same number of squares. By the work of Foata and
Schützenberger [4], every rook equivalence class of Ferrers boards contains a unique decreasing
Ferrers board, a board with the property that no two rows have the same length. Consequently,
it is easy to see that the number of rook equivalence classes of Ferrers boards of size n is q(n),
the number of partitions of n into distinct parts. For more on the notion of rook equivalence, see
[4,6,11].
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Now we switch to the language of partitions. If Λ = λ1 ≥ λ2 ≥ · · · ≥ λs > 0 is a partition of n,
then the Ferrers-Young diagram of Λ is the s−rowed collection of nodes:

• • . . . • • λ1 nodes
• • . . . • λ2 nodes
·
·
·
• . . . • λs nodes.

We label the nodes in the Ferrers-Young diagram of a partition as we would a matrix. Then
the hook number H(i, j) of the (i, j) node is one more than the number of nodes directly to the
right or directly below the node itself. Alternatively, let λ′

j denote the number of nodes in column
j. Then the hook number H(i, j) is defined by

H(i, j) := (λi − i) + (λ′
j − j) + 1.

Definition 2. If t is a positive integer, then a partition of n is called a t-core of n if none of
the hook numbers of its associated Ferrers-Young diagram are multiples of t. Moreover, let ct(n)
denote the number of t−core partitions of n.

Remark 1. It is an easy exercise to verify that c2(n) is given by

c2(n) =
{

1 if n = m(m+1)
2 for some integer m,

0 otherwise.

In other words, the only 2−cores are those partitions whose Ferrers-Young diagram is triangular.
These t−core partitions arise in a number of settings. In combinatorial number theory, Gar-

van, Kim, and Stanton [5] used them to obtain combinatorial proofs of certain special cases of
the Ramanujan congruences for p(n). In representation theory t−cores, for t prime, first arose
in connection with Nakayama’s conjecture which describes the distribution of characters of the
symmetric group into Brauer blocks. Recently Fong and Srinivasan showed how these partitions
arise again in a similar context. They proved that t−cores, even when t is composite, describe the
distribution of characters of finite general linear groups and unitary groups into Brauer blocks.

When t = 4, it turns out that these t−cores are important in algebraic number theory. It is
shown in [10] that if 8n + 5 is square-free, then

c4(n) =
1
2
h(−32n− 20),

where h(−D) is the class number of discriminant −D binary quadratic forms. Moreover, it is
shown how to construct binary quadratic forms from 4−cores.

The current investigation may shed some light on Gauss’ class number problem [2]. If h(−D) is
the class number of binary quadratic forms with discriminant −D, then how does h(−D) behave
as D → +∞? Although it is too difficult to explicitly construct binary quadratic forms in a way
which shows that h(−D)→ +∞, Gauss’ problem was solved by Siegel, who proved that for every
ε > 0 there exists a constant c(ε) for which

h(−D) > c(ε)|D| 12−ε.

Unfortunately, the constant c(ε) is inexplicit and depends on the zeros of Dirichlet L−functions.
In fact the complete classification of discriminants for which h(−D) = 1 or 2 was not resolved until
late 1960’s by Baker and Stark.
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By connecting the problem to rank 3 elliptic curves, Goldfeld, Gross, and Zagier, with the aid
of intricate computations by Oesterlé, have shown for negative fundamental discriminants D, that

h(−D) >
1

7000

∏
p|D

(
1− [2

√
p]

p + 1

)
log |D|

where [x] is the greatest integer bracket function. Although this is a very strong unconditional
lower bound, it is far from the true order of magnitude which is given by Siegel’s theorem. In
particular, using the Goldfeld-Gross Zagier result to classify all the discriminants with small class
number h is still an extremely difficult computation. Therefore there is interest in developing new
methods of interpreting, and hence attacking Gauss’ problem.

Since t−cores occur in various settings, it is of interest to investigate their structure, and natural
relations they may satisfy. In this paper, we examine the rook theory of t−cores and show that
for t = 2, 3, or 4 the rook theory is particularly simple. We begin with some data which illustrates
our main result. Define the combinatorial functions sct(n), nsct(n), and at(n) by:

sct(n) := number of self-conjugate t− cores of n,

nsct(n) := number of non-self-conjugate t− cores of n,

at(n) := number of rook equivalence classes of t− cores of n,

where two partitions are conjugate if the set of row sizes of one is equal to the set of column sizes
of the other. If t = 3, then the first few terms of their generating functions are:

∞∑
n=0

sc3(n)qn = 1 + q + q5 + q8 + q16 + . . . ,

∞∑
n=0

nsc3(n)qn = 2q2 + 2q4 + 2q6 + 2q9 + 2q10 + 2q12 + 2q14 + 2q16 + . . . ,

∞∑
n=0

a3(n)qn = 1 + q + q2 + q4 + q5 + q6 + q8 + q9 + q10 + q12 + q14 + 2q16 + . . . .

If t = 4, then the first few terms of the generating functions are:

∞∑
n=0

sc4(n)qn = 1 + q + q3 + q4 + q5 + q6 + q7 + 2q10 + q12 + . . . ,

∞∑
n=0

nsc4(n)qn = 2q2 + 2q3 + 2q5 + 2q6 + 2q7 + 4q8 + 4q9 + 2q11 + 6q12 + . . . ,

∞∑
n=0

a4(n)qn = 1 + q + q2 + 2q3 + q4 + 2q5 + 2q6 + 2q7 + 2q8 + 2q9 + 2q10 + q11 + 4q12 + . . . .

This data suggests that if t = 3 or 4, then

at(n) =
1
2
nsct(n) + sct(n).

Of course when t = 2 the above equality holds trivially. This observation is true and easily follows
from the main result of this paper.
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Main Theorem. If t = 2, 3, or 4, then two distinct t−cores are rook equivalent if and only if they
are conjugates.

If t ≥ 5, it is easy to prove that there are distinct non-conjugate t−cores which are rook equivalent,
and this is proved in Theorem 6. However, more appears to be true.

Conjecture. If t ≥ 5, then there exists a constant N(t) with the property that if n ≥ N(t), then
there exist two distinct rook equivalent t−cores of size n which are not conjugates.

In section 2 we give structure theorems which describe the parts of any 3−core and 4−core,
and we also deduce necessary and sufficient conditions for 3−cores and 4−cores to be conjugates.
These results follow from the theory of abaci. Then in section 3 we deduce the Main Theorem;
basically this is accomplished by applying the method of Goldman, Joichi, and White. In section
4 we conclude with a more detailed investigation of the rook equivalence classes which contain
t−cores with t = 2, 3, or 4. Specifically we compute the size of these classes, and also determine
the unique decreasing Ferrers board in each class.

2. Preliminaries

Let λ1 ≥ λ2 ≥ .... ≥ λs > 0 be a sequence of non-increasing positive integers that partition a
positive integer n. Then for any positive integer t ≥ 2, there exists an associated abacus consisting of
s beads on ‘rods,’ numbered 0, 1, . . . , t−1 and infinitely many rows numbered 1, 2, . . . ad infinitum.
To determine the positions of these beads, first define structure numbers Bi by

(1) Bi = λi − i + s.

Note that the integers Bi are strictly decreasing by construction. To each Bi, there is a unique
pair of integers (ri, r

′
i) where ri > 0 and 0 ≤ r′i ≤ t− 1 so that

(2) Bi = t(ri − 1) + r′i.

For each Bi place a bead in position (ri, r
′
i), row ri and column r′i.

Example 1. Let t = 4 and consider the partition of 13 given by the following Ferrers-Young
diagram:

• • • • •
• • •
• • •
•
• .

Since the parts are given by λ1 = 5, λ2 = 3, λ3 = 3, λ4 = 1, and λ5 = 1, we find that B1 = 9, B2 =
6, B3 = 5, B4 = 2, and B5 = 1. Consequently it is easy to verify that the beads on this abacus are
in positions (3, 1), (2, 2), (2, 1), (1, 2) and (1, 1). Graphically, the abacus for this partition is

0 1 2 3
1 B5 B4

2 B3 B2

3 B1 .

The following fundamental theorem is well known [3,7,9]:



ROOK THEORY AND t−CORES 5

Theorem 1. Let A be an abacus for a partition Λ, and let ni denote the number of beads in column
i. Then Λ is a t−core partition if and only if for every 0 ≤ i ≤ t− 1, the ni beads in column i are
the beads in positions

(1, i), (2, i), . . . , (ni, i).

In other words, there are no gaps between consecutive beads in any column. Secondly, the top
bead in any non-trivial column is in row 1.

Therefore, we let t−tuples of non-negative integers A = (n0, n1, . . . , nt−1) denote the abaci of
t−cores. Unfortunately, the following well known lemma [3,7,9] shows that abaci do not represent
t−cores uniquely if we allow for parts of size zero in our partitions.

Lemma 1. The abaci A1 = (n0, n1, . . . , nt−1) and A2 = (nt−1 + 1, n0, n1, . . . , nt−2) represent the
same t−core partition.

Since it is our goal to use abaci as labels for all t−cores, it is important to normalize the abaci
properly. Every t−core has a representation by a t−tuple, which, by repeated application of
Lemma 1, is representable by an abacus of the form (0, n1, n2, . . . , nt−1). The bead in the upper
left-hand corner of such an abacus corresponds to the smallest part of the partition. The size of
this smallest partition part is one of 1, 2, . . . , or t− 1 since these are the only integers represented
by beads in positions (1, 1), (1, 2), . . . , or (1, t−1). Since the smallest part in any t−core is less than
t (otherwise we would have a t−hook in the bottom row), it is clear that there is a unique abacus of
the form (0, n1, n2, . . . , nt−1) for every t−core. Hence there is a one to one correspondence between
the set of abaci of the form (0, n1, n2, . . . , nt−1) and the set of all t−cores

(0, n1, n2, . . . , nt−1)←→ {all t− core partitions}
where ni are non-negative integers.
Therefore, throughout we shall assume that the first column in every abacus contains no beads.
The following lemma [3] is critical to our study of t−cores.

Lemma 2. If A1 = (0, n1, n2, . . . , nt−1) is a t−core partition of n, then the abacus

A2 = (0, nt−1 + 1, n1, n2, . . . , nt−2)

represents a t−core partition of n + nt−1 + 1.

By Lemma 2, it is easy to see how to trace t−cores back to a a unique t−core of small size,
t−cores which we call new.

Defintion 3. If t ≥ 2, then a new t−core is any partition represented by an abacus of the form

A = (0, 0, n2, . . . , nt−1).

Consequently, we find that there are three types of 4−cores and two types of 3−cores. Their
essential characteristics are captured by the following definitions.

Definition 4. Let A = (0, 0, C) be a new 3−core partition, and let g be a non-negative integer.
Then we make the following definitions.
I. The Type I generation g descendant of A is the 3−core whose abacus is of the form

(0, g, C + g).

Denote this 3−core by I(g, C).
II. The Type II generation g descendant of A is the 3−core whose abacus is of the form

(0, C + g + 1, g).

Denote this 3−core by II(g, C).

The following was given in [10].
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Definition 5. Let A = (0, 0, C, D) be a new 4−core partition, and let g be a non-negative integer.
Then we make the following definitions.
I. The Type I generation g descendant of A is the 4−core whose abacus is of the form

(0, g, C + g, D + g).

Denote this 4−core by I(g, C, D).
II. The Type II generation g descendant of A is the 4−core whose abacus is of the form

(0, D + g + 1, g, C + g).

Denote this 4−core by II(g, C, D).
III. The Type III generation g descendant of A is the 4−core whose abacus is of the form

(0, C + g + 1, D + g + 1, g).

Denote this 4−core by III(g, C, D).

Using these definitions, we now supply structure theorems which give the parts of every 3−core
and every 4−core. These results should be viewed as a generalization of the trivial observation
that 2−cores are partitions whose parts are of the form

m, m− 1, m− 2, . . . , 1.

For t ≥ 5, there are similar structure theorems; however, they become very difficult to write down.

Theorem 2 (3− Core Structure Theorem). Let A = (0, 0, C) be a new 3−core partition and
let g ≥ 0 be a non-negative integer. Then
I. The parts of the 3−core I(g, C) are:

g + 2C, g + 2C − 2, . . . , g + 2, (C integers)

g, g, g − 1, g − 1, . . . , 1, 1 (g pairs).

II. The parts of the 3−core II(g, C) are:

g + 2C + 1, g + 2C − 1, . . . , g + 1, (C + 1 integers)

g, g, g − 1, g − 1, . . . , 1, 1 (g pairs).

Proof. The key observations needed for the proof are:

Observation 1. The smallest part of a partition is given by λs = Bs.

Observation 2. The difference between two consecutive structure numbers is

Bi−1 −Bi = (λi−1 − (i− 1) + s)− (λi − i + s) = λi−1 − λi + 1.

Consequently, it is easy to see that

λi−1 = (Bi−1 −Bi) + λi − 1.
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Now the parts of a 3−core may be inductively obtained by starting from the smallest part Bs = λs

and then using the consecutive differences between two structure numbers to build the remaining
parts.

We obtain the result by slicing each abacus into two pieces. The first slice consists of those
rows of beads at the top of the abacus which contain beads exactly in columns 1 and 2. We shall
refer to this slice as the g−block. The remaining slice consists of a single column of beads below
the g−block. We shall refer to this slice as the C−block. Determine the parts of a 3−core by
examining the parts corresponding to these two blocks.

The 3−core I(g, C) (resp. II(g, C)) represents the abacus (0, g, g + C) (resp. (0, g + C + 1, g)).
In either case, the top g rows of the abaci consisting of beads in the following positions

(1, 1), (1, 2)
(2, 1), (2, 2)
(3, 1), (3, 2)
·
·
·

(g − 1, 1), (g − 1, 2)
(g, 1), (g, 2)

form the g−block. Their structure numbers given by Bi = 3(ri − 1) + r′i are:

1 2
4 5
7 8
·
·
·

3g − 5 3g − 4
3g − 2 3g − 1.

By Observation 1, the smallest part in the g−block is 1. By Observation 2, the next smallest
part size is (2 − 1) + 1 − 1 = 1. The next smallest after that is (4 − 2) + 1 − 1 = 2. Since the
difference between consecutive structure numbers continues to alternate between 1’s and 2’s, the
parts represented by consecutive beads of the g−block will alternately remain equal and differ by
1 in size. Continuing in this fashion, it is evident that the g−block represents the parts

g, g, g − 1, g − 1, . . . , 2, 2, 1, 1.

Note that this is also valid for g = 0 since no parts are represented by the g−block in this case.
Immediately below the g−block is the C−block which consists of C beads in column 2 in the

I(g, C) case and C +1 beads in column 1 in the II(g, C) case. The multiset elements coming from
a single column of beads consist of a sequence of parts differing by 2 since beads in positions (r, r′)
and (r + 1, r′) have the property that their structure numbers differ by 3. Hence, their part sizes
will differ by 2.

In I(g, C), the last bead in the first g rows is (g, 2) and the first bead of the following row is
(g + 1, 2). Since their structure numbers differ by 3, their part sizes differ by 2. It is now easy to
verify that the initial sequence of beads in column 2 corresponds to the C parts

g + 2C, g + 2C − 2, . . . , g + 4, g + 2.
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In a similar manner, since the first bead in row g + 1 of II(g, C) is (g + 1, 1), its structure number
differs from that of (g, 2) by 2. Thus the parts corresponding to the initial sequence of C +1 beads
in column 1 are

g + 2C + 1, g + 2C − 1, . . . , g + 3, g + 1.

�

The following theorem appears in [Th.5,10] and is proved in a similar manner.

Theorem 3 (4−Core Structure Theorem). Let A = (0, 0, C, D) be a new 4−core partition
and let g ≥ 0 be a non-negative integer.
I. Define integers d and e by

d := min(C, D) and e := |C −D|.
a) If C > D, then the parts of the 4−core I(g, C, D) are:

g + 2d + 3e− 1, g + 2d + 3e− 4, . . . , g + 2d + 2, (e integers)

g + 2d, g + 2d, g + 2d− 2, g + 2d− 2, . . . , g + 2, g + 2, (d pairs)

g, g, g, g− 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

b) If C ≤ D, then the parts of the 4−core I(g, C, D) are:

g + 2d + 3e, g + 2d + 3e− 3, . . . , g + 2d + 3, (e integers)

g + 2d, g + 2d, g + 2d− 2, g + 2d− 2, . . . , g + 2, g + 2. (d pairs)

g, g, g, g− 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

II. Define integers d and e by

d := min(2C + 1, 2D + 1) and e := |C −D|.
a) If C > D, then the parts of the 4−core II(g, C, D) are:

g + d + 3e− 2, g + d + 3e− 5, . . . , g + d + 1, (e integers)

g + d, g + d− 1, g + d− 2, . . . , g + 1, (d consecutive integers)

g, g, g, g− 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

b) If C ≤ D, then the parts of the 4−core II(g, C, D) are:

g + d + 3e, g + d + 3e− 3, . . . , g + d + 3, (e integers)

g + d, g + d− 1, g + d− 2, . . . , g + 1, (d consecutive integers )

g, g, g, g − 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

III. Define integers d and e by

d := min(C + 1, D + 1) and e := |C −D|.
a) If C > D, then the parts of the 4−core III(g, C, D) are:

g + 2d + 3e− 2, g + 2d + 3e− 5, . . . , g + 2d + 1, (e integers)

g + 2d− 1, g + 2d− 1, g + 2d− 3, g + 2d− 3, . . . , g + 1, g + 1, (d pairs)

g, g, g, g− 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

b) If C ≤ D, then the parts of the 4−core III(g, C, D) are:

g + 2d + 3e− 1, g + 2d + 3e− 4, . . . , g + 2d + 2, (e integers)

g + 2d− 1, g + 2d− 1, g + 2d− 3, g + 2d− 3, . . . , g + 1, g + 1, (d pairs)

g, g, g, g− 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

Before proceeding, we prove the following conjugation identities which are useful later in the article.
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Definition 6. If Λ is a partition whose parts are λ1 ≥ λ2 ≥ · · · ≥ λs, then its conjugate partition,
denoted Λ, is the unique partition whose Ferrers-Young diagram has λi nodes in column i.

Let
A1 ∼ A2

denote that A1 and A2 are abaci for conjugate partitions. Now we identify conjugate pairs of
3−cores.

Proposition 1. The following pairs of 3-core partitions are conjugates.

I(g, C) ∼ I(C, g)

II(g, C) ∼ II(C, g).

Proof. By the Structure Theorem for 3−cores, a partition with abacus I(g, C) has the following
parts:

g + 2C, g + 2C − 2, . . . , g + 2, (C integers)

g, g, g − 1, g − 1, . . . , 1, 1 (g pairs).

Thus, its column lengths are:

C + 2g, C + 2(g − 1), . . . , C + 2, (g integers)

C, C, C − 1, C − 1, . . . , 1, 1 (g pairs).

These are the row sizes of I(C, g). The second conjugation identity follows in exactly the same
manner. �

The following conjugation identities for 4−cores appears in [Prop. 4,9].

Proposition 2. Depending on type and on whether or not C is larger than D, the following pairs
of 4-core partitions are conjugate.

(i) If D ≥ C, then:

I(g, C, D) ∼ I(D − C, C, C + g)

II(g, C, D) ∼ II(D − C, C, C + g).

(ii) If D < C, then:

II(g, C, D) ∼ II(C −D − 1, D + g + 1, D)

III(g, C, D) ∼ III(C −D − 1, D + g + 1, D).

(iii) If D < C, then
I(g, C, D) ∼ III(C −D − 1, D, D + g).

(iv) If D ≥ C, then
III(g, C, D) ∼ I(D − C, g + C + 1, C).
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3. Rook Equivalences

In this section, we examine the rook equivalence classes of t−core partitions. We shall speak of
partitions and their associated Ferrers-Young diagrams (boards) interchangeably. But before we
do this, we fix some notation.

If Λ is a partition of n with parts λ1 ≥ λ2 ≥ · · · ≥ λs > 0, augment Λ by setting λi = 0 for all
s < i ≤ n. This uniformization of the number of parts will make it easier to compare two different
partitions of n. Define the multiset associated to Λ as the multiset of integers defined by

(3) si = λi + i

for positive integers i. These multisets make it easy to determine whether or not two Ferrers boards
are rook equivalent. As is common with multisets, let am denote m copies of the integer a.

Note that for purposes of notational convenience, we are using slightly non-standard notation.
The standard method, as in Stanley [10], is to order partitions parts λ̃i in non-decreasing order
(thus λi = λ̃n−i+1) and to define multiset elements by s̃i = λ̃i− i +1. We have done nothing more
than to put a uniform translation on the multisets defined by the standard s̃i elements

si = λi + i

= λ̃n−i+1 + i

= λ̃n−i+1 − (n− i + 1) + 1 + n

= s̃n−i+1 + n.

The following was proved by Goldman, Joichi, and White [6].

Proposition [Cor. 3, 6]. Two Ferrers boards are rook equivalent if and only if their multisets
are the same.

Remark 2. A finite sequence of non-negative integers λi defines a Ferrers board, under the
assumption that there are λi squares in row i, if and only if

λi ≥ λi+1

for all i. Since si+1− si = (λi+1 + i+ 1)− (λi + i) = λi+1−λi +1, it is easy to see that a sequence
of integers si forms a multiset of a Ferrers board if and only if

si+1 ≤ si + 1 and si ≥ i.

We now prove the following theorem concerning the rook equivalence of 4−cores. Then we will
prove the analogous theorem for 3−cores.

Theorem 4. Two distinct 4−core partitions are rook equivalent if and only if they are conjugates.

Proof. To deduce that only conjugate 4−cores have the same multiset, we shall employ Theorem
3 to construct and compare the multisets associated to 4−cores. Let d and e be as defined in
Theorem 3 and define the following delta functions by:

δe(i) =
{

1 if i ≤ e

0 otherwise;

δg(i) =
{

1 if i ≤ g

0 otherwise.
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It will also be convenient to refer to the parts of a partition as grouped by Theorem 3 as the
e−block, d−block, and g−block. Note that the structures of the e and g blocks do not vary in
the sense that they consist of e distinct integers and g triples regardless of type.

Preliminary Observations. The following observations follow from Theorem 3 and (3). For
every 4−core, there is a unique positive integer x defined by either (ii) or (iii) below. It is
important to note that x is always the smallest multiset element.

(i) The multiset elements coming from the e−block consist of a decreasing sequence of e integers
with gaps of 2 between consecutive multiset elements.

There are two types of d−blocks.
(ii) One type of d−block consists of d pairs of parts with gaps of two between consecutive pairs.
The multiset elements coming from such a block are

{xd, (x + 1)d},

for some positive integer x.

However, by Theorem 3, when we have a type I partition with d = 0, this block is empty. To
define x in this case, apply the following rules:

(1) If g > 0, define x to be the smallest multiset element coming from the g−block.
(2) If g = 0, e > 0 and C > D, let x + 1 be the smallest multiset element coming from the

e−block.
(3) If g = 0, e > 0 and C ≤ D, let x + 2 be the smallest multiset element coming from the

e−block.

It will be important to correctly ‘glue’ the d−block multiset to the multisets coming from the e
and g−blocks. Note that when d > 0, one x is contributed by the d−block part adjacent to the e
block, and one (x + 1) is contributed by the d−block part adjacent to the g block.

(iii) The second type of d−block consists of d consecutive parts. These parts contribute xd to the
multiset for some positive integer x.

(iv) The g−block consists of the g triples

g, g, g, g − 1, g − 1, g − 1, . . . , 1, 1, 1.

Now append infintely many parts of size 0 to the g−block

g, g, g, g− 1, g − 1, g − 1, . . . , 1, 1, 1, 0, 0, 0, 0, 0, 0, . . . .

This is legal since parts of size zero do not effect rook equivalences. Hence, these parts contribute
multisets of the form

{y, y + 1, (y + 2)2, (y + 3), (y + 4)2, · · · , (y + 2g − 2)2, y + 2g − 1, (y + 2g)2}

∪ {y + 2g + 1, y + 2g + 2, y + 2g + 3, . . . }
for some positive integer y.

Since every 4−core partition can be sliced into these blocks, determining the associated multisets
is simply a matter of gluing the resulting multisets from (i), (ii), (iii), and (iv), together in the
correct manner. We now consider each of the six types of partitions given by Theorem 3.
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Case I: If d > 0 then by (ii) the multiset elements coming from the d−block are xd and (x + 1)d.
The smallest d−block part, g+2, produces the multiset element x+1 and is adjacent to the largest
g−block part, g. Thus the multiset element coming from g is x. This is the smallest element of
the multiset coming from the g−block.
Subcase (a): Since the largest part of the d−block and the smallest part of the e−block differ
by 2, the smallest multiset element coming from the e−block is x + 1. Note that e > 0 for all such
partitions.
Subcase (b): Since the largest part of the d−block and the smallest part of the e−block differ
by 3, the smallest multiset element coming from the e−block will be x + 2.

If d = 0, then the smallest multiset element x comes from the g−block. Furthermore, the smallest
multiset elements coming from the e−block, if it exists, are still x + 1 and x + 2 in Subcase (a)
and Subcase (b) respectively.

Case II: The d-block multiset elements are xd. The smallest d−block part and the largest g−block
part differ by 1, hence the smallest contribution of the g−block to the multiset is x.

Subcase (a): Since the largest d−block part and the smallest e−block part differ by 1, the smallest
e−block multiset element is x. Note that e > 0 for all such partitions.
Subcase (b): Since the largest d−block part and the smallest e−block part differ by 3, the
smallest multiset element coming from the e−block is x + 2.

Case III: The multiset elements coming from the d-block are xd and (x + 1)d. Since the smallest
d−block part and the largest g−block part differ by 1, the smallest multiset element coming from
the g−block is (x + 1).
Subcase (a): Since the largest d−block part and the smallest e−block part differ by 2, the smallest
multiset element coming from the e−block is x + 1. Note that e > 0 for all partitions included in
this subcase.
Subcase (b): Since the largest d−block part and the smallest e−block part differ by 3, the
smallest multiset element coming from the e−block is x + 2.

The following tables describe the multisets for each subtype of 4−core. The multisets are listed
relative to the smallest multiset member x. Specifically, by the multiplicity of value i we mean the
multiplicity of x + i − 1. The δe’s and δg’s are used to account for the contribution given by the
e− and g−blocks.

(4)

Type Value 1 Value 2 Value 3
I(a) d + 1 d + δe(1) + 1 δg(1) + 1
I(b) d + 1 d + 1 δe(1) + δg(1) + 1
II(a) d + δe(1) + 1 1 δe(2) + δg(1) + 1
II(b) d + 1 1 δe(1) + δg(1) + 1
III(a) d d + δe(1) + 1 1
III(b) d d + 1 δe(1) + 1.

More generally, the values for m ≥ 2 are given by:

(5)

Type Value 2m Value 2m+1
I(a) δe(m) + 1 δg(m) + 1
I(b) 1 δe(m) + δg(m) + 1
II(a) 1 δe(m + 1) + δg(m) + 1
II(b) 1 δe(m) + δg(m) + 1
III(a) δe(m) + δg(m− 1) + 1 1
III(b) δg(m− 1) + 1 δe(m) + 1.
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We now show how the table entries were computed for the type II(a) partitions. The multiset
contributions given by the e, d, g-blocks, and the infinite number of parts of size 0 which were
appended to the g−block respectively are:

x, x + 2, x + 4, . . . , x + 2(e− 1),

xd,

x, x + 1, x + 2, x + 2, x + 3, x + 4, . . . , x + 2g − 2, x + 2g − 1, x + 2g,

x + 2g, x + 2g + 1, x + 2g + 2, x + 2g + 3, . . . .

Adding up the multiplicites of this set gives row II(a) of (4) and (5). The other rows follow
similarly.

Now we show that two different rook-equivalent 4−cores are conjugates.

Case I(a): First, we examine which 4−cores are rook equivalent to a I(a) partition. Recall that
in Subcase I(a) it is known that e > 0. Therefore, by (4), it is easy to see that a I(a) is not rook
equivalent to any 4−core of type I(b) since the multiplicities of values 1 and 2 are equal for a I(b)
but are unequal for a I(a). Moreover, since the multiplicites of I(a) are uniquely determined by
the e, d and g, it easily follows that a I(a) is not rook equivalent to another I(a) partition.

By (4), the multiplicities of the two smallest multiset elements are d + 1 and d + 2 respectively.
The only other partition with this property is a III(b) = III(g′, C′, D′) where d′ = d + 1. This is
the case since e > 0 for III(a) partitions. Therefore,

min(C, D) + 1 = min(C′ + 1, D′ + 1).

But since C > D and C′ ≤ D′, this means that

C′ = D.

Moreover, by (4) and (5), it follows that e′ = D′−C′ = g and g′ = e−1 = C−D−1. Therefore it is
easy to see that D′ = g+D and g′ = C−D−1. Hence the III(b) partition is III(C−D−1, D, D+g).
By Proposition 2, these are conjugate partitions.

Case I(b): Since the first two multiplicities of a I(b) are equal and e > 0 in a I(a), a I(b) can
only be rook equivalent to another I(b). If this is the case, then by the symmetry of the formulae
in (4) and (5) the multisets of two different I(b) partitions are the same if and only if the two
partitions have switched e and g values. But by Proposition 2 and Theorem 3 such partitions must
be conjugate.

Case II(a): Since e > 0, the first two multiplicites of the multiset of a II(a) are d + 2 and 1.
Since d is odd, the multiplicity of value 1 is at least 3. Hence, any rook equivalent 4−core must
be another II(a) 4−core. The only other II(a) 4−core with the same multiset is found by setting
d′ = d, e′ = g + 1 and g′ = e− 1. It is easy to verify that these 4−cores are conjugates.

Case II(b): The multiplicities of the two smallest values in the multiset are d + 1 and 1 where d
is odd. So it is easy to see that the only 4−cores that are possibly rook equivalent to a II(b) is a
II(a) or a II(b). However, it is impossible for a II(b) and a II(a) to be rook equivalent because
the multiplicities of value 1 are of opposite parities. Therefore, a type II(b) can only be rook
equivalent to another II(b) where at most the e and g are switched. However, it is easy to verify
that this switch is equivalent to conjugation.
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Case III(a): Since e > 0, the multiplicities of the two smallest multiset elements are d and
d + 2. There are no other types with this property. Hence, any rook equivalent 4−core must be
another III(a) 4−core. The only other III(a) 4−core with the same multiset is found by setting
d′ = d, e′ = g + 1 and g′ = e− 1. It is easy to verify that this represents a conjugation.

Case III(b): The multiplicities of the two smallest elements in the multiset are d and d + 1. The
only different 4−core with this property is a I(a) where d′ = d−1, g′ = e, and e′ = g +1. However,
this partition is conjugate to the given III(b) partition.

This completes the proof of this Theorem.

�

Theorem 5. Two distinct 3-core partitions are rook equivalent if and only if they are conjugates.

Proof. Using the methods above, we obtain the following table for multiplicities of multisets.

Type Value 1 Value 2 . . . Value m
I(g, C) 1 1 + δC(1) + δg(1) . . . 1 + δC(m− 1) + δg(m− 1)
II(g, C) 2 1 + δC(1) + δg(1) . . . 1 + δC(m− 1) + δg(m− 1) .

Clearly, the only non-trivial rook-equivalencies that occur are those that are obtained by switching
C and g. However, by Proposition 1, it is easy to see that this is simply conjugation.

�

As a corollary to Remark 1, Theorem 4, and Theorem 5, we obtain the Main Theorem.

Main Theorem. If t = 2, 3 or 4, then two distinct t−core partitions are rook equivalent if and
only if they are conjugates.

We now show that the situation is very different if t ≥ 5. In particular, there exists rook equivalent
t−cores which are not conjugates for certain n < t.

Theorem 6. If t ≥ 5, then there are pairs of distinct rook equivalent t−core partitions which are
not conjugates.

Proof. If n is a positive integer for which every pair of rook equivalent t−cores are conjugates,
then it is clear that

ct(n) = 2at(n)− sct(n),

where at(n) is the number of rook equivalence classes of Ferrers boards of size n containing a
t−core, and sct(n) equals the number of self conjugate t−cores of n. However, if t > n then

ct(n) = p(n),

since a partition with fewer than t nodes cannot have a t−hook. Hence, the theorem of Foata and
Schützenberger implies that

at(n) ≤ q(n).

In particular, we find that if t > n, then

p(n) = ct(n) = 2at(n)− sct(n) ≤ 2q(n).

Since p(4) = 5 and q(4) = 2, we get an immediate contradiction if t ≥ 5. �

However, much more is probably true. Computational evidence suggests the following which
pertains to those n > t.

Conjecture. If t ≥ 5, then there exists a constant N(t) with the property that if n ≥ N(t), then
there exist two distinct rook equivalent t−cores of size n which are not conjugates.
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4. A finer investigation

In this section, we investigate the rook equivalence classes which contain t−cores when t = 2, 3,
and 4. In [10] the following theorem was proved.

Theorem [Th.1,10]. If n is a non-negative integer for which 8n + 5 is square-free, then

c4(n) =
1
2
h(−32n− 20).

By Theorem 4 we obtain the following immediate corollary:

Corollary 1. Let a4(n) denote the number of rook equivalence classes of Ferrers boards of size n
containing a 4−core, and let sc4(n) denote the number of self-conjugate 4−cores of n. If n is a
non-negative integer for which 8n + 5 is square-free, then

(6) h(−32n− 20) = 4a4(n)− 2sc4(n).

Proof. By the above theorem, it is known that

h(−32n− 20) = 2c4(n).

However, by Theorem 4, it is known that

c4(n) = 2a4(n)− sc4(n).

�

Remark 3. By [Th. 3,10], we have an explicit formula for sc4(n). If n is a non-negative integer
whose factorization into distinct primes pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4) is

8n + 5 =
∏

pi
αiq

βj

j ,

then

sc4(n) =
{

0 if any βj ≡ 1 (mod 2),
1
2

∏
(αi + 1) otherwise.

Therefore, the real mystery is how to compute a4(n). Typically, the difficulty in computing class
numbers boils down to special properties of L−functions or to problems dealing with the explicit
construction of elements in the class group. For discriminants of the form −32n − 20, explicitly
constructing 4−cores of n is equivalent to constructing elements in the class group, as is shown in
[10]. Therefore, it may appear as if there is no advantage to this combinatorial interpretation of
the class group.

The principal advantage one has when working with these combinatorial structures is that with
the additional notion of rook equivalence, we obtain a new criterion for establishing the existence
of elements in the class group. Since rook equivalence classes containing a 4−core typically contain
many partitions, we no longer need to construct 4−cores to obtain large class numbers; we simply
need to detect the existence of partitions that are rook equivalent to 4−cores. Goldman, Joichi,
and White proved [6] the following theorem which determines the number of partitions that are
rook equivalent to any given board.
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Theorem [Th.6,6]. Given a Ferrers board B, append an infinite number of parts of size zero to
B, and define the multiset s1, s2, . . . as in section 3. Define non-negative integers ai by

ai = #{j | sj = i}.

Let b = min{i | ai > 0} and c = max{i | ai > 1}. The number of Ferrers boards (with rows of
non-zero size) rook equivalent to B is

(7)
c−1∏
i=b

(
ai + ai+1 − 1

ai

)
.

The reader should be aware that our formulation of this theorem is slightly different from the
original formulation. This follows from the fact that our multiset elements are defined in a slightly
different manner as was explained earlier. It is an easy exercise to verify that the above formulation
agrees with other treatments. As an immediate Corollary, we obtain the following:

Corollary 2. If Λ is a partition, then let N(Λ) denote the number of partitions rook equivalent to
Λ. If Λ is a t−core with t = 2, 3, or 4, then N(Λ) is given by the following formulae:

(1) If Λ is a 2−core, then N(Λ) = 1.
(2) Let u = min(C, g), and v = max(C, g). If Λ = I(g, C) is a 3−core, then

N(Λ) = (1 + δC(1) + δg(1)) 10max(0,u−1)4min(1,v−u,u)3max(0,v−u−1).

(3) Let u = min(C, g), and v = max(C, g). If Λ = II(g, C) is a 3−core, then

N(Λ) =
(

2 + δC(1) + δg(1)
2

)
10max(0,u−1)4min(1,v−u,u)3max(0,v−u−1).

(4) If Λ = I(g, C, D) is a 4−core with C > D and C −D ≥ g + 1, then

N(Λ) =
(

2D + 2
D + 1

)(
D + 2 + δg(1)

D + 2

)
3max(0,2g−1)2C−D−g−1.

(5) If Λ = I(g, C, D) is a 4−core with C > D and C −D ≤ g, then

N(Λ) =
(

2D + 2
D + 1

)(
D + 3
D + 2

)
32C−2D−22g−C+D.

(6) Let u = min(D−C, g) and v = max(D−C, g). If Λ = I(g, C, D) is a 4−core with D ≥ C,
then

N(Λ) =




(
2C+1
C+1

)
if u = v = 0(

2C+1
C+1

)(
C+2
C+1

)
if u = 0 and v > 0(

2C+1
C+1

)(
C+3
C+1

)
3u−12v−u if u > 0.

(7) Let u = min(C −D, g +1) and v = max(C −D, g +1). If Λ = II(g, C, D) is a 4−core with
C > D, then

N(Λ) = 3u−12v−u.

(8) Let u = min(D−C, g) and v = max(D−C, g). If Λ = II(g, C, D) is a 4−core with D ≥ C,
then

N(Λ) = 3u2v−u.
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(9) Let u = min(C −D, g + 1) and v = max(C −D, g + 1). If Λ = III(g, C, D) is a 4−core
with C > D, then

N(Λ) =
(

2D + 3
D + 1

)
3u2v−u.

(10) If Λ = III(g, C, D) is 4−core with D ≥ C and D − C ≥ g + 1, then

N(Λ) =
(

2C + 2
C + 1

)
(C + 3)32g2D−C−g−1.

(11) If Λ = III(g, C, D) is a 4−core with D ≥ C and D − C ≤ g, then

N(Λ) =
(

2C + 2
C + 1

)(
C + 2 + δD−C(1)

C + 2

)
3max(0,2D−2C−1)2g−D+C .

Proof. This Corollary follows easily from Remark 1, Tables (4) and (5), and formula (7). We
demonstrate the proof in cases (4) and (5). Let u = min(2(C −D), 2g + 1) and v = max(2(C −
D), 2g + 1). By tables (4) and (5), the multiplicities of the multiset for I(g, C, D) with C > D
consist of D, D + 1, followed by a string of 2’s from Value 3 to Value u + 1, and ending with
alternating 1’s and 2’s from Value u + 2 through Value v. Thus, the first two factors of (7) in [Th.
6,6] are (

2D + 2
D + 1

)
and

(
D + 2 + δg(1)

D + 2

)
.

The product of the remaining non-trivial factors is

(
2 + 2− 1

2

)max(0,u−2)(1 + 2− 1
1

) v−u−1
2

.

Breaking u and v into cases yields cases (4) and (5).
�

Consequently, it is easy to see that on average the number of partitions rook equivalent to any
given 4−core is fairly large. Therefore, it is desirable to obtain an algorithm or general method
which detects any such partition. In particular, if p = 8n + 5 is prime, then finding a single
partition rook equivalent to a non-self-conjugate 4−core implies that h(−32n−20) ≥ 6. We should
note that if p ≡ 5 (mod 24), then such a method exists, and so it is known that h(−4p) ≥ 6 for
such p. This is discussed in [10].

For completeness, we list the distinct parts of partitions which are rook equivalent to any t−core
for t = 2, 3, and 4. This follows as a corollary to Theorems 2 and 3.

Corollary 3. If Λ is a t−core with t = 2, 3, or 4, then the unique partition into distinct parts rook
equivalent to Λ, which we denote by Λ̃, is given by the following rules:

(1) If Λ is a 2−core, then Λ̃ = Λ.

(2) Let u = min(C, g) and v = max(C, g). If Λ = I(g, C), then Λ̃ is

u + 2v, u + 2v − 2, u + 2v − 4, . . . , 3u + 2, (v − u integers)

3u, 3u− 1, 3u− 3, 3u− 4, . . . , 6, 5, 3, 2 (2u integers).

(3) Let u = min(C, g) and v = max(C, g). If Λ = II(g, C), then Λ̃ is

u + 2v + 1, u + 2v − 1, u + 2v − 3, . . . , 3u + 3, (v − u)

3u + 1, 3u, 3u− 2, 3u− 3, . . . , 4, 3, 1 (2u + 1).
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(4) If Λ = I(g, C, D), with C > D and C −D ≥ g, then Λ̃ is

3C −D + g − 1, 3C −D + g − 4, . . . , 2D + 4g + 2, (C −D − g)

2D + 4g, 2D + 4g − 2, 2D + 4g − 4, . . . , 2D + 2, (2g)

2D + 1, 2D, 2D− 1, . . . , D + 2, (D)

D, D − 1, D − 2, . . . , 1 (D).

(5) If Λ = I(g, C, D), with C > D and C −D < g, then Λ̃ is

3g + D + C, 3g + D + C − 3, . . . , 4C − 2D + 3, (g − C + D)

4C − 2D, 4C − 2D − 2, 4C − 2D − 4, . . . , 2D + 2, (2C − 2D)

2D + 1, 2D, 2D− 1, . . . , D + 2, (D)

D, D − 1, D − 2, . . . , 1 (D).

(6) If Λ = I(g, C, D), with D ≥ C and D − C ≥ g, then Λ̃ is

3D + g − C, 3D + g − C − 3, . . . , 2C + 4g + 3, (D − C − g)

4g + 2C, 4g + 2C − 1, 4g + 2C − 4, 4g + 2C − 5, . . . , 2C + 4, 2C + 3, (2g)

2C + 1, 2C, 2C − 1, . . . , C + 2, (C)

C, C − 1, C − 2, . . . , 1 (C).

(7) If Λ = I(g, C, D), with D ≥ C and D − C < g, then Λ̃ is

3g + D + C, 3g + D + C − 3, . . . , 4D − 2C + 3, (g −D + C)

4D − 2C, 4D − 2C − 1, 4D − 2C − 4, 4D − 2C − 5, . . . , 2C + 4, 2C + 3, (2D − 2C)

2C + 1, 2C, 2C − 1, . . . , C + 2, (C)

C, C − 1, C − 2, . . . , 1 (C).

(8) If Λ = II(g, C, D), with C > D and C −D ≥ g + 1, then Λ̃ is

3C −D + g − 1, 3C −D + g − 4, . . . , 2D + 4g + 5, (C −D − g − 1)

2D + 4g + 2, 2D + 4g + 1, 2D + 4g − 2, 2D + 4g − 3, . . . , 2D + 2, 2D + 1, (2g + 2)

2D, 2D − 1, 2D− 2, . . . , 1 (2D).

(9) If Λ = II(g, C, D), with C > D and C −D ≤ g, then Λ̃ is

3g + D + C + 1, 3g + D + C − 2, . . . , 4C − 2D + 1, (g − C + D + 1)

4C − 2D − 2, 4C − 2D − 3, 4C − 2D − 6, 4C − 2D − 7, . . . , 2D + 2, 2D + 1, (2C − 2D)

2D, 2D− 1, 2D − 2, . . . , 1 (2D).

(10) If Λ = II(g, C, D), with D ≥ C and D − C ≥ g, then Λ̃ is

3D + g − C + 1, 3D + g − C − 2, . . . , 2C + 4g + 4, (D − C − g)

4g + 2C + 1, 4g + 2C, 4g + 2C − 3, 4g + 2C − 4, . . . , 2C + 5, 2C + 4, (2g)

2C + 1, . . . , 3, 2, 1 (2C + 1).



ROOK THEORY AND t−CORES 19

(11) If Λ = II(g, C, D), with D ≥ C and D − C < g, then Λ̃ is

3g + D + C + 1, 3g + D + C − 2, . . . , 4D − 2C + 4, (g −D + C)

4D − 2C + 1, 4D− 2C, 4D − 2C − 3, 4D − 2C − 4, . . . , 2C + 5, 2C + 4, (2D − 2C)

2C + 1, . . . , 3, 2, 1 (2C + 1).

(12) If Λ = III(g, C, D), with C > D and C −D ≥ g + 1, then Λ̃ is

3C −D + g, 3C −D + g − 3, . . . , 2D + 4g + 6, (C −D − g − 1)

2D + 4g + 3, 2D + 4g + 2, 2D + 4g − 1, 2D + 4g − 2, . . . , 2D + 3, 2D + 2, (2g + 2)

2D + 1, 2D, 2D− 1, . . . , D + 2, (D)

D, D − 1, D− 2, . . . , 1 (D).

(13) If Λ = III(g, C, D), with C > D and C −D ≤ g, then Λ̃ is

3g + D + C + 2, 3g + D + C − 1, . . . , 4C − 2D + 2, (g − C + D + 1)

4C − 2D − 1, 4C − 2D − 2, 4C − 2D − 5, 4C − 2D − 6, . . . , 2D + 3, 2D + 2, (2C − 2D)

2D + 1, 2D, 2D− 1, . . . , D + 2, (D)

D, D − 1, D − 2, . . . , 1 (D).

(14) If Λ = III(g, C, D), with D ≥ C and D − C ≥ g + 1, then Λ̃ is

3D + g − C + 1, 3D + g − C − 2, . . . , 2C + 4g + 7, (D − C − g − 1)

4g + 2C + 4, 4g + 2C + 2, 4g + 2C, . . . , 2C + 4, (2g + 1)

2C + 2, 2C + 1, 2C, . . . , C + 2, (C + 1)

C, C − 1, C − 2, . . . , 1 (C).

(15) If Λ = III(g, C, D), with D ≥ C and D − C ≤ g, then Λ̃ is

3g + D + C + 2, 3g + D + C − 1, . . . , 4D − 2C + 5, (g −D + C)

4D − 2C + 2, 4D− 2C, 4D − 2C − 2, . . . , 2C + 4, (2D − 2C)

2C + 2, 2C + 1, 2C, . . . , C + 2, (C + 1)

C, C − 1, C − 2, . . . , 1 (C).

Proof. Suppose Λ̃ is a partition composed of s distinct parts. List the parts sizes of Λ̃ in decreasing
order. Augment this list by an infinite number of zeros. Create its multiset elements, si, by adding
i to the ith part size for each i ≥ 1. The si are non-increasing up through the first part, s + 1, of
size zero, after which the si increase by one each time. Thus, the first part of size zero produces the
smallest multiset element x = s + 1 of Λ̃. Clearly, given a multiset, we can reverse this process to
produce a partition into distinct parts that belongs to that multiset. This procedure is described
in steps 2), 3), and 4) of the following algorithm. We now state the algorithm for constructing a
partition into distinct parts that is rook equivalent to a t−core, for 2 ≤ t ≤ 4 :

1) Given one of the t−core partitions Λ described in the theorem, construct its multiset.
2) Define x to be the smallest multiset element.
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3) Throw out one copy of each of the elements in the multiset (reduce the multiplicity of each
element by one). Since we wish to produce a partition into distinct parts, this process removes the
multiset elements that will come from the parts of size zero of such a partition. Let s be the finite
number of elements in this new multiset.

4) List the elements of the new multiset in non-decreasing order. Subtract s from the first
one, s− 1 from the second, etc. After doing these subtractions, we are left with the partition, Λ̃,
composed of distinct parts belonging to the multiset of step 2).

Since Λ and Λ̃ have the same multiset, they are rook equivalent [Corollary 3, 6].

For example, say Λ is a 4−core partition of type II(a) as described in Theorem 3. Performing
steps 1), 2) and 3) above, using Tables (4) and (5), our new multiset becomes

(8) (g+C +D+2)2D+1(g+C +D+2)δe(1)(g+C +D+4)δe(2)+δg(1)(g+C +D+6)δe(3)+δg(2) · · · .

The smallest element of this multiset is x = g + C + D + 2. The number of non-zero parts in the
partition into distinct parts that produces this multiset is given by s = x − 1 = g + C + D + 1.
Thus, to perform step 4) on (8), we subtract g + C + D + 1 from the first element g + C + D + 2,
then subtract g + C + D from the second element (which will also be g + C + D + 2 if D > 0), etc.
To describe the final result, we need to consider the cases C−D ≥ g +1 and C−D ≤ g separately.
Finally, rearranging our partition elements into non-decreasing order results in the formulas listed
in Corollary 4 corresponding to 4−core partitions of type II(a). The same procedure is used for
the other cases.

�

Example 2. Consider the type II(b) 4−core partition Λ with C = 1, D = 2, and g = 1. By
Theorem 3, the parts of Λ are 5,4,3,2,1,1,1, while by Corollary 4 the parts of the rook equivalent
partition into distinct parts are 7,6,3,2,1.
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