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Abstract

We introduce a polynomial C̃µ[Z; q, t], depending on a set of variables Z = z1, z2, . . ., a
partition µ, and two extra parameters q, t. The definition of C̃µ involves a pair of statistics
(maj(σ, µ), inv(σ, µ)) on words σ of positive integers, and the coefficients of the zi are man-
ifestly in N[q, t]. We conjecture that C̃µ[Z; q, t] is none other than the modified Macdonald
polynomial H̃µ[Z; q, t]. We further introduce a general family of polynomials FT [Z; q, S],
where T is an arbitrary set of squares in the first quadrant of the xy-plane, and S is an
arbitrary subset of T . The coefficients of the FT [Z; q, S] are in N[q], and C̃µ[Z; q, t] is a
sum of certain FT [Z; q, S] times nonnegative powers of t. We prove FT [Z; q, S] is symmetric
in the zi, and satisfies other properties consistent with our conjecture. We also show how
the coefficient of a monomial in FT [Z; q, S] can be expressed recursively. Maple calculations
indicate the FT [Z; q, S] are Schur positive, and we present a combinatorial conjecture for
their Schur coefficients when the set T is a partition with at most three columns.
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1 Introduction

We refer the reader to Chapter 1 of [Mac95] or Chapter 7 of [Sta99] for basic facts about
symmetric functions. Given a sequence µ = (µ1, µ2, . . .) of nonincreasing, nonnegative integers
with

∑
i µi = n, we say µ is a partition of n, denoted by either |µ| = n or µ ` n. By adding

or subtracting parts of size 0 if necessary, we will always assume partitions of n have exactly n
parts. We let η(µ) =

∑
i(i−1)µi, and if λ is another partition, set K̃λ,µ(q, t) = tη(µ)Kλ,µ(q, 1/t),

where Kλ,µ(q, t) is Macdonald’s q, t-Kostka polynomial [Mac95, p.354]. We call H̃µ[Z; q, t] =∑
λ`|µ| sλK̃λ,µ(q, t) the modified Macdonald polynomial, where sλ = sλ[Z] is the Schur function

and the sum is over all λ ` |µ|. The H̃µ[Z; q, t] can be easily transformed by a plethystic
substitution into Macdonald’s original symmetric functions Pµ[Z, q, t]. Macdonald defined the
Pµ in terms of orthogonality with respect to a scalar product, and conjectured Kλ,µ(q, t) ∈ N[q, t]
[Mac95, p. 355]. (From their definition, all one can infer is that the Kλ,µ(q, t) are rational
functions in q, t). He also posed the problem of finding a combinatorial rule to describe these
polynomials.

In [GH93] Garsia and Haiman introduced an Sn submodule V (µ) for each µ ` n, and posed
the n! Conjecture, which says that dimQ V (µ) equals n!, where dim is the dimension as a vector
space. This was proved in 2000 by Haiman [Hai01]. It had previously been shown [Hai99]
that the n! Conjecture implies the coefficient of qitj in K̃λ,µ(q, t) equals the multiplicity of the
irreducible Sn character χλ in the character of a submodule V (µ)(i,j) of V (µ). Macdonald’s
conjecture that K̃λ,µ(q, t) ∈ N[q, t] follows. No purely combinatorial description of the K̃λ,µ(q, t)
is known.

We assign (row,column)-coordinates to squares in the first quadrant, obtained by permuting
the (x, y) coordinates of the lower left-hand corner of the square, so the lower-left hand square
has coordinates (0, 0), the square above it (1, 0), etc.. For a square w, we call the first coordinate
of w the row value of w, denoted row(w), and the second coordinate of w the column value of
w, denoted col(w). Given µ ` n, we let µ also stand for the Ferrers diagram of µ (French
convention), consisting of the set of n squares with coordinates (i, j), with 0 ≤ i ≤ n − 1,
0 ≤ j ≤ µi − 1.

Let T be a finite set of squares in the first quadrant. A subset of squares of T consisting
of all those w ∈ T with a given row value is called a row of T , and a subset of squares of T
consisting of all those w ∈ T with a given column value is called a column of T . Furthermore,
we let T (i) denote the ith square of T encountered if we read across rows from left to right,
starting with the squares of largest row value and working downwards. Given a square w ∈ T ,
define the leg of w, denoted leg(w), to be the number of squares in T which are strictly above
and in the same column as w, and the arm of w, denoted arm(w), to be the number of squares
in T strictly to the right and in the same row as w. Also, if w has coordinates (i, j), we let
south(w) denote the square with coordinates (i − 1, j).

A word σ of positive integers is a linear sequence σ1σ2 · · · σn, with σi ≥ 1. If the letter i
occurs αi times in σ, for each i ≥ 1, we say σ has content α, denoted content(σ) = α. We call a
pair (σ, T ), where σ is a word of positive integers and T is a set of squares in the first quadrant,
a filling. We represent (σ, T ) geometrically by placing σi in square T (i), for 1 ≤ i ≤ n. For
w ∈ T , we let w(σ) denote the element of σ placed in square w. A descent of (σ, T ) is a square
w ∈ T , with south(w) ∈ T and w(σ) > south(w)(σ).

Let Des(σ, T ) denote the set of all descents of (σ, T ). For partitions µ, define a generalized
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major index statistic maj(σ, µ) via

maj(σ, µ) =
∑

w∈Des(σ,µ)

1 + leg(w). (1)

An inversion of (σ, T ) is a pair of squares (a, b) with a, b ∈ T , a(σ) > b(σ), and either{
row(a) = row(b) and col(a) < col(b), or
row(a) = row(b) + 1 and col(a) > col(b) .

(2)

Let Inv(σ, T ) denote the set of all inversions of (σ, T ), and define the inversion statistic inv(σ, T )
via

inv(σ, T ) = |Inv(σ, T )| −
∑

w∈Des(σ,T )

arm(w), (3)

where |T | denotes the cardinality of a set T . For example, if (σ, T ) is the filling on the left in
Figure 1, then representing squares by their coordinates,

Des(σ, T ) = {(1, 1)}, (4)
Inv(σ, T ) = {((1, 1), (1, 2)), ((1, 1), (0, 0)), ((0, 0), (0, 2)), ((0, 1), (0, 2))}, (5)

so inv(σ, T ) = 4 − 1 = 3. If (σ, µ) is the filling on the right in Figure 1, then

Des(σ, µ) = {(1, 0), (3, 1), (1, 1)}, (6)
Inv(σ, µ) = {((2, 0), (2, 1)), ((1, 1), (1, 2)), ((1, 1), (0, 0)), ((1, 2), (0, 0)), ((1, 2), (0, 1))}, (7)

so maj(σ, µ) = 3 + 1 + 3 = 7, inv(σ, µ) = 5 − (2 + 0 + 1) = 2.
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Figure 1: On the left, a set T and a filling of T by the word 542332. The X’s indicate squares
not in T . On the right, a filling of the partition (3, 3, 2, 2) by the word 2221353114.

For any word σ, as is customary we define the descent set Des(σ) to be {i : σi > σi+1}. Note
that, if 1n denotes a column of n cells, then

maj(σ, 1n) =
∑

i∈Des(σ)

i, (8)

the usual major index statistic on the word σ, while

inv(σ, (n)) =
∑

1≤i<j≤n
σi>σj

1, (9)
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the usual inversion statistic.
For µ ` n, define

C̃µ[Z; q, t] =
∑
σ

tmaj(σ,µ)qinv(σ,µ)zσ, (10)

where zσ =
∏n

i=1 zσi is the “weight” of σ and the sum is over all words σ of n positive integers.

Conjecture 1 For all partitions µ,

C̃µ[Z; q, t] = H̃µ[Z; q, t]. (11)

Conjecture 1 has been verified by the author using Maple for |µ| ≤ 9. The author would like to
thank A. Ulyanov for also verifying it for |µ| = 10 and |µ| = 11. The n = 11 run took 67 hours
on a Pentium 3 based machine.

Given a set T of squares and a subset S ⊆ T , define

FT [Z; q, S] =
∑

σ
Des(σ,T )=S

qinv(σ,T )zσ. (12)

Let T̂ = {w ∈ T : south(w) ∈ T}. Note that Des(σ, T ) ⊆ T̂ for all σ. In Section 2 we prove the
following.

Theorem 1 For all S, T , FT [Z; q, S] is a symmetric function in the zi.

Given S ⊆ µ, let

P (S) =
∑
w∈S

1 + leg(w). (13)

It follows from Theorem 1 that C̃µ[Z; q, t] is symmetric in the zi, since by the definition of
maj(σ, µ),

C̃µ[Z; q, t] =
∑
S⊆bµ

tP (S)Fµ[Z; q, S]. (14)

A symmetric function f(z1, z2, . . .) of homogeneous degree n is uniquely defined by the coeffi-
cients of its monomials in z1, . . . , zn only. Thus one consequence of the symmetry of C̃µ[Z; q, t]
is that we can restrict the infinite sum over σ in (10) to only those σ satisfying 1 ≤ σi ≤ n for
1 ≤ i ≤ n, and work with the finite set of variables Z = {z1, z2, . . . , zn}. For the remainder of
the article we will make this assumption.

Remark 1 The definition of Inv(σ, µ) is motivated by the “dinv” statistic which occurs in a
conjectured formula, for the character of the space of diagonal harmonics, occurring in [HHL+,
Conjecture 3.1.2]. In fact, that formula can be recast as a sum of certain FT [Z; q, T̂ ] times
nonnegative powers of t and q.

Definition 1 Given a word σ of content (γ1, γ2, . . .), construct a permutation σ′, the standard-
ization of σ, by replacing the γ1 1’s in σ by the numbers 1, . . . , γ1, the γ2 2’s in σ by the numbers
γ1 + 1, . . . , γ1 + γ2, etc., in such a way that, for i < j, σi ≤ σj if and only if σ′

i < σ′
j. For

example, if σ = 224123114 then σ′ = 458167239.
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Remark 2 At first glance it may seem that inv(σ, T ) may not always be nonnegative, but given
a square u ∈ Des(σ, T ), for each square v in the same row as u and to the right of u, either
σ(u) > σ(v), or σ(v) > σ(south(u)), or both. Assume for the moment that σ has distinct entries.
If we adopt the convention that for a square w /∈ T , σ(w) = ∞, it follows that inv(σ, T ) equals
the number of triples of squares u, v,w, where v ∈ T and in the same row as u, with u strictly to
the left of v, south(u) = w, and if we draw a circle through u, v,w, and read in the σ values of
u, v,w in counterclockwise order around the circle, starting at the smallest value, then the three
values form a strictly increasing sequence. Note that this requires at least two of u, v,w to be in
T . If σ has repeated entries, first standardize, then count triples in (σ′, T ) as above.

In Section 3 we include some results related to the expansion of C̃µ[Z; q, t] into quasisymmet-
ric functions. Section 4 contains a discussion of the various special cases of our conjecture that
we can prove, and in Section 5 we show how the coefficient of a monomial symmetric function
in the FT [Z; q, S]’s can be expressed recursively.

Maple calculations indicate the FT [Z; q, S] have the following interesting property.

Conjecture 2 For all S, T , FT [Z; q, S] is Schur positive.

In particular Conjecture 2 is true for all S, T with T ⊆ µ for some partition µ with |µ| ≤ 8, and
has also been checked for many selected choices of T with |T | ∈ {9, 10}. At this time we are
unable to present a combinatorial prediction for the Schur coefficients for general S, T , but in
Section 6 we introduce an elegant conjecture for the Schur coefficients of Fµ[Z; q, S], and hence
for the K̃λ,µ(q, t), whenever µ has at most three columns.

2 Symmetry

Lemma 1 below can be easily obtained from Corollary 5.2.4 in [HHL+] (by letting each µi there
be a single square, and choosing the offsets si appropriately). For any two sets A,B, we let
A − B = {a ∈ A, a /∈ B}.
Definition 2 Let β1 < β2 · · · < βn be real numbers. Define a β-inversion of a function f :
{1, . . . , n} → {1, 2} to be a pair i, j such that 0 < βj − βi < 1 and f(i) > f(j). Let invβ(f)
denote the number of β-inversions and set

Gβ(z1, z2; q) =
∑

f

qinvβ(f)
∏

i

zf(i). (15)

Lemma 1 With the definitions above, we have Gβ(z1, z2; q) = Gβ(z2, z1; q) for all β.

Proof of Theorem 1: Given S, T let AT [Z; q, S] = q
P

w∈S arm(w)FT [Z; q, S], so AT is symmetric
in the zi if and only if FT is, and

AT [Z; q, S] =
∑

σ
Des(σ,T )=S

zσq|Inv(σ,T )|. (16)

By inclusion-exclusion, it is sufficient to show that the right-hand side of (16) is symmetric if
S ⊆ Des(σ, T ), (not necessarily equal to S). We indicate this notationally as in AT [z1, z2; q,≥ S].
Furthermore, it suffices to prove AT [Z; q,≥ S] is symmetric in any two consecutive variables
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zi, zi+1. Given (σ, T ), let Ri(σ) be the set of those w ∈ T with w(σ) = i or w(σ) = i + 1. Note
that if we permute the i and i+1 entries amongst themselves we do not affect any inversion pairs
or descents which involve a square outside Ri(σ). It follows that if we consider the contribution
to AT [Z; q,≥ S] from all σ for which Ri(σ) equals a fixed set T0, and the values of σ at the squares
of T−T0 equal a fixed filling (β, T−T0), we get a constant monomial in {z1 . . . , zi−1, zi+2, . . . , zn}
times a constant power of q, times the terms in AT0 [Z; q,≥ S ∩ T0] involving only zi and zi+1.
Hence it suffices to show that for any S, T , AT [z1, z2; q,≥ S] = AT [z2, z1; q,≥ S].

Assume w ∈ Des(σ, T ), so w(σ) = 2 and south(w)(σ) = 1. It is easy to check that if c is any
square not equal to w or south(w), then the number of inversion pairs involving c and either w or
south(w) is the same whether c(σ) = 1 or c(σ) = 2. Thus pairs of squares (w, south(w)), w ∈ S,
contribute a constant power of q times a fixed power of z1z2 to AT [z1, z2;≥ S]. Thus if E =
T − S − {south(w), w ∈ S}, it now suffices to show AE [z1, z2; q,≥ ∅] = AE[z2, z1; q,≥ ∅].

Let n = |E|, and let m be the maximal row value of the squares of E. For 1 ≤ i ≤ n, if E(i)
has coordinates (y, x) then set βi = m − y + xε, where ε is a small positive number. It is easy
to check that a pair (E(i), E(j)) of squares of E are in Inv(σ,E) if and only if (i, j) forms a
β-inversion in the sense of Definition 2, with f replaced by σ. The symmetry of AE [z1, z2; q,≥ ∅]
now follows from Lemma 1. 2

3 Shuffles

We say a sequence σ1, . . . , σn is a shuffle of a sequence a1, . . . , ak if ai occurs before ai+1 in σ
for 1 ≤ i < k. Given a word σ of content α, note that the statistics maj(σ, T ) and inv(σ, T )
equal maj(σ′, T ) and inv(σ′, T ), respectively, where σ′ is the standardization of σ. Also, σ′

will clearly be a shuffle of increasing sequences of lengths α1, α2, . . ., or equivalently (σ′)−1 is
a concatenation of increasing sequences of lengths α1, α2, . . .. We call such a permutation an
α-shuffle, and if β is an α-shuffle, we let word(β, α) denote the corresponding word of content
α (so the standardization of word(β, α) equals β). More generally, given a pair of partitions
η, λ, with |η| + |λ| = n, we say σ ∈ Sn is a λ, η-shuffle if σ−1 is the concatenation of alternating
increasing and decreasing sequences λ1, η1, λ2, η2, . . .. This definition also applies if η, λ are any
compositions, where by a composition of n we mean a finite sequence of nonnegative integers
whose sum is n.

Let 〈, 〉 > denote the Hall scalar product, with respect to which the Schur functions are
orthonormal. It is well-known that the coefficient of mλ in a symmetric function f is given by
〈f, hλ〉, where hk = sk =

∑
λ`k mλ and hλ =

∏
i hλi

. Results in [HHL+] involving the “super-
ization” of symmetric functions connected to the space of diagonal harmonics follow through
rather easily to the FT [Z; q, S]. We list a few of the consequences below.

Theorem 2 For any S, T , µ ` n, and compositions η, λ,

〈FT [Z; q, S], eηhλ〉 > =
∑

σ ∈ Sn, σ is a λ, η-shuffle
Des(σ,T )=S

qinv(σ,T ). (17)

Corollary 1 If Conjecture 1 holds, then〈
H̃µ[Z; q, t], eηhλ

〉
=

∑
σ∈Sn

σ is a λ, η-shuffle

tmaj(σ,µ)qinv(σ,µ). (18)
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For a subset D of {1, 2, . . . , n − 1}, let

Qn,D(z1, . . . , zn) =
∑

1≤a1≤a2≤···≤an
ai=ai+1 =⇒ i/∈D

za1za2 · · · zan (19)

denote Gessel’s quasisymmetric function.

Proposition 1 For any S, T ,

FT [Z; q, S] =
∑
σ∈Sn

Des(σ,T )=S

qinv(σ,T )Qn,Des(σ−1)(Z). (20)

4 Special Values

Proposition 2 Conjecture 1 is true if q = 1.

Proof. Clearly C̃µ[Z; 1, t] =
∏

i C̃(µi)[Z; 1, t], and H̃µ[Z; 1, t] is also known to factor similarly.
Thus it suffices to consider the case µ = (1n), in which case it follows from the well-known
Cauchy identity and MacMahon’s result on the equidistribution of tmaj(σ) and tinv(σ) over words
σ of fixed content. 2

One of the basic properties of the H̃µ[Z; q, t] is

H̃µ[Z; q, t] = H̃µ′ [Z; t, q], (21)

where µ′ is the “conjugate” partition obtained by reflecting µ about the line y = x. Using this,
the t = 1 case of Conjecture 1 follows from the following lemma, which was noticed by the
author and proven by N. Loehr and G. Warrington [LW04].

Lemma 2 Let µ be a partition with 2 rows. Let β be a word of length µ1, and α a composition
of µ2. Then ∑

σ

qinv(σ+β,µ) = qinv(β,(µ1))

[
µ2

α1, α2, . . .

]
q

, (22)

where the sum is over all words σ of content α, and σ + β is the word obtained by concatenating
σ and β. Here

[ µ2

α1,α2,...

]
q

is the q-multinomial coefficient [And98].

A semi-standard Young tableau of shape µ is a filling (σ, µ) where the entries are weakly
increasing across rows and strictly decreasing down columns. The tableau is called standard if
σ ∈ Sn. We let SSY T (µ, λ) denote the set of semi-standard tableau of shape µ and content
λ, and SY T (µ) denote the set of standard tableaux of shape µ. If Tab is a standard tableau,
we define the tableau descent set of Tab, denoted descent(Tab), to be the set of all i for which
i + 1 is in a row of µ above the row containing i. Note that descent(Tab) is different from the
descent set Des when Tab is viewed as a filling. For any word σ of length n with 1 ≤ σi ≤ n, let
rev(σ) = σn · · · σ2σ1 and flipn(σ) = n − σ1 + 1 · · · n − σn + 1.

Theorem 3 Conjecture 1 is true if µ is a hook, i.e. µ = k1n−k for some 1 ≤ k ≤ n.
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Proof. Converting [Ste94, Theorem 2.1] into a statement about the K̃λ,µ(q, t), we get

K̃λ,k1n−k(q, t) =
∑

Tab∈SY T (λ)

qαk(Tab)tβ̃k(Tab), (23)

where

αk(Tab) =
∑

1≤i<k, i∈descent(Tab)

i, β̃k(Tab) =
∑

k≤i<n, i∈descent(Tab)

n − i. (24)

Using (21) we can rephrase (23) as

K̃ν,k1n−k(q, t) = K̃ν,(n−k+1)1k−1(t, q) (25)

=
∑

Tab∈SY T (ν)

tαn−k+1(Tab)qβ̃n−k+1(Tab). (26)

Applying the well known fact that

sν =
∑

λ

Kν,λmλ, (27)

where Kν,λ = |SSY T (ν, λ)|, we now have

〈H̃k1n−k , hλ〉 =
∑

ν

Kν,λ

∑
Tab∈SY T (ν)

tαn−k+1(Tab)qβ̃n−k+1(Tab). (28)

Foata [Foa68] (see also [FS78]) gave a bijective transformation φ on words which satis-
fies maj(σ) = inv(φ(σ)), and furthermore content(φ(σ)) = content(σ) and φ(σ)n = σn. Let
comaj(σ) =

∑
i∈Des(σ) n − i. For σ ∈ Sn, let π(σ) = (flipn ◦ rev ◦ φ ◦ rev ◦ flipn)(σ), where ◦

denotes composition. For σ a word of content λ, define π(σ) = word(π(σ′), λ). One checks that
comaj(σ) = inv(π(σ)), π(σ)1 = σ1, and π is an invertible map from the set of words of content
λ to itself.

Given a λ-shuffle ζ ∈ Sn, let σ = word(ζ, λ), and let γ = σ1 · · · σn−k + π−1(σn−k+1 · · · σn)
be the word of content λ obtained by applying the map π−1 to the last k letters of σ, and
fixing the first n − k letters. The standardization γ′ is a λ-shuffle, and if we apply the RSK
algorithm to γ′, we get a pair (Pγ′ , Qγ′) of SY T of the same shape, with Des(γ′) = descent(Qγ′)
and Des((γ′)−1) = descent(Pγ′) (see, for example [Sta99, Chapter 7]). Furthermore, the values
of maj(ζ, k1n−k) and inv(ζ, k1n−k) depend only on Qγ′ . Now descent(Pγ′) ⊆ {λ1, λ1 + λ2, . . .},
hence in Pγ′ the numbers 1 through λ1 form a horizontal strip, as do the numbers λ1 +1 through
λ1 + λ2, etc.. Thus we can associate a SSY T of content λ to Pγ′ . It follows that as we vary ζ
over all λ-shuffles in Sn, the number of different Pγ′ that will occur with a given Qγ′ of shape ν
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equals Kν,λ. Hence

〈C̃k1n−k [Z; q, t], hλ〉 =
∑

ζ ∈ Sn, ζ is a λ-shuffle

tmaj(ζ,k1n−k)qinv(ζ,k1n−k) (29)

=
∑

γ′ ∈ Sn, γ′ is a λ-shuffle

tmaj(γ′
1,...,γ′

n−k+1)qcomaj(γ′
n−k+1,...,γ′

n) (30)

=
∑

γ′ ∈ Sn, γ′ is a λ-shuffle

tαn−k+1(Qγ′ )qβ̃n−k+1(Qγ′ ) (31)

=
∑

ν

Kν,λ

∑
Tab∈SY T (ν)

tαn−k+1(Tab)qβ̃n−k+1(Tab) (32)

= 〈H̃k1n−k [Z; q, t], hλ〉 (33)

by (28). 2

Remark 3 An interesting and perhaps important problem is to show

C̃µ[Z; q, t] = C̃µ′ [Z; t, q], (34)

which by (21) must hold if Conjecture 1 is true. The arguments above show only that C̃µ[Z; 1, t] =
C̃µ′ [Z; t, 1]. We leave it as an interesting exercise for the reader to verify (34) bijectively for
hook shapes using only the fact that C̃µ[Z; q, t] is a symmetric function, together with properties
of the maps φ and π.

We can also prove the following special cases of our conjectures.

Proposition 3 Let d satisfy 0 ≤ d ≤ n. Then (18) holds when η = (n − d), λ = (d). Also,

C̃µ[Z; q, 0] = H̃µ[Z; q, 0] (35)

C̃µ[Z; q, t]|tη(µ) = H̃µ[Z; q, t]|tη(µ) , (36)

where for any polynomial f(x), f |xj stands for the coefficient of xj in f . In addition, Conjecture
2 holds when q = 1.

Remark 4 By taking the coefficient of z1z2 · · · zn in C̃µ[Z; q, t] we obtain a conjectured formula
for the bigraded Hilbert series of the Garsia-Haiman modules V (µ). In [GH95] Garsia and
Haiman derive a statistical description for the Hilbert series when µ = k1n−k, which is easily
shown to be equivalent to ours. They also obtain statistics for the case where µ has two rows, but
the author does not know how to show their formula is equivalent to that predicted by Conjecture
1 for this case.

5 A Recursive Formulation

Given λ ` n and S, T with S ⊆ T , to calculate the coefficient of the monomial symmetric
function mλ in FT [Z; q, S], by symmetry it suffices to calculate the coefficient of zλ1

n zλ2
n−1 · · · zλn

1 ,
so we can consider only fillings involving words of content rev(λ).

Recall the description of inv(σ, T ) in Remark 2, involving triples of squares. The fact that all
the n’s are larger than any other entry of σ will allow us to isolate the contribution to inv(σ, T )
from triples involving an n. We will view the set of squares of (σ, T ) containing n’s as P ∪ Q,
where P ⊆ T − S, Q ⊆ S.
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Definition 3 Given P,Q, S, T as above, let ind(P,Q, S, T ) denote the number of triples of
squares u, v,w satisfying

row(u) = row(v) = row(w) + 1
col(u) < col(v), v ∈ T and u /∈ S,

the triple u, v,w form one of the patterns of type A,B,C or D in Figure 2,

(37)

where in these patterns a square occupied by
an n means the square is in P

an X means the square is not in T

nothing means the square is in T − P − Q.

(38)

The following result is easily derived from the definition of FT [Z; q, S] and ind(P,Q, S, T ).

...n n

n

pattern Bpattern A pattern C

... ......

pattern D

n n

X
X

Figure 2: The various possible patterns which contribute to the statistic ind(S, T, P,Q).

Theorem 4 For λ ` n and S ⊆ T ,

〈FT [Z; q, S], hλ〉 =
∑
P,Q

P⊆T−S, Q⊆S
|P |+|Q|=λ1

qind(S,T,P,Q) 〈FT−P−Q[Z; q, S − Q], hλ2,λ3,...,λn〉 , (39)

with the inital condition F∅[Z; q, ∅] = 1.

6 Conjectures involving Schur Coefficients

It would be very desirable to have a combinatorial description of the Schur coefficients of the
FT [Z; q, S]. Such formulas exist for the K̃λ,µ when λ or µ is a hook or when µ has two columns
or two rows, and for some other shapes obtained by adding a square or two to one of the above
shapes. All of the published formulas for the case when µ has two columns are fairly complicated,
involving such things as rigged configurations and catabolism [Fis95],[Zab98],[LM03].

We now advance a conjectured combinatorial description for 〈Fµ[Z; q, S], sλ〉 whenever µ has
at most three columns. Let F1 = (12 · · · n, µ) be the filling of µ by the identity permutation and
F2 = (n · · · 21, µ) the filling by the reverse of the identity. For any pair of integers (a, b) with
1 ≤ a < b ≤ n, say a is in square A in F1 and b is in square B in F1, i.e. A = µ(a), B = µ(b).
Define the (multi-t variate) µ-weight of (a, b), denoted wt(µ, a, b), as

wt(µ, a, b) =


q if (A,B) ∈ Inv(F2)
q−arm(A)tA if A ∈ Des(F2) and B = south(A)
1 otherwise.

(40)
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For example, for F1 as on the left in Figure 3,

wt(3221, 2, 4) = q−1t(2,0), wt(3221, 3, 4) = q, wt(3221, 3, 6) = 1, . . . .

1

2 3

4 5 6

7 8 9 1

2

3

4 5

6 7

8

9

Figure 3: On the left, the filling F1 = (123456789, 3321), and on the right a tableau in SY T (432).

Given a SYT Tab of partition shape with |µ| squares, our strategy will be to identify pairs
(a, b) as “inversion pairs” of Tab, then weight them as in (40). We begin by partially defining
what constitutes an inversion by the following.

1) The pair (a, b) forms an inversion in Tab if 1 ≤ a < b ≤ |µ| and b is weakly northwest of a in
Tab, i.e. b is not in a column to the right of a.

2) If a < b and b is weakly southeast of a, i.e. is not in a row above a, then (a, b) do not form
an inversion pair.

3) If a+3 is neither weakly northwest or weakly southeast of a, then (a, a+3) forms an inversion
pair if Tab contains the pattern on the left in Figure 4, and does not if Tab contains the pattern
on the right.

a

a+2

a

a+1

a+2

a+3a+3

a+1

Figure 4: The pair (a, a + 3) form an inversion if the pattern on the left occurs.

Define

C̃µ[Z; q,~t ] =
∑
S⊆bµ

Fµ[Z; q, S]
∏
w∈S

tw, (41)

which is a “multi-t variate” version of C̃µ. By (14), if we replace tw by tleg(w)+1 for all w, this
multi-t version will reduce to C̃µ[Z; q, t].

Let inversion(Tab) denote the set of inversion pairs of Tab.

Conjecture 3 If µ has at most three columns,

〈C̃µ[Z; q,~t ], sλ〉 =
∑

Tab∈SY T (λ)

∏
(a,b)∈inversion(Tab)

wt(µ, a, b). (42)
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Example 1 If Tab is the tableau on the right in Figure 3, then

(1, 2), (2, 3), (4, 6), (4, 7), (5, 6), (5, 7), (6, 9), (7, 9), (8, 9) (43)

form inversions with nontrivial 3321-weights, so the contribution of Tab to 〈C̃3321[Z; q,~t ], s432〉
is t(3,0) ∗ q ∗ q ∗ t(1,0)q

−2 ∗ q ∗ q ∗ t(1,2) ∗ q ∗ q = t(3,0)t(1,0)t(1,2)q
4.

Conjecture 3 has been checked in Maple for all λ, µ with |λ| ≤ 12 and |µ| ≤ 12. The calcula-
tion made use of tables of the Kλ,µ(q, t) supplied by G. Tesler, as well as J. Stembridge’s Maple
package for symmetric functions SF [Ste], which was also used in testing our other conjectures.
Note that if (42) holds, by taking the coefficient of

∏
w∈S tw in the right-hand side of (42) we

obtain a formula for 〈Fµ[Z; q, S], sλ〉.
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