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A Proof of the
q,t-Catalan Positivity Conjecture

by
A. M. Garsia and J. Haglund

Abstract.

We present here a proof that a certain rational function Cn(q, t) which has come to be known as

the “q, t-Catalan” is in fact a polynomial with positive integer coefficients. This has been an open problem

since 1994. The precise form of the conjecture is given in the J. Algebraic Combin. 5 (1996), no. 3, 191–244,

where it is further conjectured that Cn(q, t) is the Hilbert Series of the Diagonal Harmonic Alternants in

the variables (x1, x2, . . . , xn; y1, y2, . . . , yn). Since Cn(q, t) evaluates to the Catalan number at t = q = 1,

it has also been an open problem to find a pair of statistics a(π), b(π) on Dyck paths π in the n×n square

yielding Cn(q, t) =
∑
π t

a(π)qb(π). Our proof is based on a recursion for Cn(q, t) suggested by a pair of

statistics a(π), b(π) recently proposed by J. Haglund. Thus one of the byproducts of our developments is a

proof of the validity of Haglund’s conjecture. It should also be noted that our arguments rely and expand

on the plethystic machinery developed in Methods and Applications of Analysis, VII, 3, (99), p. 363-420.

Introduction
To proceed we need to recall some definitions and notational conventions. We work

with the algebra Λ of symmetric functions in a formal infinite alphabet X = x1, x2, . . . , with
coefficients in the field of rational functions Q(q, t). We also denote by ΛZ[q,t ] the algebra of
symmetric functions in X with coefficients in Z[q, t ]. We write Λ=d for the space of symmetric
functions homogeneous of degree d. The spaces Λ≤d and Λ>d are analogously defined. We shall
make extensive use here of “plethystic” notation. This is a notational device which simplifies
manipulation of symmetric function identities. It can be easily defined and programmed in
MATHEMATICA or MAPLE if we view symmetric functions as formal power series in the power
symmetric functions pk. To begin with, if E = E[t1, t2, t3, . . .] is a formal Laurent series in the
variables t1, t2, t3, . . . (which may include the parameters q, t) we set

pk[E] = E[tk1 , t
k
2 , t

k
3 , . . .] .

More generally, if a certain symmetric function F is expressed as the formal power series

F = Q[p1, p2, p3, . . .]

then we simply let
F [E] = Q[p1, p2, p3, . . .]

∣∣∣
pk→E[tk1 ,t

k
2 ,t

k
3 ,...]

, I.1

and refer to it as “plethystic substitution” of E into the symmetric function F .
We make the convention that inside the plethystic brackets “[ ]”, X and Xn respectively

stand for x1 + x2 + x3 + · · · and x1 + x2 + · · · + xn. In particular, one sees immediately from
this definition that if f(x1, x2, . . . , xn) is a symmetric function then f [Xn] = f(x1, x2, . . . , xn). We
shall also make use of the symbols Ω(x) and Ω̃(x) to represent the symmetric functions

Ω(x) =
∏
i≥1

1
1− xi

and Ω̃(x) =
∏
i≥1

(1 + xi) .
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For instance, is easily seen that in terms of Ω(x), the Cauchy, Hall-Littlewood and Macdonald
kernels may be respectively be given the compact forms

Ω[XnYm] , Ω[XnYm(1− t)] and Ω[XnYm
1−t
1−q ] .

This can is easily obtained by applying the defininition in I.1 to the power sum expansion

Ω = exp
(∑
k≥1

pk
k

)
.

Using plethystic notation we are forced to distinguish between two different minus signs.
Indeed note that the definition in I.1 yields that we have

pk[−Xn] = pk[−x1 − x2 − · · · − xn] = −xk1 − xk2 − · · · − xkn = −pk[Xn] .

On the other hand, on using the ordinary meaning of the minus sign, we would obtain

pk[Xn]
∣∣
xi→−xi = (−1)k pk[Xn] .

Since both operations will necessarily occur in our formulas, we shall adopt the convention
that when a certain variable has to be replaced by its negative, in the ordinary sense, then
that variable will be prepended by a superscripted minus sign. Recall that the ω involution
is the multiplicative extension of the operation obtained by setting

ω pk = (−1)k−1 pk .

Note that the above conventions give

pk[−−Xn] = (−1)k−1 pk[Xn] .

In particular, for any symmetric polynomial P of degree ≤ n, we may write

ω P [Xn] = P [−−Xn] . I.2

Sometimes it will be convenient to use the symbol “ε” to represent −1. The idea is that we
should treat ε as any of the other variables in carrying out plethystic operations and only
outside the plethystic bracket do we replace ε by −1.

A partition µ will be represented and identified with its Ferrers diagram. As custom-
ary, the partition conjugate to µ will be denoted “µ′ ”. We shall use the French convention
here and, given that the parts of µ are µ1 ≥ µ2 ≥ · · · ≥ µk > 0, we let the corresponding
Ferrers diagram have µi lattice cells in the ith row (counting from the bottom up). It will
be convenient to let |µ| and l(µ) denote respectively the sum of the parts and the number of
nonzero parts of µ. In this case |µ| = µ1 + µ2 + · · ·+ µk and l(µ) = k. As customary the symbol
“µ ` n” will be used to indicate that |µ| = n . Following Macdonald, the arm, leg, coarm and
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coleg of a lattice square s are the parameters aµ(s), lµ(s), a′µ(s) and l′µ(s) giving the number of
cells of µ that are respectively strictly EAST, NORTH, WEST and SOUTH of s in µ.

Here and after, for a partition µ = (µ1, µ2, . . . , µk) we set

n(µ) =
k∑
i=1

(i− 1)µi =
∑
s∈µ

l′µ(s) =
∑
s∈µ

lµ(s) .

If s is a cell of µ we shall refer to the monomial w(s) = qa
′
µ(s)tl

′
µ(s) as the weight of s. The sum

of the weights of the cells of µ will be denoted by Bµ(q, t) and will be called the biexponent
generator of µ. Note that we have

Bµ(q, t) =
∑
s∈µ

qa
′
µ(s)tl

′
µ(s) =

∑
i≥1

ti−1 1− qµi
1− q .

It will be also convenient to set

Dµ = (1− t)(1− q)Bµ(q, t)− 1 , I.3

Tµ = tn(µ)qn(µ′) =
∏
s∈µ

qa
′
µ(s)tl

′
µ(s) , Πµ(q, t) =

∏
s∈µ

s6=(o,o)

(
1− qa′µ(s)tl

′
µ(s)
)

I.4

and finally

h̃µ(q, t) =
∏
s∈µ

(
qa
′
µ(s) − tl′µ(s)+1

)
, h̃′µ(q, t) =

∏
s∈µ

(
tl
′
µ(s) − qa′µ(s)+1

)
. I.5

We shall work here with the symmetric polynomial H̃µ[X; q, t] with Schur function
expansion

H̃µ[X; q, t] =
∑
λ

Sλ[X] K̃λµ(q, t) , I.6

where the coefficients K̃λµ(q, t) are obtained from the Macdonald q, t-Kotska coefficients by
setting

K̃λµ(q, t) = tn(µ)Kλµ(q, 1/t) .

Most of the properties of H̃µ[X; , q, t] we will need here can be routinely derived from the
corresponding properties of Macdonald’s integral form Jµ[X; q, t] (†), via the formula

H̃µ[X; q, t] = tn(µ)Jµ[ X
1−1/t ; q, 1/t ] . I.7

We shall need a number of identities satisfied by this polynomial which have been derived in
previous work. To avoid unnecessary repetitions we will refer the reader to the appropriate

(†) [15] Ch. VI, (8.3)
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sources whenever needed. The reader is advised to obtain copies of papers [3],[6] and [8]
where most of the material we will use can be found.

The most important ingredient in the present developments is the linear operator ∇
defined, in term of the basis {H̃µ[X; q, t]}µ , by setting

∇ H̃µ[X; q, t] = Tµ H̃µ[X; q, t] . I.8

The reader is referred to [1], [2] and [3] for a collection of results and conjectures about ∇
that have emerged in the few years since its discovery.

Our point of departure is the basic identity

en
[

XY
(1−t)(1−q)

]
=

∑
µ`n

H̃µ[X; q, t ]H̃µ[Y ; q, t ]
h̃µ(q, t)h̃′µ(q, t)

. I.9

In particular, the alternate expansion

en
[

XY
(1−t)(1−q)

]
=

∑
µ`n

(−1)|µ|−l(µ) pµ[X]pµ[Y ]
zµpµ[M ]

,

shows that the two bases
{
H̃µ

}
µ

and
{
H̃µ/h̃µh̃

′
µ

}
µ

are dual with respect to the scalar product
product

〈
,
〉
∗ defined by setting for the power basis〈

pµ , pν
〉
∗ = (−1)|µ|−l(µ)χ(µ = ν) zµpµ[M ] . I.10

This given it may be derived from I.9 (see [6] Theorem 2.4) that we have

en[X] =
∑
µ`n

H̃µ[X; q, t ]MΠµ(q, t)Bµ(q, t)
h̃µ(q, t) h̃′µ(q, t)

, I.11

where for convenience we shall set here and after

M = (1− t)(1− q) . I.12

In particular we see from I.8 and I.11 that we must have

∇en[X] =
∑
µ`n

TµH̃µ[X; q, t ]MΠµ(q, t)Bµ(q, t)
h̃µ(q, t)h̃′µ(q, t)

. I.13

This rational function has been conjectured in [6] to give the Frobenius characteristic of the
Diagonal Harmonic polynomials in (x1, x2, . . . , xn; y1, y2, . . . , yn). Thus the coefficients in the
Schur function expansion

∇en[X] =
∑
µ`n
∇en[X]

∣∣∣
Sλ
Sλ ,

should evaluate to polynomials with positive integer coefficients.
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The so called q, t-Catalan Cn(q, t) was originally defined in [6] as

Cn(q, t) =
∑
µ`n

T 2
µMΠµ(q, t)Bµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
. I.14

Since it can be shown (see [6]) that for µ ` n

H̃µ[X; q, t ]
∣∣∣
S1n

= Tµ , I.15

we see from I.13 that we also have

Cn(q, t) = ∇en[X]
∣∣∣
S1n

. I.16

Thus Cn(q, t) should be the Hilbert series of the Diagonal Harmonic Alternants. For many
years the only known facts about Cn(q, t) remained what was shown in [6]. Namely

q(
n
2)Cn(q, 1/q) =

1
[n+ 1]q

[2n
n

]
q

I.17

and the recursion

Cn(q, 1) =
n∑
k=1

qk−1Ck−1(q, 1)Cn−k(q, 1) . I.18

It was shown in [12] by high powered methods of Algebraic Geometry that Cn(q, t) is a
polynomial, but the positivity remained an open problem to this time. Only recently the
polynomiality of Cn(q, t) was obtained by elementary methods in [3] by showing that the
operator ∇ acts polynomially on Schur functions. However, the recursion in I.18 suggested
a very interesting combinatorial approach. To see this let us denote by Dn the collection of
lattice paths Π in the n×n square which start at the origin (0, 0), proceed by NORTH and EAST

steps, remaining weakly above the diagonal and stop at (n, n). Let us also define as “area(Π)”
the number of lattice squares weakly below Π and strongly above the diagonal. Since we
may take Co(q, t) ≡ 1, from I.18 we can easily derive that we must have

Cn(q, 1) =
∑

Π∈Dn
qarea(Π) . I.19

All of this led to the problem of constructing an additional statistic “add(Π)” which would
extend I.19 to

Cn(q, t) =
∑

Π∈Dn
qarea(Π)tadd(Π) . I.20

We should note that since I.14 defines Cn(q, t) as a symmetric function in q, t, this new statistic
should also satisfy the identity ∑

Π∈Dn
qarea(Π) =

∑
Π∈Dn

qadd(Π) . I.21
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This problem was solved by J. Haglund in a recent paper [10] who conjectured that
a possible choice for add(Π) could be obtained as follows. Assume that a billiard ball shot
straight NORTH from below the path is reflected by an EAST step of the path headed straight
EAST. Moreover assume that a billiard ball headed EAST is reflected straight NORTH by the
main diagonal. This given, a billiard ball shot from the origin straight NORTH will be bounced
by a path π ∈ Dn successively into a zig-zag course (see figure below)

↑ path→ diagonal ↑ path→ diagonal ↑ path · · ·

until finally it hits the diagonal at the point (n, n). We can therefore associate to each path π

the bouncing path β(π) traveled by the billiard ball. Note that β(π) is completely determined
by the positions of its diagonal corners. If the successive diagonal corners of β(π) ((0, 0) and
(n, n) not included) are

(s1, s1) , (s2, s2) , · · · , (sk, sk)

with
0 < s1 < s2 < · · · < sk < n

then Haglund sets
maj(β(Π)) = n− s1 + n− s2 + · · ·+ n− sk .

Note that if we label the diagonal points

(1, 1) , (2, 2) , . . . , (n− 2, n− 2) , (n− 1, n− 1)

successively by the integers
n− 1 , n− 2 , . . . , 2 , 1 ,

then maj(β(Π)) may be simply obtained by summing the labels of the diagonal corners of
β(π). Now the additional statistic proposed by Haglund in [10] is simply add(Π) = maj(β(Π)).
More precisely it is conjectured in [10] that Cn(q, t) and the polynomial

Hn(q, t) =
∑

Π∈Dn
qarea(Π)tmaj(β(Π)) I.22
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are one and the same. Our main result here is a proof of this conjecture.

Our point of departure is a recursion for Hn(q, t) which immediately follows from the
definition of the statistic maj(β(Π)). To this end let us denote by Dn,s the subcollection of
paths in Dn which start with a string of s NORTH steps followed by an EAST step. It is then
shown in [10] that the polynomials

Hn,s(q, t) =
∑

Π∈Dn,s
qarea(Π)tmaj(β(Π)) . I.23

satisfy the recursion

Hn,s(q, t) = tn−sq(
s
2)
n−s∑
r=1

[r + s− 1
r

]
q
Hn−s,r(q, t) . I.24

Our approach in relating Hn(q, t) to Cn(q, t) is to use the symmetric function machinery de-
veloped in [3],[6] and [8] to show that the polynomials

Qn,s(q, t) = tn−sq(
s
2)∇en−s

[
X 1−qs

1−q
]∣∣∣
S1n−s

. I.25

satisfy the same recursion. More precisely, we will prove the following basic identity

Theorem I.1
For any integers s,m ≥ 1 we have

∇em
[
X 1−qs

1−q
]∣∣∣
S1m

=
m∑
r=1

[r + s− 1
r

]
q
tm−rq(

r
2)∇em−r

[
X 1−qr

1−q
]∣∣∣
S1m−r

. I.26

In particular, we must necessarily have

Hn,s(q, t) = tn−sq(
s
2)∇en−s

[
X 1−qs

1−q
]∣∣∣
S1n−s

. I.27

Note that the implication I.26 → I.27 is immediate since I.26 for m = n− s gives

Qn,s(q, t) = tn−sq(
s
2)
n−s∑
r=1

[r + s− 1
r

]
q
Qn−s,r(q, t) .

and we can easily verify that the initial conditions

Hn,n(q, t) = q(
n
2) = Qn,n(q, t)

are also satisfied.

This given, we necessarily have as corollary a proof of Haglund’s conjecture:
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Theorem I.2
∇en[X]

∣∣
S1n

=
∑

Π∈Dn
qarea(Π)tmaj(β(Π)) .

To see this note that I.25 with n→n+ 1 and s→1 gives

Hn+1,1(q, t) = tn∇ en[X]
∣∣∣
S1n

,

and the theorem follows since it is combinatorially evident from the definitions in I.22 and
1.23 that we also have

Hn+1,1(q, t) = tnHn(q, t) = tn
∑

Π∈Dn
qarea(Π)tmaj(β(Π)) .

We should mention that our efforts in establishing Theorem I.1 have yielded a number
of useful summation formulas involving generalized Pieri coefficients. These formulas should
have independent interest within the Theory of Symmetric Functions and we expect that
they will play a role in other positivity results connected with the operator ∇ and Macdonald
Polynomials. To give the flavor of these identities we will state here one that plays a crucial
role in our proof of I.26. For ν ⊆ µ a pair of partitions and f ∈ Λ let us set

dfµ,ν = < f H̃ν , H̃µ >∗ /h̃µh̃
′
µ .

The ∗-duality of the two bases {H̃µ}µ and {H̃µ/h̃µh̃
′
µ}µ then gives the expansion

f [X] H̃ν [X; q, t ] =
∑
µ⊇ν

H̃µ[X; q, t ] dfµ,ν ,

where the inclusion “µ ⊇ ν” is a consequence of the Macdonald “Pieri Rules” (see [14] VI
(6.7) and [5]). This given the following summation formula holds true in full generality.

Theorem I.3
For A ∈ Λ≤d and ν ` k we have∑

µ⊇ν
k≤|µ|≤k+d

dAµ,νTµΠµ = TνΠν

(
∇A
)[
MBν

]
. I.28

The proof of I.28 is also quite interesting in its own right. It makes crucial use of the
operators ∆F defined, for a given F ∈ Λ, by setting for the Macdonald basis {H̃µ}µ

∆F H̃µ = F [Bµ] H̃µ . I.29

We should mention that in [3] these operators have been shown to act integrally on Schur
functions, but otherwise they where studied only because they include ∇ as a special case.
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This given, we expect that these operators will turn out again to be a useful tool in further
work on Macdonald polynomials.

The contents of this paper are divided into five sections. In section 1 we make some
preliminary observations that reduce the recursion in I.26 to a collection of m separate equa-
tions. In section 2 we recall some basic identities from [3] and [8] which are instrumental in
our further developments. In section 3 we derive a number of summation formulas including
Theorem I.3. In section 4 we complete the proof of Theorem I.1. In section 5 we derive rep-
resentation theoretical implications of our results within the theory of Diagonal Harmonics
and conclude with a few observations about promising extensions of this work.

1. The polynomial identity

Note that from the combinatorial description of the homogeneous symmetric function
it follows that the expression hr

[
1 + q + · · · + qs−1

]
is the generating function of partitions

contained in an (s− 1)× r rectangle. Consequently we may also write[
r + s− 1

r

]
q

= hr
[

1−qs
1−q

]
.

This permits us to rewrite the recursion in I.26 in the form

∇em
[
X 1−qs

1−q
]∣∣∣
S1m

=
m∑
r=1

hr
[

1−qs
1−q

]
tm−rq(

r
2)∇em−r

[
X 1−qr

1−q
]∣∣∣
S1m−r

. 1.1

Now it is easily seen that both sides of this identity are polynomials in qs. Thus the validity
of 1.1 for all s ≥ 0 is equivalent to the polynomial identity

∇em
[
X 1−z

1−q
]∣∣∣
S1m

=
m∑
r=1

hr
[

1−z
1−q
]
tm−rq(

r
2)∇em−r

[
X 1−qr

1−q
]∣∣∣
S1m−r

. 1.2

This brings us to the problem of showing the equality of the polynomials on both sides
of 1.2. To see what this entails we need to take a closer look at the family of polynomials{
hr
[

1−z
1−q
]}
r≥0

. To this end note that the “Cauchy” identity

Ω[u (X − Y )] =
∏
i

1− u yi
1− uxi

=
∑
m≥0

umhm[X − Y ] 1.3

for X = 1
1−q and Y = z

1−q gives

∏
k≥0

1− uzqk
1− uqk = Ω

[
u 1−z

1−q
]

=
∑
m≥0

umhm
[

1−z
1−q
]
. 1.4

Since we obviously have

(1− u) Ω
[
u 1−z

1−q
]

= (1− zu) Ω
[
u q 1−z

1−q
]
,
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equating coefficients of um in this equation, from the right hand side of 1.4 we derive that

hm
[

1−z
1−q
]
− hm−1

[
1−z
1−q
]

= qmhm
[

1−z
1−q
]
− z qm−1hm−1

[
1−z
1−q
]
.

This yields the recursion
hm
[

1−z
1−q
]

= 1−z qm−1

1−qm hm−1

[
1−z
1−q
]

and since ho ≡ 1 we are finally led to the product formula

hm
[

1−z
1−q
]

= 1−z
1−q

1−zq
1−q2 · · · 1−zqm−1

1−qm =
(z; q)m
(q; q)m

. 1.5

Now it develops that the polynomial basis {(z; q)m}m≥0 has a “Taylor” formula that may be
written in the form

P (z) =
∑
r≥0

(z; q)r
qr

(q; q)r

(
δrqP (z)

∣∣
z=1

)
, 1.6

where δq is the q-difference operator defined by setting

δqP (z) =
P (z)− P (z/q)

z
. 1.7

Formula 1.6 is an immediate consequence of the identities

δkq (z; q)r
∣∣∣
z=1

=


0 if k 6= r ,

(q:q)r
qr if k = r

1.8

which in turn may be obtained by iterating the simple identity

δq(z; q)r =
(z; q)r − (z/q; q)r

z
=

1− qr
q

(z; q)r−1 .

These remarks lead us to the following beautiful conclusion

Theorem 1.1
The identity in 1.1 holds for all s,m ≥ 0 if and only if we have

δkq∇em
[
X 1−z

1−q
] ∣∣∣
S1m

∣∣∣
z=1

=
tm−k

qk
q(
k
2) ∇em−k

[
X 1−qk

1−q
] ∣∣∣
S1m−k

∀ k = 1, 2, . . . ,m . 1.9

Proof
Applying the expansion in 1.6 to the polynomial

P (z) = ∇em
[
X 1−z

1−q
] ∣∣∣
S1m

1.10

we obtain that

∇em
[
X 1−z

1−q
] ∣∣∣
S1m

=
m∑
r=1

(z; q)r
qr

(q, q)r

(
δrq∇em

[
X 1−z

1−q
] ∣∣∣
S1m

∣∣∣
z=1

)
. 1.11
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This given, the identities in 1.9 are simply obtained from 1.5 by equating the coefficients of
(z; q)k in 1.2 and 1.11 for k = 1, 2, . . . ,m.

Our next task is to eliminate the presence of z from the left hand side of 1.9. To this
end note that we may write δq in the form

δq = 1
z (1− E) 1.12

where E is the “q-shift” operator defined by setting

EP (z) = P (z/q) . 1.13

It then follows that we necessarily have

δkq =
(

1
z (1− E)

)k =
1
zk

(1− E)(1− qE) · · · (1− qk−1E) . 1.14

To see what this reduces to, note that the addition formula for the homogeneous symmetric
functions gives that

hk
[

1−z
1−q
]

=
k∑
i=0

hk−i
[

1
1−q
]
× hi

[ −z
1−q
]

=
k∑
i=0

hk−i
[

1
1−q
]
× (−z)iei

[
1

1−q
]

=
k∑
i=0

1
(q; q)k−i

(−z)i q(
i
2)

(q; q)i

and using 1.5 we may rewrite this in the form

(1− z)(1− zq) · · · (1− zqk−1) =
k∑
i=0

[ k
i

]
q
(−1)i q(

i
2) zi . 1.15

In particular 1.14 becomes

δkq =
1
zk

k∑
i=0

[ k
i

]
q
(−1)i q(

i
2) Ei , 1.16

and so for any polynomial P (z) we must have

δkqP (z)
∣∣∣
z=1

=
k∑
i=0

[ k
i

]
q
(−1)i q(

i
2) P (q−i) . 1.17

To see what becomes of the left hand side of 1.9 by means of this formula we observe that
the two operations δkq followed by “

∣∣
z=1

” and ∇ followed by “
∣∣
S1m

” can be applied in any order
because the “dual” Cauchy identity

em
[
X 1−z

1−q
]

=
∑
λ`m

Sλ
[
X

1−q
]
Sλ′ [1− z

]
,
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coupled with the special evaluation

Sλ′ [1− z] =

 (−z)r(1− z) if λ′ = (m− r, 1r) ,

0 otherwise ,
1.18

gives

em
[
X 1−z

1−q
]

=
m∑
r=1

S1m−r,r

[
X

1−q
]

(1− z) (−z)r−1 . 1.19

This given, we see from 1.17 that we have

δkq em
[
X 1−z

1−q
] ∣∣∣
z=1

=
k∑
i=0

[ k
i

]
q
(−1)i q(

i
2) em

[
X 1−q−i

1−q
]

=
k∑
i=0

[ k
i

]
q
(−1)m−i

q(
i
2)

qim
hm
[
X 1−qi

1−q
]
.

Thus we finally deduce that

δkq∇em
[
X 1−z

1−q
] ∣∣∣
z=1

∣∣∣
S1m

=
k∑
i=0

[ k
i

]
q
(−1)m−i

q(
i
2)

qim
∇hm

[
X 1−qi

1−q
] ∣∣∣
S1m

. 1.20

To further simplify this formula and obtain another equivalent formulation of 1.9 we need
to review some basic identities of the theory of Macdonald polynomials. We shall carry this
out in the next section where we shall also begin to establish some special cases of 1.9.

2. Auxiliary symmetric function identities.

In this section we recall some notation and results presented in the papers [3], [6] and
[8] and develop a collection of identities we will use in the proof of Theorem I.1.

We begin by recalling the following useful relations (see [6])

a) H̃µ[1; q, t ] = 1 , b) H̃µ[X; q, t ]
∣∣
Sm

= 1 , c) H̃µ[X; q, t ]
∣∣
S1m

= Tµ . 2.1

We should also note the following identities

h̃µ( 1
q ,

1
t ) = (−1)|µ|

h̃µ(q, t)
Tµt|µ|

, h̃′µ( 1
q ,

1
t ) = (−1)|µ|

h̃′µ(q, t)
Tµq|µ|

2.2

which are easily derived from the definitions in I.5. Morever we have ([6] Theoem 2,7)

Tµ ωH̃µ[X; 1
q ,

1
t ] = H̃µ[X; q, t ] . 2.3

We can now immediately derive the following two useful expansions
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Proposition 2.1

a) en
[
X
M

]
=
∑
µ`n

H̃µ[X; q, t ]
h̃µ(q, t)h̃′µ(q, t)

, b) hn
[
X
M

]
=
∑
µ`n

TµH̃µ[X; q, t, ]
h̃µ(q, t)h̃′µ(q, t)

. 2.4

In particular we see that

hm
[
X
M

]
= ∇em

[
X
M

]
. 2.5

Proof
In view of 2.1 a), formula 2.4 a) is none other than the the “Cauchy formula” in I.9

with Y = 1. This given, formula 2.4 b) is obtained by making the replacements q→ 1
q and t→ 1

t

in 2.4 a) and using the relations in 2.2 and 2.3.

We should note that the relation between the ∗-scalar product in I.10:

〈
pµ , pν

〉
∗ = (−1)|µ|−l(µ)χ(µ = ν) zµpµ[M ]

and the ordinary Hall scalar product

〈
pµ , pν

〉
= χ(µ = ν) zµ

can simply be written in the form

〈
P , Q

〉
∗ =

〈
ωφP , Q

〉
and

〈
P , Q

〉
=

〈
ωφ−1P , Q

〉
∗ 2.6

where for any symmetric polynomial P we set

φP [X] = P [MX] . 2.7

It will also be convenient to write

P ∗[X] = φ−1P [X] = P
[
X
M

]
. 2.8

Recalling that

Ω[X] =
∑
m≥0

hm[X] and Ω̃[X] = ωΩ[X] =
∑
m≥0

em[X] 2.9

we see from the summation

Ω̃
[
XY
M

]
=

∑
µ

Sλ[X]S∗λ′ [Y ] 2.10

that the pair of bases {Sλ}λ and {S∗λ′}λ are dual with respect to the ∗-scalar product.

The following identity plays a crucial role in our further developments.
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Theorem 2.1 (Macdonald Reciprocity)
For any pair of partitions µ and ν we have

H̃µ

[
1 + uDλ(q, t)

]∏
c∈µ(1− u tl′µ(c)qa

′
µ(c))

=
H̃λ

[
1 + uDµ(q, t)

]∏
c∈λ(1− u tl′λ(c)qa

′
λ

(c))
2.11

where we recall that we have set

Dµ(q, t) = MBµ(q, t)− 1 . 2.12

In particular cancelling the common factor (1−u) from both denominators and letting u = 1,
2.11 reduces to

H̃µ

[
MBλ(q, t)

]
Πµ(q, t)

=
H̃λ

[
MBµ(q, t)

]
Πλ(q, t)

. 2.13

Formula 2.11 may be derived from an identity proved in Macdonald’s original paper [13].
However, a simpler and shorter proof is given in [8].

Note that using I.9 with Y = (1− t)(1− qk) we obtain that

en
[
X (1−qk)

1−q
]

=
∑
µ`n

H̃µ[X; q, t]H̃µ[(1− t)(1− qk); q, t ]
h̃µ(q, t)h̃′µ(q, t)

. 2.14

Now the reciprocity formula yields the following special evaluation

Proposition 2.2

H̃µ[(1− t)(1− qk); q, t ] = Πµ(q, t)hk[(1− t)Bµ(q, t) ] (1− qk) . 2.15

Proof
It is well known and easy to show from Macdonald’s work (see [14] VI (4.8)) that

H̃(k)[X; q, t ] = (q; q)k hk
[
X

1−q
]
. 2.16

Thus 2.11 with λ = (k) gives

H̃µ

[
MB(k)(q, t)

]
Πµ(q, t)

=
(q; q)k hk

[ (1−t)(1−q)
1−q Bµ(q, t)

]
Π(k)(q, t)

, 2.17

and it is easily seen that

B(k)(q, t) =
1− qk
1− q and Π(k)(q, t) = (q; q)k−1 .

Substituting this in 2.16 reduces it to

H̃µ[(1− t)(1− qk); q, t)
]

Πµ(q, t)
=

(q; q)k hk
[
(1− t)Bµ(q, t)

]
(q; q)k−1
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which is another way of writing 2.15.

To work on both sides of 1.9, and in view of 1.20, we need the following two general
identities:

Proposition 2.3

∇em
[
X 1−qk

1−q
] ∣∣∣
S1m

= (1− qk)
∑
µ`m

Tµ
2Πµ(q, t)hk

[
(1− t)Bµ

(
q, t
)]

h̃µ(q, t)h̃′µ(q, t)
. 2.18

∇hm
[
X 1−qk

1−q
] ∣∣∣
S1m

= (−t)m−kqk(m−1)(1− qk)
∑
µ`m

Tµ
2Πµ(q, t)ek

[
(1− t)Bµ

(
1
q ,

1
t

)]
h̃µ(q, t)h̃′µ(q, t)

. 2.19

Proof
Using 2.15 in 2.14 we obtain

em
[
X (1−qk)

1−q
]

=
∑
µ`m

H̃µ[X; q, t ]Πµ(q, t)hk[(1− t)Bµ(q, t) ] (1− qk)
h̃µ(q, t)h̃′µ(q, t)

.

Applying ∇ to both sides, 2.18 immediately follows from 2.1 c) upon equating coefficients of
S1m . On the other hand, making the replacements t→ 1

t , q→ 1
q and using 2.2 and 2.3 we get

em
[
X (1−q−k)

1−q−1

]
=

∑
µ`m

ωH̃µ[X;q,t ]
Tµ

(−1)m−1Πµ(q,t)
Tµ

hk
[
(1− 1

t )Bµ
(

1
q ,

1
t

)]
(1− q−k)

h̃µ(q,t)h̃′µ(q,t)

T 2
µ(qt)m

so that applying ω to both sides and making the appropriate simplifications we finally obtain

1
qm(k−1)

hm
[
X 1−qk

1−q
]

= (−qt)m
∑
µ`m

H̃µ[X; q, t ]Πµ(q, t)hk
[
(t− 1)Bµ

(
1
q ,

1
t

) ]
(1− qk)

(tq)kh̃µ(q, t)h̃′µ(q, t)
.

Since we also have
hk[(t− 1)Bµ

(
1
q ,

1
t

)
] = (−1)kek

[
(1− t)Bµ

(
1
q ,

1
t

) ]
,

we finally obtain that

∇hm
[
X 1−qk

1−q
]

= (−t)m−kqk(m−1)(1− qk)
∑
µ`m

TµH̃µ[X; q, t ]Πµ(q, t)ek
[
(1− t)Bµ

(
1
q ,

1
t

)]
h̃µ(q, t)h̃′µ(q, t)

,

and 2.19 immediately follows by equating coefficients of S1n . We can thus summarize the
results of this section with the following

Theorem 2.2
The recursion in I.26 will hold true for all s,m if and only if for all 1 ≤ k ≤ m we have

k∑
i=1

[ k
i

]
q
q(
i
2)−i (1− qi) tm−i

∑
µ`m

T 2
µ Πµ

h̃µh̃′µ
ei[(1− t)B̃µ] =

tm−k

qk
q(
k
2) ∇em−k

[
X 1−qk

1−q
] ∣∣∣
S1m−k

=
tm−k

qk
q(
k
2) (1− qk)

∑
ν`m−k

Tν
2Πν(q, t)hk

[
(1− t)Bν

(
q, t
)]

h̃ν(q, t)h̃′ν(q, t)
,

2.20

where for convenience, here and after for any expression E = E(q, t) we set Ẽ = E
(

1
q ,

1
t

)
.
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Proof
Substituting the right hand side of 2.19 for k→i in 1.20 and making some simple

cancellations shows that the left hand sides of 2.20 and 1.9 are identical. Thus the assertion
follows from Theorem 1.1 and 2.18.

To motivate some of the preparatory work we still need to do we will take a close
look at the special case k = 1 of 2.20. With this specialization 2.20 reduces to

∑
µ`m

T 2
µ Πµ

h̃µh̃′µ
B̃µ =

∑
ν`m−1

T 2
ν Πν

h̃ν h̃′ν
Bν . 2.21

Although an equivalent identity was already shown in [3] (Th. 4.2), we shall nevertheless
outline the proof here. The reader is referred to [3] for the missing details. To begin with it
was shown in [6] that we have the summation formula

Bµ(q, t) =
∑
ν→µ

cµν(q, t) 2.22

where “ν→µ” is to mean that the sum is carried out over partitions ν obtained by removing
one of the corners of µ and the coefficients cµν(q, t) are simply those appearing in the formula

h⊥1 H̃µ[X; q, t ] =
∑
ν→µ

cµν(q, t)H̃ν [X; q, t ] . 2.23

Here “h⊥1 ” denotes the operator which is adjoint to multiplication by h1 with respect to
the Hall scalar product. There are explicit expressions for the cµν(q, t) which may be easily
derived from the Pieri rules for Macdonald polynomials. Using these expressions it is shown
in [3] that we have

cµν( 1
q ,

1
t ) = cµν(q, t)

Tν
Tµ

. 2.24

Thus making the replacements q→1/q, t→1/t in 2.22 we obtain that

Bµ( 1
q ,

1
t ) =

∑
ν→µ

cµν(q, t)
Tν
Tµ

. 2.25

Substituting this in the left hand side of 2.21 gives

∑
µ`m

T 2
µ Πµ

h̃µh̃′µ
B̃µ =

∑
µ`m

T 2
µ Πµ

h̃µh̃′µ

∑
ν→µ

cµν(q, t)
Tν
Tµ

=
∑

ν`m−1

Tν

h̃ν h̃′ν

∑
µ←ν

h̃ν h̃
′
ν

h̃µh̃′µ
cµν(q, t)TµΠµ

=
∑

ν`m−1

Tν

h̃ν h̃′ν

∑
µ←ν

d
e∗1
µν(q, t)TµΠµ

2.26
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where the coefficients

d
e∗1
µν(q, t) =

h̃ν h̃
′
ν

h̃µh̃′µ
cµν(q, t) 2.27

are precisely those occuring in the Pieri rule

e∗1[X] H̃ν [X; q, t ] =
∑
µ←ν

d
e∗1
µν(q, t) H̃µ[X; q, t ] . 2.28

Now it is easy to see that we have

Πµ(q, t) = Πν(q, t)
(
1− Tµ

Tν

)
,

hence we may write ∑
µ←ν

d
e∗1
µν(q, t)TµΠµ = TνΠν

∑
µ←ν

d
e∗1
µν(q, t) TµTν

(
1− Tµ

Tν

)
. 2.29

Now it is shown in [3] (see formula 1.40) that we have (for k ≥ 1)

∑
µ←ν

d
e∗1
µν(q, t)

(
Tµ
Tν

)k
=

(−1)k−1

M
ek−1

[
Dν(q, t)

]
,

and using this formula for k = 1, 2 the summation in 2.29 becomes∑
µ←ν

d
e∗1
µν(q, t)TµΠµ = TνΠν Bν . 2.30

Applying this identity in 2.26 proves 2.21 and the case k = 1 of 2.20.

The next item in our agenda is to develop summation formulas analogous to 2.25 and
2.30 that will help us to reduce summations over µ ` m to summations over ν ` m− k as will
be necessary to establish 2.20 for a general k ≤ m.

The case k = m of 2.20 is also quite interesting although the argument is entirely
special to this case. Note that here we must show that

δmq ∇em
[
X 1−z

1−q
] ∣∣∣
S1m

∣∣∣
z=1

=
1
qm

q(
m
2 ) . 2.31

Now it follows from the definition of Macdonald polynomials (see [14] VI 4.7) that the Schur
function expansion of the integral forms may be written in the form

Jµ[X; q, t ] =
∑
λ≤µ

Sλ
[
X
]
ξλ,µ(q, t) .

Thus I.7 gives
H̃µ[X; q, t ] =

∑
λ≤µ

Sλ
[

X
1−1/t

]
ξλ,µ(q, 1/t) tn(µ),
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or better (if µ ` m)
H̃µ[X; q, t ] =

∑
λ≤µ

(−t)mSλ′
[
X

1−t
]
ξλ,µ(q, 1/t) tn(µ).

Making the plethystic substitution X→(1− t)(1− z) we get

H̃µ[(1− t)(1− z); q, t ] =
∑
λ≤µ

(−t)mSλ′ [1− z] ξλ,µ(q, 1/t) tn(µ). 2.32

Since λ ≤ µ in dominance implies l(λ) ≥ l(µ), the equality in 2.32, using 1.18, may be rewritten
as

H̃µ[(1− t)(1− z); q, t ] = (−t)|µ|
m−l(µ)∑
r=0

(−z)r(1− z) ξ(r+1,1m−r−1),µ(q, 1/t) tn(µ).

The only thing that matters here is that H̃µ[(1− t)(1− z); q, t ] is a polynomial in z of degree at
most m− l(µ) + 1 and it is of degree m only when µ = (m). Since I.9 for Y = (1− t)(1− z) gives

δkq∇em
[
X 1−z

1−q
]

=
∑
µ`m

Tµ H̃µ[X; q, t ]
h̃µh̃′µ

δkq H̃µ[(1− t)(1− z); q, t ] , 2.33

we see that, for k = m, 2.33 reduces to

δmq ∇em
[
X 1−z

1−q
] ∣∣∣
S1m

∣∣∣
z=1

=
q2(m2 )

h̃(m)h̃
′
(m)

δmq H̃(m)[(1− t)(1− z); q, t ]
∣∣∣
z=1

.

Now

h̃m =
m∏
i=1

(qi−1 − t) and
H̃(m)[(1− t)(1− z); q, t ]

h̃′µ
= hm

[ (1−t)(1−z)
1−q

]
,

so to verify 2.31 we need only check that

q2(m2 )∏m
i=1(qi−1 − t) δmq hm

[ (1−t)(1−z)
1−q

]∣∣∣
z=1

=
1
qm

q(
m
2 ) . 2.34

However, because of the Schur function expansion

hm
[ (1−t)(1−z)

1−q
]

=
m−1∑
r=0

Sm−r,1r
[

1−t
1−q
]
(−z)r(1− z) ,

2.34 reduces to

q2(m2 )∏m
i=1(qi−1 − t) (−1)mS1m

[
1−t
1−q
](

1− 1
qm

)(
1− 1

qm−1

)
· · ·
(
1− 1

q

)
=

1
qm

q(
m
2 ) ,

or better

S1m
[

1−t
1−q
]

=
∏m
i=1(qi−1 − t)

(1− q)(1− q2) · · · (1− qm)
.
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But this immediately follows from 1.5 upon setting z = 1/t.

3. Some summation formulas for general Pieri coefficients.

For a given f ∈ Λ≤d and µ ` m, let cf
⊥
µν (q, t) denote the coefficients appearing in the

formula
f⊥H̃µ[X; q, t ] =

∑
ν⊆µ

m−d≤|ν|≤m

cf
⊥

µν (q, t) H̃ν [X; q, t ] , 3.1

where f⊥ denotes the operator Hall-adjoint to multiplication by f . We may also proceed
“dually” and for ν ` k, define the general Pieri coefficients dfµν(q, t) via the formula

f [X]H̃ν [X; q, t ] =
∑
µ⊇ν

k≤|µ|≤k+d

dfµν(q, t) H̃µ[X; q, t ] . 3.2

Now, using the ∗-duality of the bases {H̃µ}µ and {H̃µ/h̃µh̃
′
µ}µ we then immediately derive that

cf
⊥

µν (q, t) = 〈f⊥H̃µ , H̃ν〉∗/h̃ν h̃′ν .

Passing to the Hall scalar product by means of 2.6 this may be rewritten as

cf
⊥

µν (q, t) h̃ν h̃′ν = 〈f⊥H̃µ , ω φ H̃ν〉
= 〈H̃µ , f ω φ H̃ν〉
= 〈H̃µ , ω φ

(
ωf∗ H̃ν

)
〉

= 〈H̃µ , ωf
∗ H̃ν〉∗ .

3.3

Since by the definition in 3.2 we should have

(ωf∗)H̃ν [X; q, t ] =
∑
µ⊇ν

k≤|µ|≤k+d

dωf
∗

µν (q, t) H̃µ[X; q, t ] 3.4

we can deduce from 3.3 the important identity

cf
⊥

µν (q, t) h̃ν h̃′ν = dωf
∗

µν (q, t) h̃µh̃′µ , 3.5

which may be viewed as a general form of 2.27.

Before we can state and prove our first summation formula we must recall what is
perhaps one of the most striking results in the theory of Macdonald polynomials. To this
end, let us recall that the “translation by one” operator T1 is defined by setting for any P ∈ Λ

T1 P [X] = P [X + 1] . 3.6

Note that since Sν [1 ] 6= 0 only when ν = (k) we have the Schur function expansion

Sλ[X + 1] =
∑
ν⊆λ

Sµ/ν [X]Sν [1 ] =
∑
k≥0

Sµ/(k)[X] , 3.7
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which may also be written in the form

T1 Sλ =
∑
k≥0

h⊥k Sλ .

This gives

T1 =
∑
k≥0

h⊥k . 3.8

Similarly, we show that the translation by −ε defined by setting :

T−ε = P [X − ε ] 3.9

has the expansion

T−ε =
∑
k≥0

e⊥k . 3.10

This given, the following remarkable result was proved in [8]

Theorem 3.1
Let

Π = ∇−1T−ε 3.11

and for a given symmetric function P set

ΠP = ΠP = ∇−1P [X − ε ] .

Then we have 〈
P , H̃µ[X + 1; q, t ]

〉
∗ = ΠP

[
Dµ(q, t)

]
. 3.12

This identity yields our first summation formula.

Theorem 3.2
For f ∈ Λ≤d and µ ` m we have∑

ν⊆µ
m−d≤|ν|≤m

cf⊥µν (q, t) = F [Dµ] 3.13

with
F [X] = ∇−1

(
(ωf)

[
X−ε
M

])
. 3.14

Proof
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This is an immediate corollary of Theorem 3.1. Indeed 3.12 for P = ωf∗ gives

Πωf∗
[
Dµ(q, t)

]
=

〈
ωf∗ , T1H̃µ

〉
∗ =

〈
f , T1H̃µ

〉
=

〈
1 , f⊥ T1H̃µ

〉
=

〈
1 , T1f

⊥H̃µ

〉
(using 3.1) =

∑
ν⊆µ

m−d≤|ν|≤m

cf⊥µν (q, t)
〈
1 , T1H̃ν

〉
.

3.15

Note that 3.8 and 2.1 b) give

〈
1 , T1H̃ν

〉
=
∑
k≥0

〈
1 , h⊥k H̃ν

〉
=
∑
k≥0

〈
hk , H̃ν

〉
= 1 ,

and using this in 3.15 we obtain 3.13 with 3.14.

Remark 3.1
We should note that the sequence of equalities〈

ω(f⊥P ) , Q
〉

=
〈
(f⊥P ) , ωQ

〉
=
〈
P , fωQ

〉
=
〈
ωP , (ωf)Q

〉
=
〈
(ωf)⊥ωP , Q

〉
valid for any f, P,Q ∈ Λ, shows that for any f, P ∈ Λ we have

ω (f⊥P ) = (ωf)⊥ωP .

Proposition 3.1

For

f [X; q, t ] =
∑
λ

cλ(q, t)Sλ[X]

set

f̃ [X; q, t ] =
∑
λ

cλ
(

1
q ,

1
q

)
Sλ[X] .

This given, we have

cf
⊥

µν

(
1
q ,

1
t

)
=

Tν
Tµ

c(ωf̃)⊥

µν (q, t) . 3.16



The q,t-Catalan September 26, 2000 22

Proof
By definition for f ∈ Λ≤d and µ ` m we have

f⊥ H̃µ =
∑
ν⊆µ

m−d≤|ν|≤m

cf⊥µν (q, t) H̃ν .

Applying ω to both sides and using the above Remark we get

(ωf)⊥ ωH̃µ =
∑
ν⊆µ

m−d≤|ν|≤m

cf⊥µν (q, t)ωH̃ν ,

and making the substitutions q→ 1
q , t→ 1

t yields

(ωf̃)⊥ ωH̃µ

[
X; 1

q ,
1
t

]
=

∑
ν⊆µ

m−d≤|ν|≤m

cf⊥µν ( 1
q ,

1
t )ωH̃ν

[
X; 1

q ,
1
t

]
.

Multiplying both sides by Tµ and using 2.3 we finally obtain that

(ωf̃)⊥ H̃µ[X; q, t ] =
∑
ν⊆µ

m−d≤|ν|≤m

cf⊥µν ( 1
q ,

1
t )
Tµ
Tν

H̃ν [X; q, t ] . 3.17

On the other hand, again by definition we should have

(ωf̃)⊥ H̃µ[X; q, t ] =
∑
ν⊆µ

m−d≤|ν|≤m

c(ωf̃)⊥

µν (q, t) H̃ν [X; q, t ] . 3.18

Comparing 3.17 and 3.18 gives 3.16 as asserted.

This result has the following immediate Corollary.

Proposition 3.2
If for some µ ` m and f ∈ Λ≤d we have

∑
ν⊆µ

m−d≤|ν|≤m

cf⊥µν (q, t) = F [Dµ] , 3.19

then ∑
ν⊆µ

m−d≤|ν|≤m

c(ωf̃)⊥

µν (q, t)Tν = Tµ F̃ [D̃µ] . 3.20
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Proof
Making the substitutions q→ 1

q , t→ 1
t on both sides of 3.19 and using 3.16 we get 3.20

since
F [Dµ]

∣∣∣
q→1/q
t→1/t

= F̃ [D̃µ] .

Proposition 3.3
If we define the operator ∇̃ by setting for the Schur function basis

∇̃Sλ = (∇Sλ)
∣∣∣
q→1/q
t→1/t

then

∇̃ = ω∇−1ω . 3.21

Proof
From the definition in I.8 we derive that

∇̃ H̃µ[X; 1
q ,

1
t ] = ∇H̃µ

∣∣∣
q→1/q
t→1/t

=
1
Tµ

H̃µ[X; 1
q ,

1
t ] ,

and this is equivalent to

ω∇̃ω ωH̃µ[X; 1
q ,

1
t ] =

1
Tµ

ω H̃µ[X; 1
q ,

1
t ] .

Multiplying both sides by Tµ and using 2.3 proves 3.21.

We are now ready to establish the following summation formula

Theorem 3.3
For g ∈ Λ≤d and µ ` m we have∑

ν⊆µ
m−d≤|ν|≤m

c(ωg)⊥

µν (q, t)Tν = TµG[D̃µ] 3.22

with

G[X] = ω∇
(
g
[
X+1

M̃

])
. 3.23

Proof
Using Proposition 3.2 we see that Theorem 3.2 implies 3.20 that is

∑
ν⊆µ

m−d≤|ν|≤m

c(ωf̃ )⊥

µν (q, t)Tν = Tµ F̃ [D̃µ] . 3.24
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Making the replacement f̃→g this gives 3.22 with G = F̃
∣∣
f̃→g and F given by 3.14. In other

words
G = ∇̃−1

(
(ωf̃)

[
X−ε
M̃

]∣∣
f̃→g

= ∇̃−1
(
(ωg)

[
X−ε
M̃

])
(using 3.21) → = ω∇ω

(
(ωg)

[
X−ε
M̃

])
(using I.2) → = ω∇

(
(ωg)

[−εX−ε
M̃

])
(again using I.2) → = ω∇

(
g
[
X+1

M̃

])
as desired.

Our final effort in this section is to establish formula I.28:
Proof of Theorem I.3

By linearity we need only prove the identity∑
µ⊇ν
|µ|=k+d

dAµ,νTµΠµ = TνΠν

(
∇A
)[
MBν

]
3.25

for A homogeneous of degree d and ν a partition of k. To begin, the case d = 0 is trivial since
∇1 = 1 and 3.25 reduces to TνΠν = TνΠν .

For d ≥ 1 our point of departure is the definition in 3.2 with f→A and X→MBλ for
some arbitrary partition λ. We thus have∑

µ⊇ν
|µ|=k+d

dAµ,νH̃µ[MBλ; q, t ] = A
[
MBλ

]
H̃ν [MBλ; q, t ] ,

and a double use of reciprocity (eq. 2.11) then gives

∑
µ⊇ν
|µ|=k+d

dAµ,ν Πµ
H̃λ[MBµ; q, t ]

Πλ
= A

[
MBλ

]
Πν

H̃λ[MBν ; q, t ]
Πλ

. 3.26

This identity may be given a more stricking form by means of the operators ∆F mentioned
in the introduction. Indeed, by chosing F = φA in I.29, and cancelling the common factor
Πλ, formula 3.26 may be rewritten as∑

µ⊇ν
|µ|=k+d

dAµ,ν Πµ H̃λ[MBµ; q, t ] = Πν

(
∆φAH̃λ

)
[MBν ; q, t ] ,

which, by linearity implies that for all G ∈ Λ:∑
µ⊇ν
|µ|=k+d

dAµ,ν ΠµG[MBµ] = Πν

(
∆φAG

)
[MBν ] . 3.27
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Comparing the left hand sides of 3.25 and 3.27, we see that, to prove 3.25 when µ ` m and
m = k + d we should take G[X] = em[XM ] = e∗m. With this choice 3.27 becomes∑

µ⊇ν
|µ|=k+d

dAµ,ν Πµ Tµ = Πν

(
∆φAe

∗
m

)
[MBν ] . 3.28

We are thus left with the task of showing that for any A ∈ Λ=d , ν ` k and m = k + d we have(
∆φAe

∗
m

)
[MBν ] = Tν

(
∇A
)
[MBν ] . 3.29

To begin with, note that from 2.4 a) and the definition of ∆φA we get that

∆φAe
∗
m =

∑
µ`m

A[MBµ]H̃µ

h̃µh̃′µ
. 3.30

To evaluate this we seek an f ∈ Λ≤d which gives

A[MBµ] =
∑
α⊆µ

m−d≤|α|≤m

cf
⊥

µα . 3.31

Note that Theorem 3.2 implies f should be chosen so that

A[MBµ] = F [Dµ] 3.32

with
F = ∇−1T−ε ωf∗ . 3.33

Now to assure 3.32 we must take

F [X] = A[X + 1] = T1A .

With this choice 3.33 becomes
T1A = ∇−1T−ε ωf∗ ,

yielding
ωf∗ = Tε∇T1A . 3.34

Keeping this choice in mind, let us now substitute 3.31 in 3.30 and get

∆φAe
∗
m =

∑
µ`m

H̃µ

h̃µh̃′µ

∑
α⊆µ

m−d≤|α|≤m

cf
⊥

µα .

A change of order of summation combined with 3.5 then gives

∆φAe
∗
m =

d∑
r=0

∑
α`m−r

1
h̃αh̃′α

∑
µ⊇α
µ`m

H̃µd
ωf∗

µα . 3.35
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Now recall that
dωf

∗

µα =
〈
H̃µ , ωf

∗H̃α

〉
∗/h̃µh̃

′
µ , 3.36

and taking into account that µ ` m and α ` m − r, we see that only the homogeneous
component of ωf∗ of degree degree r will contribute to the right hand side of 3.36. Denoting
this component by “ωf∗r ”, 3.36 becomes

dωf
∗

µα =
〈
H̃µ , ωf

∗ ∣∣
r
H̃α

〉
∗/h̃µh̃

′
µ = d

ωf∗r
µα . 3.37

This allows us to rewrite 3.35 in the form

∆φAe
∗
m =

d∑
r=0

∑
α`m−r

1
h̃αh̃′α

∑
µ⊇α
µ`m

H̃µd
ωf∗r
µα

=
d∑
r=0

∑
α`m−r

1
h̃αh̃′α

ωf∗r H̃α

=
d∑
r=0

ωf∗r
∑

α`m−r

1
h̃αh̃′α

H̃α

=
d∑
r=0

ωf∗r em−r
[
X
M

]
.

Thus (
∆φAe

∗
m

)[
MBν

]
=

d∑
r=0

ωf∗r
[
MBν

]
em−r

[
Bν
]
. 3.38

Now recall that since ν ` k we shall have em−r
[
Bν
]
6= 0 only when m − r ≤ k. Since m = k + d

this gives r ≥ d, reducing 3.38 to a single term(
∆φAe

∗
m

)[
MBν

]
= ωf∗d

[
MBν

]
ek
[
Bν
]

= ωf∗d
[
MBν

]
Tν . 3.39

However, since ∇ maps each subspace Λ=r onto itself and both translation operators T1, Tε
differ from the identity operator by degree lowering operators (see 3.8 and 3.9), we see from
3.34 that

ωf∗d = ∇A .

This reduces 3.39 to 3.29 and completes our proof.
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4. Proof of the basic recursion.
Let us recall that the developments in sections 1 and 2 have reduced the proof of the

recursion in I.26 to a verification of the identity in 2.20 for 1 ≤ k ≤ m . That is

k∑
i=1

[ k
i

]
q
q(
i
2)−i (1− qi) tm−i

∑
µ`m

T 2
µ Πµ

h̃µh̃′µ
ei[(1− t)B̃µ] =

=
tm−k

qk
q(
k
2) ∇em−k

[
X 1−qk

1−q
] ∣∣∣
S1m−k

.

4.1

We shall begin by working with the expression

Em,i(q, t) =
∑
µ`m

T 2
µ Πµ

h̃µh̃′µ
ei[(1− t)B̃µ] . 4.2

The idea is to make use of the summation formulas derived in section 3 to decompose 4.2
into a sum of expressions involving partitions of size smaller than m.

We shall thus begin to look for a g ∈ Λ≤i such that

Tµ ei[(1− t)B̃µ] =
∑
ν⊆µ

m−i≤|ν|≤m

c(ωg)⊥

µ,ν (q, t)Tν . 4.3

From Theorem 3.3 we derive that we must then have

ei[(1− t)B̃µ] = ω∇
(
g
[
X+1

M̃

])[
M̃ B̃µ − 1

]
.

This is assured if we solve for g in

ω∇
(
g
[
X+1

M̃

])
= ei

[
(1− t)X+1

M̃

]
.

Now, applying ω to both sides we get

∇
(
g
[
X+1

M̃

])
= ei

[
(1− t)−εX+1

M̃

]
= (qt)i ei

[−εX+1
1−q

]
= (qt)i

i∑
r=0

er
[−εX

1−q
]
ei−r

[
1

1−q
]
,

which may be rewritten as

∇
(
g
[
X+1

M̃

])
= (qt)i

i∑
r=0

hr
[
X

1−q
]
q(
i−r

2 )hi−r
[

1
1−q
]
.
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We can now apply ∇−1 to both sides and obtain

g
[
X+1

M̃

]
= (qt)i

i∑
r=0

q−(r2)hr
[
X

1−q
]
q(
i−r

2 )hi−r
[

1
1−q
]
,

and the relation (
i−r
2

)
−
(
r
2

)
=

(
i
2

)
+ r(1− i)

gives

g
[
X+1

M̃

]
= (qt)i q(

i
2)

i∑
r=0

hr
[
q1−iX
1−q

]
hi−r

[
1

1−q
]

= (qt)i q(
i
2) hi

[
q1−iX+1

1−q
]
.

Now, setting X→X
qt − 1, the following manipulations

g∗ = g
[
X
M

]
= (qt)i q(

i
2) hi

[ q1−i(Xqt−1)+1

1−q
]

= (qt)i q(
i
2) hi

[ X

qit
+1− q

qi

1−q
]

= q(
i
2)−i2+i hi

[X+t(qi−q)
1−q

]
yield that

g∗ = q−(i2) hi
[X+t(qi−q)

1−q
]
. 4.4

With this choice of g let us now substitute 4.3 into 4.2 and obtain (using 3.5)

Em,i(q, t) =
∑
µ`m

TµΠµ

h̃µh̃′µ

∑
ν⊆µ

m−i≤|ν|≤m

c(ωg)⊥

µ,ν Tν

=
i∑

r=0

∑
ν`m−r

Tν

h̃ν h̃′ν

∑
µ⊇ν
µ`m

d g
∗

µ,νTµΠµ .

4.5

But as we observed once before, for µ ` m and ν ` m− r only the homogeneous component of
degree r of g∗ , which we denote g∗r , can contribute to the scalar product in the formula

d g
∗

µ,ν =
〈
H̃µ , g

∗H̃µ

〉
∗/h̃µh̃

′
µ .

We may thus rewrite 4.5 in the form

Em,i(q, t) =
i∑

r=0

∑
ν`m−r

Tν

h̃ν h̃′ν

∑
µ⊇ν
µ`m

d
g∗r
µ,νTµΠµ .
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We can now apply Theorem I.3 to get

Em,i(q, t) =
i∑

r=0

∑
ν`m−r

T 2
ν Πν

h̃ν h̃′ν

(
∇g∗r

)
[MBν ] . 4.6

To compute ∇g∗r we go back to 4.4 and obtain

g∗r = q−(i2) hr
[
X

1−q
]
hi−r

[ t(qi−q)
1−q

]
,

which gives

∇g∗r = q−(i2) q(
r
2)hr

[
X

1−q
]
hi−r

[ t(qi−q)
1−q

]
= q−(i2) q(

r
2)(−tq)i−rhr

[
X

1−q
]
ei−r

[
1−qi−1

1−q
]

= q−(i2) q(
r
2)q(

i−r
2 )(−tq)i−rhr

[
X

1−q
][
i−1
i−r
]
q
.

Thus we finally have

(
∇g∗r

)
[MBν ] = q−(i2) q(

r
2)q(

i−r
2 )(−tq)i−rhr

[
(1− t)Bν

][
i−1
i−r
]
q
. 4.7

Substituting 4.7 in 4.6 we get

Em,i(q, t) = q−(i2)
i∑

r=1

(−tq)i−rq(
r
2)q(

i−r
2 ) [ i−1

i−r
]
q

∑
ν`m−r

T 2
ν Πν

h̃ν h̃′ν
hr
[
(1− t)Bν

]
( by 2.18 →) = q−(i2)

i∑
r=1

(−tq)i−rq(
r
2)q(

i−r
2 ) [ i−1

i−r
]
q

1
1−qr ∇em−r

[
X 1−qr

1−q
]∣∣∣
S1m−r

.

This given the left hand side of 4.1 becomes

LHS =
k∑
i=1

[
k
i

]
q
q(
i
2)−i (1− qi) tm−iq−(i2)

i∑
r=1

(−tq)i−rq(
r
2)q(

i−r
2 )[ i−1

i−r
]
q

1
1−qr∇em−r

[
X 1−qr

1−q
]∣∣∣
S1m−r

=
k∑
r=1

q(
r
2)−r tm−r

1−qr ∇em−r
[
X 1−qr

1−q
]∣∣∣
S1m−r

k∑
i=r

[
k
i

]
q

(1− qi) q(
i−r

2 ) [ i−1
i−r
]
q
(−1)i−r .

=
k∑
r=1

q(
r
2)−r tm−r

1−qr ∇em−r
[
X 1−qr

1−q
]∣∣∣
S1m−r

k−r∑
u=0

[
k
r+u

]
q

(1− qr+u) q(
u
2)
[
r+u−1
u

]
q
(−1)u .

4.8
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Denoting by S(k, r) the sum over u, we see that

S(k, r) =
k−r∑
u=0

[k]q!(1− qr+u)
[k − r − u]q![r + u]q!

q(
u
2) [r + u− 1]q!

[u]q![r − 1]q!
(−1)u

= (1− q)
k−r∑
u=0

[k]q!
[k − r − u]q!

q(
u
2) 1

[u]q![r − 1]q!
(−1)u

= (1− qr)
[
k
r

]
q

k−r∑
u=0

[k − r]q!
[k − r − u]q![u]q!

q(
u
2)(−1)u

= (1− qr)
[
k
r

]
q

k−r∑
u=0

[
k−r
u

]
q
q(
u
2)(−1)u

= (1− qr)
[
k
r

]
q

k−r−1∏
u=0

(1− qu) =
{

1− qk if r = k
0 otherwise .

Substituting this in 4.8 reduces it to

LHS = q(
k
2)−k t

m−r

1− qk ∇em−k
[
X 1−qk

1−q
]∣∣∣
S1m−k

(1− qk) ,

which equals the right hand side of 4.1. This proves 4.1 and completes our proof of the
recursion in I.26.

5. Towards a sectionalization of Diagonal Harmonics.

Let us recall that the space DHn of “Diagonal Harmonics” consists of the solutions
to the system of differential equations

n∑
i=1

∂hxi∂
k
yiP (x1, x2, . . . , xn; y1, y2, . . . , yn) = 0 1 ≤ h+ k ≤ n . 5.1

It is not difficult to show (see [11]) that the elements of DHn are polynomials of total degree
bounded by

(
n
2

)
. Moreover, since the equations in 5.1 are bihomogeneous, the space DHn has

a natural bigrading which decomposes it into the direct sum

DHn =
⊕

0≤h+k≤(n2)
Hh,k

(
DHn

)
,

where Hh,k
(
DHn

)
consists of the elements of DHn which are bihomogeneous of degree h in

x1, x2, . . . , xn and degree k in y1, y2, . . . , yn. Note that since the differential equations in 5.1 are
invariant under the “diagonal action” of Sn (†) we see that each subspace Hh,k

(
DHn

)
is itself

(†) This is the action defined by setting for σ ∈ Sn : σP = P (xσ1 , . . . , xσn ; yσ1 , . . . , yσn) .
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invariant under this action. Denoting by char(Hh,k
(
DHn

)
) the corresponding character and

by Fchar(Hh,k
(
DHn

)
) the Frobenius image of this character, then the symmetric function

DHn[X; q, t ] =
∑

0≤h+k≤(n2)
thqqFchar(Hh,k

(
DHn

)
)

may be referred to as the “bivariate Frobenius characteristic” of DHn. In particular the
polynomial

Fn(q, t) = ∂np1
DHn[X; q, t ]

gives the bivariate Hilbert series of DHn. Likewise, the polynomial

DHn[X; q, t ]
∣∣
S1n

gives the bivariate Hilbert series of the subspace DHAn of Diagonal Harmonic Alternants.

Computer explorations carried out by Haiman in 1990 have led a number of people
(see [11]) to conjecture a variety of combinatorial properties of the diagonal action of Sn on
the subspaces Hh,k

(
DHn

)
. Hovever, it was later shown [6] that all of these properties may be

derived from the single conjecture

DHn[X; q, t ] = ∇en[X] . 5.2

The present developments reveal that this identity implies some additional combinatorial
properties of the spaces of Diagonal Harmonics which had not been observed nor predicted
in previous work. To be more explicit, we infer from the recursion in I.26 that DHn, as an
Sn-module, may admit a further sectionalization into n distinct, Sn invariant “classes” (or
submodules). In this section we prove some identities which lend further support to this
possibility.

To see how this comes about our point of departure is I.26 with m = n and s = 1.
Namely

∇en[X]
∣∣
S1n

=
n∑
r=1

tn−rq(
r
2)∇en−r[X 1−qr

1−q ]
∣∣
S1n−r

. 5.3

Setting, as we did in the introduction

Qn,s(q, t) = tn−sq(
s
2)∇en−s[X 1−qs

1−q ]
∣∣
S1n−s

, 5.4

5.3 becomes

∇en[X]
∣∣
S1n

=
n∑
r=1

Qn,r(q, t) . 5.5

On the validity of the conjecture in 5.2, this identity suggests that the space DHAn of
Diagonal Harmonic Alternants may be broken up into n bihomogeneous “classes”

DHAn,1 , DHAn,2 , . . . , DHAn,n
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with bivariate Hilbert series respectively given by the polynomials

Qn,1(q, t) , Qn,2(q, t) , . . . , Qn,n(q, t) .

In particular, since 5.4 for s = 1 becomes

Qn,1 = tn−1∇en−1[X]
∣∣
S1n−1

, 5.6

we infer from 5.2 that the “class” DHAn,1 should be none other than a bigraded “replica”
of DHAn−1, shifted by n − 1 in the x-degree. This class is easy to identify if we make use of
the so-called “Operator Conjecture” formulated in [11]. Under this conjecture, DHAn is the
linear span of the polynomials obtained by successive applications of the operators

Dk,n =
n∑
i=1

yi∂
k
xi (for k = 1, · · · , n− 1) 5.7

on the Vandermonde determinant

∆n(x) =
∏

1≤i<j≤n
(xi − xj) .

On the validity of this conjecture, let us assume that Bn−1 is a set of exponent sequences
p = (p1, p2, . . . , pn−2) selected so that the collection{

D p1
1,n−1D

p2
2,n−1 · · ·D

pn−2
n−2,n−1∆n−1(x)

}
p∈Bn−1

5.8

is a basis for DHAn−1. This given, it is easy to see that the subspace of DHAn spanned by
the polynomials {

D p1
1,nD

p2
2,n · · ·D

pn−2
n−2,n∆n(x)

}
p∈Bn−1

5.9

is an acceptable candidate for the “class” DHAn,1. In fact, its bigraded Hilbert series is
necessarily given by 5.6 since the obvious relation

∆n−1 = 1
(n−1)! ∂

n−1
xn ∆n

shows that the operator ∂n−1
xn maps the collection in 5.9 onto the bihomogeneous basis in 5.8.

On the other extreme, the classes DHAn,n−1 and DHAn,n are also easy to identify. Indeed,
5.4 for s = n− 1 and s = n respectively gives

Qn,n−1 = t q(
n−1

2 )(1 + q + q2 + · · ·+ qn−2
)

and Qn,n = q(
n
2) .

This suggests that DHAn,n is the one dimensional space spanned by the Vandermonde de-
terminant ∆n(y) and DHAn,n−1 could be the linear span of the collection{

R1,n∆n(y) , R2,n∆n(y) , . . . , Rn−1,n∆n(y)
}
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where we have set

Rk,n =
n∑
i=1

xi ∂
k
yi (for k = 1, . . . , n− 1) .

Remark 5.1
We should mention that the space of Diagonal Harmonics is preserved by the family

of operators { n∑
i=1

xi ∂
h
xi∂

k
yi ,

n∑
i=1

yi ∂
h
xi∂

k
yi : h+ k ≥ 1

}
.

Using this fact it is not difficult to show that successive applications of the operators Dk,n on
∆n(x) or successive applications of the operators Rk,n on ∆n(y), after taking linear spans, yield
the same subspace of Diagonal Harmonic Alternants. Of course, on the operator conjecture
this subspace fills DHAn.

At this point it is compelling to ask whether the same type of sectionalization might
not take place for the whole space of Diagonal Harmonics. The nature of this sectionalization
should again be dictated by a corresponding decomposition of the polynomial ∇en[X]. With
this in mind, we were led to search for an identity which would reduce to I.26 upon equating
coefficients of S1m . Now it develops that we may rewrite I.26 in the form

∇em
[
X 1−qs

1−q
]∣∣∣
S1m

=
m∑
r=1

er
[

1−qs
1−q X

]∣∣∣
S1r

tm−rq(
r
2)∇em−r

[
X 1−qr

1−q
]∣∣∣
S1m−r

. 5.10

Indeed the equality
er
[

1−qs
1−q X

]∣∣∣
S1r

= hr
[

1−qs
1−q

]
=
[
r+s−1
r

]
q

is an immediate consequence of the dual Cauchy formula

er
[

1−qs
1−q X

]
=
∑
λ`r

Sλ
[

1−qs
1−q

]
Sλ′ [X] .

Since the product of two Schur functions Sα × Sβ has no component of the form S1m

unless α = 1h and β = 1k for some h+ k = m we see that 5.10 is equivalent to(
∇em

[
X 1−qs

1−q
]
−

m∑
r=1

er
[

1−qs
1−q X

]
tm−rq(

r
2)∇em−r

[
X 1−qr

1−q
])∣∣∣∣

S1m

= 0 . 5.11

If this equality remained true upon removing the symbol “
∣∣∣∣
S1m

” we would have the natural

extension of I.26 we are seeking. However, the resulting equality can be easily checked by
computer to be generally false. Nevertheless, 5.11 brings us to focus on the symmetric
function

Γm,s[X; q, t ] = ∇em
[
X 1−qs

1−q
]
−

m∑
r=1

er
[

1−qs
1−q X

]
tm−rq(

r
2)∇em−r

[
X 1−qr

1−q
]
. 5.12
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To begin with, extensive computer data led us to the following

Conjecture 5.1
For any pair of integers m, s ≥ 1 we have an expansion of the form

Γm,s[X; q, t ] = (1− t)
∑
λ`m
λ6=1m

K
(m,s)
λ (q, t)Sλ[X]

with
K

(m,s)
λ (q, t) ∈ N [q, t ] .

Given the context from which this emerged it is natural to suspect that this Schur
positivity is not an accident, but rather reflects some representation theoretical properties of
DHn as an Sn module. We must leave the quest for such an explanation and/or a proof of the
conjecture to further investigations. Nevertheless, it develops that two of its consequences
are within reach of the present methods.

Theorem 5.1
For all integers m, s ≥ 1 we have

a) Γm,s[X; q, t ]
∣∣∣
S1m

= 0 ,

b) Γm,s[X; q, 1 ] = 0 .
5.13

Proof
Of course, in view of 5.11, 5.13 a) is simply another way of stating the main result of

this paper, that is the recurrence in I.26. As for 5.13 b) we can obtain it with surprisingly
less effort by means of a remarkable sequence of plethystic manipulations. The point of
departure is the trivial identity

Ω
[
− εX 1

1−q z
]
× Ω

[
εX qs

1−q z
]

= Ω̃
[
X 1−qs

1−q z
]

5.14

which follows from the simple equality

Ω[−εY ] = Ω̃[Y ]

after the substitution Y → X 1−qs
1−q z. This given, multiplying both sides of 5.14 by Ω

[
εX 1

1−q z
]

yields
Ω
[
εX qs

1−q z
]

= Ω̃
[
X 1−qs

1−q z
]

Ω
[
εX 1

1−q z
]
. 5.15

Now it develops, and it is easy to show (see [4] or [3]) that the linear operator ρ which acts

on formal power series in z by the linear extension of the map ρzn = q(
n
2) transforms a product

A(z)B(z) =
∑
r≥0

Arz
rB(z)
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into the “tangled” version

ρ
(
A(z)B(z)

)
=

∑
r≥0

Arz
rq(

r
2)ρB(zqr) .

Applying ρ to both sides of 5.15 then yields

ρΩ
[
εX qs

1−q z
]

=
∑
r≥0

er
[
X 1−qs

1−q
]
zrq(

r
2) ρΩ

[
εX qr

1−q z
]
. 5.16

Our next step is to rewrite this in terms of the operator q∇ defined by setting for the schur
function basis

q∇Sλ = ∇Sλ
∣∣
t=1

.

To this end we recall from [3] that we have for any two symmetric functions P,Q

a) q∇(PQ) = ( q∇P )( q∇Q) ,

b) q∇hr
[
X

1−q
]

= q(
r
2)hr

[
X

1−q
]
.

5.17

This is an immediate consequence of the definition I.8 of ∇ combined with the special eval-
uation (see [6])

H̃µ[X; q, 1 ] =
∏
i

hµi
[
X

1−q
]
(q; q)µi .

Now we get

ρΩ
[
εX qs

1−q z
]

=
∑
k≥0

(εzqs)kq(
k
2)hk

[
X

1−q
]

=
∑
k≥0

(εzqs)k q∇hk
[
X

1−q
]

= q∇Ω
[
εX qs

1−q z
]
.

5.18

Using 5.18 on both sides of 5.16 we obtain

q∇Ω
[
εX qs

1−q z
]

=
∑
r≥0

er
[
X 1−qs

1−q
]
zrq(

r
2) q∇Ω

[
εX qr

1−q z
]
,

or equivalently (since Ω[εY ] = Ω̃[−Y ]):

q∇Ω̃
[
X −qs

1−q z
]

=
∑
r≥0

er
[
X 1−qs

1−q
]
zrq(

r
2) q∇Ω̃

[
X −qr

1−q z
]
.

Multiplying both sides by q∇Ω̃
[
X

1−q z
]

and using the multiplicativity of q∇ (that is, 5.17 a))
we get

q∇Ω̃
[
X 1−qs

1−q z
]

=
∑
r≥0

er
[
X 1−qs

1−q
]
zrq(

r
2) q∇Ω̃

[
X 1−qr

1−q z
]
,
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and equating coefficients of zn−s we finally obtain

q∇en−s
[
X 1−qs

1−q
]

=
n−s∑
r=1

er
[
X 1−qs

1−q
]
q(
r
2) q∇en−s−r

[
X 1−qr

1−q
]
. 5.19

This proves 5.13 b) since the difference of the two sides of 5.19 is precisely what the right
hand side of 5.12 reduces to when we set t = 1.

An immediate corollary of this identity is a combinatorial interpretation of the sym-
metric functions

Φn,s[X; q] = q(
s
2) q∇en−s

[
X 1−qs

1−q
]
. 5.20

Theorem 5.2
For all pairs of integers s ≤ n we have

Φn,s[X; q ] =
∑

Π∈Dn,s
qarea(Π)em1(Π)em2(Π) · · · emn−1(Π) , 5.21

where the subscript mi(Π) denotes the length of the vertical segment of Π on the vertical line
of abscissa i.
Proof

For a moment, let us denote the right hand side of 5.18 by Ψn,s[X; q]. We aim to show
that Ψn,s[X; q] and Φn,s[X; q ] satisfy the same recurrence with the same initial conditions. To
this end note that a path Π ∈ Dn,s may be decomposed in three pieces Π1,Π2,Π3 (see figure
below).

Here Π1 consists of the vertical segment of length s and abscissa 0 followed by the first EAST

step, Π2 is the portion of Π that goes from (1, s) to (s, s+ r) (for some 1 ≤ r ≤ n− s) and finally
Π3 is the portion joining (s, s + r) to (n, n). Likewise, the contribution to the area statistic
of Π may be decomposed into three parts A1, A2, A3, where A1 =

(
s
2

)
gives the area below the

horizontal line y = s, A2 gives the area above y = s and to the left of the vertical line x = s
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and finally A3 gives the area to the right of x = s. Note that if m1,m2, . . . ,ms are the lengths
of the vertical segments of Π on the vertical lines of abscissas 1, 2, . . . , s then we will have

m1 +m2 + · · ·+ms = r and A2 = ms−1 + 2ms−2 + · · ·+ (s− 1)m1 .

Finally, if we adjoin to Π3 the vertical segment from (s, s) to (s, s+ r) then, by a slight abuse
of notation, we may view the resulting path Π′3 as an element of Dn−s,r, and A3 then gives
the area under Π′3. Putting all this together we see that the symmetric functions Ψn,s[X; q ]
statisfy the recursion

Ψn,s[X; q ] = q(
s
2)
n−s∑
r=1

∑
m1+m2+···+ms=r

q
∑s

i=1
(s−i)miem1 [X] em2 [X] · · · ems [X] Ψn−s,r[X; q ]

= q(
s
2)
n−s∑
r=1

∑
m1+m2+···+ms=r

em1 [qs−1X] em2 [qs−2X] · · · ems [X] Ψn−s,r[X; q ]

= q(
s
2)
n−s∑
r=1

er[X 1−qs
1−q ] Ψn−s,r[X; q ] .

On the other hand, multiplying 5.19 by q(
s
2), from 5.20 we get

Φn,s[X; q ] = q(
s
2)
n−s∑
r=1

er[X 1−qs
1−q ] Φn−s,r[X; q ] ,

which is precisely the same recurrence. As for the initial conditions, the right hand side of
5.20 for s = n reduces to q(

n
2) and so does the right hand side of 5.21, thus

Φn,n[X; q ] = Ψn,n[X; q ] ∀ n ≥ 1 .

This completes the proof of the theorem.

We should mention that 5.21 extends a result first established in [6] which gives a
similar combinatorial interpretation for the symmetric function q∇en. In fact, as a corollary
of Theorem 5.2 we derive that
Theorem 5.3

For all n ≥ 1

q∇en[X] =
∑

Π∈Dn
qarea(Π)em0(Π)em1(Π) · · · emn−1(Π) . 5.22

In particular

q∇en[X] =
n∑
r=1

er
[
X
]
Φn,r[X; q ] . 5.23

Proof
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Note that since mo(Π) can take any value between 1 and n, by grouping terms according
to this value the right hand side of 5.22 may be rewritten as

RHS =
n∑
r=1

er
∑

Π∈Dn,r
qarea(Π)em1(Π)em2(Π) · · · emn−1(Π)

(by 5.21)→ =
n∑
r=1

er[X]Φn,r[X; q ] .
5.24

On the other hand using the decomposition 5.23 in 5.19 with n→n+ 1 and s→1 gives

q∇en
[
X
]

=
n∑
r=1

er
[
X
]
q(
r
2) q∇en−r

[
X 1−qr

1−q
]

(by 5.20)→ =
n∑
r=1

er
[
X
]
Φn,r[X; q ] ,

5.25

which is 5.23. Combining 5.23 and 5.24 proves 5.22.

We terminate by posing two interesting problems that stem from the present devel-
opments. To begin with 5.5 and 5.23 suggest that the whole module of Diagonal Harmonics
must admit a sectionalization in n classes. As we have seen 5.5 should correspond to a
decomposition of the Diagonal Harmonic Alternants and we may interpret 5.23 as reflecting
a decomposition of all Diagonal Harmonics, when we ignore the x-degree. This given, we
believe that there should be some way of decomposing ∇en itself without any specializations.
Most probably, performing such a decomposition will require some new types of operations
to further unravel the action of ∇. Efforts in this direction may not only bring some light on
the study of Diagonal Harmonics but also enrich our package of tools to deal with symmetric
function identities.

The other problem which emerges from our work is also gravid with combinatorial
implications. In fact we see that the definition of the q, t-Catalan immediately gives that
Cn(q, t) = Cn(t, q). Thus our proof of I.22 implies that we must have∑

Π∈Dn
qarea(Π)tmaj(β(Π)) =

∑
Π∈Dn

tarea(Π)qmaj(β(Π)) .

A purely combinatorial proof of this identity should lead to interesting findings.
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