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Abstract. We introduce the distribution function Fn(q, t) of a pair of statistics

on Catalan words and conjecture Fn(q, t) equals Garsia and Haiman’s q, t-Catalan

sequence Cn(q, t), which they defined as a sum of rational functions. We show that
Fn,s(q, t), defined as the sum of these statistics restricted to Catalan words ending

in s ones, satisfies a recurrence relation. As a corollary we are able to verify that
Fn(q, t) = Cn(q, t) when t = 1/q. We also show the partial symmetry relation

Fn(q, 1) = Fn(1, q). By modifying a proof of Haiman of a q-Lagrange inversion

formula based on results of Garsia and Gessel, we obtain a q-analogue of the general
Lagrange inversion formula which involves Catalan words grouped according to the

number of ones at the end of the word.

1. Introduction

In [7] Garsia and Haiman introduced a rational function Cn(q, t) which they con-
jectured always evaluates to a polynomial in q and t with nonnegative coefficients.
Later Haiman proved that Cn(q, t) is always a polynomial [11], but with possibly
negative coefficients. An elementary proof of this result has been given by Bergeron,
et. al. [4], but the nonnegativity remains open. Other conjectures of Haiman have
Cn(q, t) related to the Frobenius series of a bigraded Sn module [10].

A Catalan word σ = σ1σ2 · · ·σ2n is a permutation of the multiset {0n 1n} of n
0’s and n 1’s with the property that for each i, 1 ≤ i ≤ 2n, there are at least as
many 0’s in the subword σ = σ1σ2 · · ·σi as there are 1’s. We let Cn denote the set
of all Catalan words of length 2n; it is well known that the cardinality of Cn is the
nth Catalan number

(
2n
n

)
/(n + 1).

Throughout the article we use the standard notation

[k] := (1 − qk)/(1 − q), [k]! := [1][2] · · · [k],
[

m
j

]
:= [m]!/([j]![m− j]!)
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for the q-analogue of the integer k, the q-factorial, and the q-binomial coefficient,
and (x)n := (1 − x)(1 − xq) · · · (1 − xqn−1) for the q-rising factorial.

Garsia and Haiman proved that

Cn(q, 1) =
∑

σ∈Cn

q(
n
2)−invσ, (1)

where
invσ :=

∑
1≤i<j≤2n

σi>σj

1.

They also showed that

q(
n
2)Cn(q, q−1) =

1
[n + 1]

[
2n
n

]
. (2)

Both Cn(q, 1) and q(
n
2)Cn(q, q−1) had previously been studied by other authors.

In fact, a special case of a result of MacMahon on “lattice permutations” is [12,
Vol. 2, pp. 214-215]

1
[n + 1]

[
2n
n

]
=
∑

σ∈Cn

qmajσ,

where
majσ :=

∑
1≤i≤2n−1
σi>σi+1

i.

See [5] for further background on Cn(q, 1) and q(
n
2)Cn(q, q−1). Another result of

MacMahon we will use later is that if M = {0a1b} is the multiset of a-0’s and b-1’s,
then ∑

π

qinvπ =
[

a + b
a

]
, (3)

where the sum is over all multiset permutations π of M .
Because of (1) and (2) Garsia and Haiman called Cn(q, t) the q, t-Catalan se-

quence. In this article we introduce a statistical refinement of their conjecture,
which we now describe.

Given σ ∈ Cn, let end(σ) denote the number of consecutive 1’s at the end of σ.
We call σ balanced if σ is of the form σ = 0a1a0b1b · · · 0s1s, where the notation 0a1a

is shorthand for 00 · · ·0︸ ︷︷ ︸
a times

11 · · ·1︸ ︷︷ ︸
a times

. To each σ ∈ Cn we associate a balanced word b(σ)

by a procedure we call the balancing algorithm:
(A) Say end(σ) = s. Starting at the end of σ, move left until you find the sth 0, say
in spot σj . Slide this 0 and the other s − 1 0’s you passed to the right until they
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abut the final s 1’s at the end of σ, passing over any intermediary 1’s you encounter
along the way. We now have the word b1(σ) = σ1 · · ·σj−112n−2s−j+10s1s.
(B) Apply step A to the first 2n − 2s letters of b1(σ) (leaving the 0s1s part
alone) resulting in a word b2(σ) = σ1 · · ·σi−112n−2s−2r−i+10r1r0s1s, where r =
end(σ1 · · ·σj−112n−2s−j+1). Then apply step A to the first 2n − 2s − 2r letters of
b2(σ), resulting in b3(σ), etc.. Iterate this process until a balanced word is obtained;
call this b(σ).
For example, if σ = 001011000010110111, we have b1(σ) = 001011000111000111 =
b2(σ) and b3(σ) = 010011000111000111 = b(σ).

We now define our q, t-Catalan number, Fn(q, t), as

Fn(q, t) :=
∑

σ∈Cn

q(
n
2)−invσt

1
2majb(σ).

Conjecture 1. For n a positive integer,

Fn(q, t) = Cn(q, t).

Conjecture 1 was discovered after a prolonged investigation of tables of Cn(q, t). It
has been verified for n ≤ 14 by a Maple program.

The distribution of the statistics for n = 4 is given in Table I.

σ 6 − invσ 1
2majb(σ) b(σ)

00001111 6 0 00001111
00010111 5 1 01000111
00011011 4 2 00110011
00011101 3 3 00011101
00101101 2 4 01001101
00101011 3 2 00110011
00110011 2 2 00110011
00110101 1 5 00110101
01000111 3 1 01000111
01001011 2 3 01010011
01001101 1 4 01001101
00100111 4 1 01000111
01010011 1 3 01010011
01010101 0 6 01010101

Table I: The statistics for n = 4.

Define

Fn,s(q, t) :=
∑
σ∈Cn

end(σ)=s

q(
n
2)−invσt

1
2majb(σ), with Fn,0(q, t) := χ(n = 0).

In Section 2 we prove a surprising recurrence relation for Fn,s(q, t).
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Theorem 1.

Fn,s(q, t) =
n−s∑
r=0

Fn−s,r(q, t)
[

r + s − 1
r

]
q(

s
2)tn−s.

As a corollary of this we show

q(
n
2)Fn(q, q−1) = q(

n
2)Cn(q, q−1),

giving further support to Conjecture 1.
From Garsia and Haiman’s rational function definition it is obvious that Cn(q, t) =

Cn(t, q). Although the author has been unable to show that Fn(q, t) = Fn(t, q), in
Section 3 we do prove that Fn(q, 1) = Fn(1, q).

One of the main tools that Garsia and Haiman use to prove identities for special
cases of Cn(q, t) is q-Lagrange inversion. In Section 4 we modify a proof of Haiman,
of a q-Lagrange inversion formula based on work of Garsia and Gessel, to derive a
q-analogue of the general Lagrange inversion formula. As a corollary we obtain an
infinite series identity involving Fn,s(q−1, 1).

Notation: LHS and RHS are abbreviations for “left-hand-side” and “right-hand-
side”, respectively.

2. A Recurrence for Fn,s(q, t)

In this section we make use of a geometric representation of Catalan words known
as Dyck paths. These are lattice paths in the first quadrant of the xy-plane, con-
necting (0, 0) to (n, n), which consist of NORTH and EAST steps and remain weakly
above the diagonal (see [7, pp. 201-202] for a more detailed description of Dyck
paths). We let SQ(n) denote the square lattice with corners (0, 0) and (n, n), and
D(σ) the Dyck path corresponding to the Catalan word σ. The NORTH steps of
D(σ) correspond to 0’s in σ, the EAST steps to 1’s. We call the squares below
D(σ) and strictly above the diagonal the area squares of σ. Note that the number
of these squares is is

(
n
2

)− inv(σ).
The path D(b(σ)) has a simple description in terms of what could be called “the

drawing game of ricochet”. Let R denote the closed region consisting of the path
D(σ) together with the area squares of σ. In the example of Fig. 1 the area squares
are shaded and the path D(σ) is in bold.

To play ricochet, start at the upper right corner of SQ(n) and trace a line straight
left as far as you can without leaving R, at which point you “ricochet” and trace
straight down. Once you hit the diagonal and are about to leave R again you
ricochet left, iterating these steps until you finally arrive at (0, 0). The line you
have traced out is D(b(σ)).

Lemma 2.1 answers the following question: Given a balanced word w ∈ Cn, what
is the sum of q(

n
2)−invσ, summed over all σ with b(σ) = w? In the process of proving

this lemma we will also prove Theorem 1.
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Figure 1: The path D(00101100100111) contained in SQ(7), to-

gether with the area squares.

Lemma 2.1. Let w ∈ Cn be a balanced word, say w = 0α11α10α21α2 · · · 0αk1αk ,
with α1 + α2 + . . . + αk = n, αi > 0 a composition of n into k positive integers.
Then∑

σ∈Cn
b(σ)=w

q(
n
2)−invσ = q(

α1
2 )+(α2

2 )+...+(αk
2 )

×
[

α1 + α2 − 1
α1

] [
α2 + α3 − 1

α2

]
· · ·
[

αk−1 + αk − 1
αk−1

]
. (4)

We now give two proofs of both Lemma 2.1 and Theorem 1. Our first proof is rather
brief, relying heavily on geometric intuition, while our second is algebraic.
First Proof of Lemma 2.1 and Theorem 1: The game of ricochet implies that b(σ)
will end in 0r1r0s1s if and only if the squares just to the left of each downward
ricochet (indicated by 0’s in Fig. 2) are not below D(σ), while all the squares to
the right of these squares and in the same row (indicated by x’s in Fig. 2) are.

In addition the area squares of σ can contain any arbitrary subset, in the shape
of a partition, of the rectangular region of size r × s − 1 above the horizontal step
of length r indicated by the dotted lines. It is well known [2] that the area statistic
for a rectangle of this size generates[

r + s − 1
r

]
.
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s

s-1

r-1

r
0 x x x x x x x x x x x

0 x x x x x x x x x

Figure 2: Paths for which b(σ) ends in 0r1r0s1s
.

The number of squares below the last horizontal step of b(σ) is
(

s
2

)
, and it is now

clear how the product in Lemma 2.1 arises. Theorem 1 also follows, since the area
squares not accounted by the term

q(
s
2)
[

r + s − 1
r

]
.

correspond to the area squares of an arbitrary word in Cn−s ending in r ones. The
factor tn−s accounts for the change in 1

2
majb(σ). �

Second Proof of Lemma 2.1 and Theorem 1: In view of the balancing algorithm,
b(σ) = w if and only if σ is of the following general form:

σ = 0α1β20β3 · · · 0βk−20βk−10βk01αk , (5)

where βi is any multiset permutation of {0αi−11αi−1}, 2 ≤ i ≤ k. It follows that
the minimal power of invσ among those σ satisfying b(σ) = w is

α1(α3 + α4 + . . . + αk + 1) + α2(α4 + . . . + αk + 1) + . . . + αk−2(αk + 1) + αk−1

=
(

α1 + α2 + . . . + αk

2

)
−

k∑
i=1

(
αi

2

)
−α1(α2−1)−α2(α3−1)− . . .−αk−1(αk −1).

When we sum over the βi, by (3) the term

k−1∏
i=1

[
αi−1 + αi − 1

αi−1

]
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will account for inversion pairs which occur within the same βi. Thus

∑
σ∈Cn

b(σ)=w

qinvσ = q(
n
2)−
Pk

i=1 (αi
2 )+α1+...+αk−1−(α1α2+...+αk−1αk)

k−1∏
i=1

[
αi−1 + αi − 1

αi−1

]
.

Replacing q by q−1 above, multiplying by q(
n
2), and using[

αi−1 + αi − 1
αi−1

]
q−1

=
[

αi−1 + αi − 1
αi−1

]
q−αi−1(αi−1)

proves the lemma. To prove Theorem 1 start with

Fn,s(q, t) =
∑

α1+...+αk−1=n−s

q(
α1
2 )+...+(αk−1

2 )+(s
2)×

[
α1 + α2 − 1

α1

]
· · ·
[

αk−2 + αk−1 − 1
αk−2

] [
αk−1 + s − 1

αk−1

]
tα1(k−1)+α2(k−2)+...+αk−1

=
n−s∑
r=0

( ∑
α1+...+αk−2=n−s−r

q(
α1
2 )+...+(αk−2

2 )+(r
2)tα1(k−2)+...+αk−2

×
[

α1 + α2 − 1
α1

]
· · ·
[

αk−2 + r − 1
αk−2

])[
r + s − 1

r

]
q(

s
2)tn−s

=
n−s∑
r=0

Fn−s,r(q, t)
[

r + s − 1
r

]
q(

s
2)tn−s. �

Theorem 2.2. For 1 ≤ s ≤ n,

q(
n
2)Fn,s(q, q−1) =

[s]
[n]

[
2n − s − 1

n − s

]
q(s−1)n.

Pf: Since Fn,n(q, t) = q(
n
2), Theorem 2.2 holds for s = n. If 1 ≤ s < n, we start

with Theorem 1 and then use induction on n;

q(
n
2)Fn,s(q, q−1) = q(

n
2)q−(n−s

2 )
n−s∑
r=1

q(
n−s

2 )Fn−s,r(q, q−1)q(
s
2)−(n−s)

[
r + s − 1

r

]

= q(
n
2)+(s

2)−(n−s)q−(n−s
2 )

n−s∑
r=1

[
r + s − 1

r

]
[r]

[n − s]

[
2(n − s) − r − 1

n − s − r

]
q(r−1)(n−s)
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= q(s−1)n
n−s∑
r=1

[
r + s − 1

r

]
[r]

[n − s]

[
2(n − s) − 2 − (r − 1)
n − s − 1 − (r − 1)

]
q(r−1)(n−s)

= q(s−1)n [s]
[n − s]

n−s−1∑
u=0

(u=r−1)

[
s + u

u

] [
2(n − s) − 2 − u
n − s − 1 − u

]
qu(n−s)

= q(s−1)n [s]
[n − s]

[
2n − 2s − 2
n − s − 1

] n−s−1∑
u=0

(qs+1)u

(q)u

(qn−s−u)u

(q2n−2s−1−u)u
qu(n−s)

= q(s−1)n [s]
[n − s]

[
2n − 2s − 2
n − s − 1

] n−s−1∑
u=0

(qs+1)u

(q)u

(q1+s−n)u

(q2+2s−2n)u
qu

= q(s−1)n [s]
[n − s]

[
2n − 2s − 2
n − s − 1

]
(q1+s−2n)n−s−1

(q2+2s−2n)n−s−1
q(s+1)(n−s−1) [8, p. 236]

= q(s−1)n+(s+1)(n−s−1) [s]
[n − s]

[
2n − 2s − 2
n − s − 1

]

× [2n − s − 1][2n − s − 2] · · · [2n − s − 1 − (n − s − 1) + 1]
[2n − 2s − 2][2n − 2s − 3] · · · [2n − 2s − 2 − (n − s − 1) + 1]

qpow, (6)

where

pow = 2n−2s−2+2n−2s−3+ . . . +n−s−(2n−2s−1+2n−2s−2+ . . .+n+1)

= n + n − 1 + . . . + n − s − (2n − s − 1 + 2n − s − 2 + . . . + 2n − 2s − 1)

= n(s + 1) −
(

s + 1
2

)
−
(

2n(s + 1) − (s + 1)2 −
(

s + 1
2

))

= n(s + 1) − 2n(s + 1) + (s + 1)2 = −(n − s − 1)(s + 1).

Thus (6) equals

[s]
[n − s]

[
2n − s − 1
n − s − 1

]
q(s−1)n =

[s]
[n]

[
2n − s − 1

n − s

]
q(s−1)n. �
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Corollary 2.3. For n ≥ 1,

q(
n
2)Fn(q, q−1) =

1
[n + 1]

[
2n
n

]
.

Pf: By Theorem 2.2,

q(
n
2)

n∑
s=1

Fn,s(q, q−1) =
n∑

s=1

[s]
[n]

[
2n − s − 1

n − s

]
q(s−1)n

=
n−1∑
u=0

(u=s−1)

[u + 1]
[n]

[
2n − 2 − u
n − 1 − u

]
qnu

=
1
[n]

[
2n − 2
n − 1

] n−1∑
u=0

[u + 1]
[n − u][n − u + 1] · · · [n − 1]

[2n − 1 − u][2n − u] · · · [2n − 2]
qnu

=
1
[n]

[
2n − 2
n − 1

] n−1∑
u=0

(q2)u(q1−n)u

(q)u(q2−2n)u
qu

=
1
[n]

[
2n − 2
n − 1

]
(q−2n)n−1

(q2−2n)n−1
q2(n−1) [8, p. 236]

=
1
[n]

[
2n − 2
n − 1

]
[2n][2n − 1]
[n + 1][n]

q−(2n+2n−1)+(n+1+n)+2(n−1)

=
1

[n + 1]

[
2n
n

]
. �

3. Symmetry

In this section we use Lemma 2.1 and a combinatorial argument to prove the
following partial symmetry result.

Theorem 3.1. For n ≥ 0,
Fn(q, 1) = Fn(1, q).

Pf: Given σ ∈ Cn, let γi(σ) denote the number of area squares of σ in the ith

row from the top of SQ(n). In the example of Fig. 1, (γ1(σ), γ2(σ), . . . , γ7(σ)) =
(2, 1, 1, 0, 1, 1, 0). Note that γn(σ) = 0 for all σ.

From the geometry it is clear that γi(σ) − γi+1(σ) ≤ 1, 1 ≤ i ≤ n − 1. In fact,
a sequence π1π2 · · ·πn of n nonnegative integers is the γ-sequence γ1(σ) · · ·γn(σ)
of some σ ∈ Cn if and only if π1 · · ·πn doesn’t have a 2-descent (i.e. a value of
i for which πi − πi+1 > 1) and πn = 0. Let M be a multiset of n nonnegative
integers with largest element k − 1, say M = {(k − 1)α1(k − 2)α2 · · ·1αk−10αk},
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α1 + α2 + . . . + αk = n. How many multiset permutations are there with no 2-
descents and which end in 0? For this number to be nonzero, clearly all the αi must
be positive. We can construct such a multiset permutation by first arranging the
αk−1−1’s and αk −0’s in any of

(
αk−1+αk−1

αk−1

)
patterns, so that each pattern ends in

0. We can then insert the αk−2 − 2’s into a given pattern in any of
(
αk−2+αk−1−1

αk−2

)
ways, so that any 2 is followed by either another 2 or a 1. Continuing in this way
we see that

k−1∏
i=1

(
αi + αi+1 − 1

αi

)
is the answer to our question. For each of these permutations the corresponding
Catalan word σ satisfies

(
n
2

)− invσ = α1(k − 1) + α2(k − 2) + . . . + αk−1 and so

Fn(q, 1) =
∑

α1+α2+...+αk=n

αi≥1

qα1(k−1)+α2(k−2)+...+αk−1

k−1∏
i=1

(
αi + αi+1 − 1

αi

)
.

Since α1(k − 1) + α2(k − 2) + . . . + αk−1 = 1
2maj(0α11α1 · · ·0αk1αk), Theorem 3.1

follows from the q = 1 case of Lemma 2.1. �.

Remark 1: One could hope to use the above correspondence to prove Fn(q, t) =
Fn(t, q). Unfortunately, it is not weight-preserving, as the following example shows.

Let n = 4, α = 1 + 1 + 2, w = 01010011. There are two σ satisfying b(σ) = w,
namely σ1 = 01001011 and σ2 = 01010011. We have

q6−invσ1t
1
2majb(σ1) + q6−invσ2t

1
2majb(σ2) = q2t3 + qt3. (7)

On the other hand, there are also two relevant γ-sequences, namely the permu-
tations of the multiset {2 1 02}, with corresponding words σ3 = 01000111 and
σ4 = 00011101. We have

q6−invσ3t
1
2majb(σ3) + q6−invσ4t

1
2majb(σ4) = q3t + q3t3, (8)

and so interchanging q and t in (7) doesn’t give (8).

Remark 2: Let dn,u,v denote the coefficient of qutv in Fn(q, t). By Lemma 2.1,

dn,u,v =
n∑

k=1

∑
α1+α2+...+αk=n

α1(k−1)+α2(k−2)+...+αk−1=v

the coefficient of qu in

q(
α1
2 )+...+(αk

2 )
k−1∏
i=1

[
αi + αi+1 − 1

αi

]
.

Showing Fn(q, t) = Fn(t, q) is thus equivalent to showing the RHS above is sym-
metric in u and v.
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4. q-Lagrange Inversion and Fn,s(q, 1).

Given σ ∈ Cn, let λ(σ) = λ1(σ)λ2(σ) · · · denote the partition consisting of the
horizontal step lengths of D(σ) (i.e. the lengths of the blocks of consecutive 1’s in
σ, arranged in nonincreasing order). Let ek denote the kth elementary symmetric
function in some set of variables, and eλ(σ) :=

∏
i≥1 eλi(σ). Define H(z) via the

equation 1/H(−z) :=
∑∞

k=0 ekzk, and let µi, i ≥ 1 be variables.
The µi = 1, i ≥ 1 case of the following lemma reduces to a q-Lagrange inversion

formula proven in [10,pp. 47-48]. Haiman also includes a discussion of the connec-
tion of that inversion formula to work of Andrews, Garsia, and Gessel [1], [6], [9].
Further background on their work is contained in [13].

Lemma 4.1. Define h∗
n(µ, q), n ≥ 0 via the equation

∞∑
k=0

ekµkzk =
∞∑

k=0

q−(k
2)h∗

k(µ, q)zkH(−q−1z)H(−q−2z) · · ·H(−q−kz). (9)

Then for n ≥ 1, h∗
n(µ, q) has the explicit expression

h∗
n(µ, q) =

∑
σ∈Cn

q(
n
2)−invσeλ(σ)µend(σ). (10)

Pf: Our proof follows Haiman’s proof of the µi = 1 case closely. Set H∗(z, α; q) :=∑∞
n=0 h∗

n(µ, q)zk, and H∗(z; q) :=
∑∞

n=0 h∗
n(q)zk, where h∗

n(q) is obtained by setting
µi = 1, i ≥ 1 in h∗

n(µ; q). From [6] we have that if

(F ◦q G)(z) =
∑

n

fnG(z)G(qz) · · ·G(qn−1z)

denotes the q-functional composition of F and G, where F =
∑

n fnzn, then

F ◦q G = z and G ◦q−1 F = z

are equivalent to each other and also to

(Φ ◦q−1 F ) ◦q G = Φ = (Φ ◦q G) ◦q−1 F for all Φ.

Let Φ = H∗(zq, µ; q), F = zH(−z), and G = zH∗(z; q). Replacing z by zq in
(9) gives

∞∑
k=0

ekµkqkzk =
∞∑

k=0

qkh∗
k(µ, q)zH(z)zq−1H(−q−1z) · · · zq1−kH(−q1−kz)

= Φ ◦q−1 F.
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The µi = 1, i ≥ 1 case of Lemma 4.1 (recall this is proven in [10]) implies that
G ◦q−1 F = z, and so

Φ = (
∞∑

k=0

ekµkqkzk) ◦q G. (11)

Comparing coefficients of zn in (11) and simplifying we get

h∗
n(µ, q) =

n∑
k=1

q(
k
2)ekµk

∑
n1+...+nk=n−k

ni≥0

k∏
i=1

q(i−1)nih∗
ni

(q). (12)

To show the RHS of (10) equals the RHS of (12) use the “factorization of Dyck
paths” as discussed in [10]. The terms multiplied by µk correspond to σ ∈ Cn with
end(σ) = k. �

If in Lemma 4.1 we begin by setting ek = 1, k ≥ 1, µs = 1, µj = 0 for j 6= s
and then replace q by q−1 and z by z/q, we get the following.

Corollary 4.2. For s ≥ 1,

zs =
∑
n≥s

q(
n
2)−n+sFn,s(q−1, 1)zn(1 − z)(1 − qz) · · · (1 − qn−1z).

Lemma 4.1 is a q-analogue of the general Lagrange inversion formula [3, p. 629]

f(x) = f(0) +
∞∑

k=1

xk

k!φ(x)k

[
dk−1

dxk−1
(f ′(x)φk(x))

]
x=0

, (13)

where φ and f are analytic in a neighborhood of 0, with φ(0) 6= 0. To see why, set
f(x) = f(0) +

∑∞
k=1 µkxk and φ = 1

H(−x) =
∑∞

k=0 ekxk in (13) to get
∞∑

k=0

µkxk =
∞∑

k=1

xk

k!
H(−x)k

∑
p≥1

pµp(k − 1)! × the coefficient of xk−p in (
∞∑

n=0

enxn)k

=
∞∑

k=1

xk H(−x)k

k

∑
p≥1

pµp

∑
j1+j2+...+jk=k−p

ji≥0

ej1ej2 · · · ejk

=
∞∑

k=1

xk H(−x)k

k

∑
p≥1

pµp

∑
|β|=k−p

eβ

(
k

k − `(β), m1(β), m2(β), . . .

)
,

where mi(β), i ≥ 1 is the multiplicity of i in the partition β, `(β) =
∑

i≥1 mi(β),
and |β| =

∑
i≥1 βi.

The equivalence of the above equation to the q = 1 case of Lemma 4.1 (with µk

replaced by µk/ek, k ≥ 1) will follow if we can show that∑
σ∈Ck

eλ(σ)

µend(σ)

eend(σ)
=
∑
p≥1

pµp

k

∑
|β|=k−p

eβ

(
k

k − `(β), m1(β), m2(β), . . .

)
.

This identity is equivalent to Lemma 4.3 below.
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Lemma 4.3. Given integers k, p with k > p ≥ 1, and a partition β of k − p,

∑
σ∈Ck

end(σ)=p
λ(σ)−end(σ)=β

1 =
p

k

(
k

k − `(β), m1(β), m2(β), . . .

)
, (14)

where λ(σ)− end(σ) denotes the partition λ(σ) with a part of size end(σ) removed.

Pf: Let g(β, p, k) denote the LHS above, i.e. the number of Catalan words whose
path D(σ) ends in a horizontal step of length p and whose other steps are the parts
of the partition β. If a given σ ∈ Ck counted by g(β, p, k) has more than one zero
immediately preceding the p ones at the end of σ, remove one of these zeros and
one of the p ones to get a σ′ counted by g(β, p − 1, k − 1). If instead this σ has
exactly one zero preceding the p ones, and a block of π 1’s preceding this 0, remove
the 0 and one of the p ones to get a σ′ counted by g(β − π, π + p − 1, k − 1). This
procedure shows that g satisfies the recurrence

g(β, p, k) = g(β, p − 1, k − 1) +
∑

π
mπ(β)>0

g(β − π, π + p − 1, k − 1).

Proceeding by induction on k,

g(β, p, k) =
p − 1
k − 1

(
k − 1

k − 1 − `(β), m1(β), m2(β), . . .

)

+
∑

π
mπ(β)>0

π + p − 1
k − 1

(
k − 1

k − 1 − (`(β) − 1), m1(β), . . . , mπ(β) − 1, . . .

)

=
p

k

(
k

k − `(β), m1(β), m2(β), . . .

)(
p − 1

p

(k − `(β))
(k − 1)

+
∑

π

(π + p − 1)mπ(β)
p(k − 1)

)

=
p

k

(
k

k − `(β), m1(β), m2(β), . . .

)
1

p(k − 1)

×
(

(p − 1)k − (p − 1)`(β) +
∑

π

πmπ(β) + (p − 1)`(β)

)

=
p

k

(
k

k − `(β), m1(β), m2(β), . . .

)
1

p(k − 1)
((p − 1)k + k − p)

=
p

k

(
k

k − `(β), m1(β), m2(β), . . .

)
. �



14 J. HAGLUND

References

[1] G. E. Andrews, Identities in combinatorics, II: A q-analog of the Lagrange inversion theorem,

Proc. Amer. Math. Soc. 53 (1975), 240-245.

[2] G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications,
Vol. 2, Addison-Wesley, Reading, Mass., 1976.

[3] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, 1999.
[4] F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler, Identities and positivity conjectures

for some remarkable operators in the theory of symmetric functions, Asian J. Math. 6 (1999),

363-420.
[5] J. Fürlinger and J. Hofbauer, q-Catalan numbers, J. Combin. Theory Ser. A 40 (1985),

248-264.

[6] A. M. Garsia, A q-analogue of the Lagrange inversion formula, Hous. J. Math. 7 (1981),
205-237.

[7] A. M. Garsia and M. Haiman, A Remarkable q, t-Catalan sequence and q-Lagrange inversion,
J. Algebraic Combin. 5 (1996), 191-244.

[8] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and

its Applications, vol. 35, Cambridge University Press, Cambridge, 1990.
[9] Ira Gessel, A noncommutative generalization and q-analog of the Lagrange inversion formula,

Trans. Amer. Math. Soc. 257 (1980), 455-482.

[10] M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 3
(1994), 17-76.

[11] M. Haiman, t, q-Catalan numbers and the Hilbert scheme, Discrete Math. 193 (1998), 201-
224.

[12] P. A. MacMahon, Combinatory Analysis, Reprinted, Chelsea, New York, 3rd edition, 1984,

Cambridge University Press, London, 1918.
[13] Dennis Stanton, Recent results for the q-Lagrange inversion formula, Ramanujan Revisited

(Urbana-Champaign, Ill., 1987) (G. E. Andrews, ed.), Academic Press, Boston, MA, 1988,

pp. 525-536.

Department of Mathematics University of Pennsylvania Philadelphia, PA 19104-

6395

E-mail address: jhaglund@math.upenn.edu


