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Abstract

A special case of Haiman’s identity [Invent. Math. 149 (2002), pp. 371-407] for the
character of the quotient ring of diagonal coinvariants under the diagonal action of the
symmetric group yields a formula for the bigraded Hilbert series as a sum of rational functions
in g, t. In this paper we show how a summation identity of Garsia and Zabrocki for Macdonald
polynomial Pieri coefficients can be used to transform Haiman’s formula for the Hilbert series
into an explicit polynomial in ¢,t with integer coefficients. We also provide an equivalent
formula for the Hilbert series as the constant term in a multivariate Laurent series.

1 Introduction
Let X, ={x1,...,2,}, Y0 = {y1,...,yn} be two sets of variables and let

DR, = C[X,, Y, /({D  alyf,Vh,k > 0,h + k > 0}) (1)

be the quotient ring of diagonal coinvariants. Let V be the linear operator defined on the
modified Macdonald polynomial basis {H,(Xn;q,t)}, where p - n (i.e. p is a partition of n), by

vg,u(Xn?(Lt) = T;Lf{,u(Xn?(Lt)v (2)

where T, = W) and n(p) = > ;@ = 1)p;. The symmetric group acts “diagonally” on a
polynomial f(x1,...,%n,y1,--,Yn) By 0f = f(To1),-++sTa(n)s Yo(1)s - - - s Yo(n)) and this action
extends to DR,,. Haiman [Hai02] proved an earlier conjecture of Garsia and Haiman [GH96] that
the Frobenius series of this action is given by Ve, (X,,), where e, is the nth elementary symmetric
function in a set of variables. (The Frobenius series is obtained by starting with the character
and mapping the irreducible S,-character x* to the Schur function sy.) Since the Frobenius
series of DR,, is given by Ve, the Hilbert series Hilb(DR,,) is given by (Ve,, hl') (See [Hag08,
p. 24] for an explanation of why. Here (,) is the Hall scalar product, with respect to which the
Schur functions are orthonormal, and hy(X) = >, #;.) This results in a formula for Hilb(DR,,)

as an explicit sum of rational functions in ¢, ¢, described in detail in the next section. A corollary
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Figure 1: A parking function with area = 9 and dinv = 6

of this formula is that dim(DR,) = (n + 1)"~!. See also [Hai94] and [Ber09] for background
on this problem. We mention that many articles in the literature refer to the space of diagonal
harmonics DH,,, which is known to be isomorphic to DR,,, and so Hilb(DH,,) = Hilb(DR,,).

A Dyck path is a lattice path in the first quadrant of the zy-plane from (0,0) to (n,n)
consisting of unit north N and east E steps which never goes below the diagonal x = y. A
parking function is a placement of the integers 1,2, ..., n (called “cars”) just to the right of the NV
steps of a Dyck path, so there is strict decrease down columns. An open conjecture of Loehr and
the author expresses Hilb(DR,,) as a positive sum of monomials, one for each parking function.
To a given parking function 7, we associate two statistics area(w) and dinv (7). The area statistic
is defined as the number of squares strictly below 7 and strictly above the diagonal. The dinv
statistic is the number of pairs of cars which form either “primary” or “secondary” inversions.
Pairs of cars form a primary inversion if they are in the same diagonal, with the larger car in a
higher row. Pairs form a secondary inversion if they are in successive diagonals, with the larger
car in the outer diagonal and in a lower row. For example, for the parking function in Figure 1,
car 8 forms primary inversions with cars 1 and 5, while car 5 forms a secondary inversion with car
3. The set of inversion pairs for this parking function is {(6,4), (7,1),(8,1),(8,5), (5,3),(3,2)},
so dinv = 6 while area = 9.

Conjecture 1 [HLO05], [Hag08, Chap. 5]

H’llb(DRn) — Z qdinv(ﬂ')tarea(n-)’ (3)

where the sum is over all parking functions on n cars.

Remark 1 In a recent preprint, Armstrong [Arm10] introduces a hyperplane arrangement model
for Hilb(DR,,) involving a pair of hyperplane arrangements with a statistic associated to each one.
See also [AR]. He gives a bijection with parking functions which sends his pair of hyperplane
arrangement statistics to (ared, bounce), another pair of statistics which Haglund and Loehr
showed have the same distribution over parking functions as (dinv, area).

In this article we use a plethystic summation formula of Garsia and Zabrocki for Macdonald
Pieri coefficients to show how (Ve,, h}) can be expressed as an element of Z[g,t]. The most
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Figure 2: The leg, coleg, arm, and coarm of a square

elegant way of expressing our result is to say that Hilb(DR,,) is the coefficient of z129--- 2, in
a certain multivariate Laurent series (see (54)). We are currently unable to see how our result
implies a positive formula such as Conjecture 1, but are hopeful that further work will lead to
such applications.

2 Background Material

For p b n, and s a square of the Ferrers diagram of u, let I(s),a(s),l'(s),a’(s) denote the
leg, arm, coleg, coarm, respectively, of s, i.e. the number of squares above s, to the right of s,
below s, and to the left of s, as in Figure 2. Furthermore let

M=Q0-q(1-1t), By=> t¢", M= [ A-t"¢"), wp=]]" -t —¢*™).

sep
sep 52£(0.0) SEN

(4)

The known expansion

H,(X;q,t)MIL,B
en(x) = 3 wi et (5)
ukn
then implies
T,H,(X;q,t)MIL,B
Ven(x) = 37 DB X 0 DML By ()

w
ukn ®

Letting F,, = <ﬂu7 hY), by taking the scalar product of both sides of (6) with respect to A} we
get

T,F,MIL,B,
wy, '

Hilb(DR,,) = » (7)

ukn



Let - be the operation on symmetric functions which is adjoint to multiplication with respect
to the Hall scalar product, i.e. for any symmetric functions f, g, h

(frg.h) = (g, fh). (8)

If uknand vFn—1, then v — p means v is obtained from p by removing some corner square

of pu, and p < v means p is obtained from v by adding a single square to the Ferrers shape
1

of v. Define generalized skew Pieri coefficients c{;,,(q,t) and Pieri coefficients dﬁ,,(q,t) by the

formulas

~ L ~
FrHU(Xq,t) = el (0, )Hy (X5 q,1) (9)
v
fH,(X;q,t Zdw q,t)Hu(X:q,1). (10)
;u—u

Many of the identities in this paper are expressed using plethystic notation, defined as follows.
If pr(X) = >, xF is the kth power sum, then for any expression E, the plethystic substitution
of F into pg is obtained by replacing all indeterminates in E by their kth powers. We denote
this by pg[E], so for example

PRIX (1 = 1)] = pr(X)(1 — t*). (11)

For any symmetric function f(X), we define f[E] by first expressing f as a polynomial in the
Pk, then replacing each py by pi[E].

The c{;l,, and the d{;,, are related via [GHO02, (3.5)]

L
c{;,,wy = d;‘j,f,,[X/M}wu, (12)

]

where w is the linear operator on symmetric functions satisfying wsy = sy. Note dﬁ]f} [X/m) _

X]/M We abbreviate ci1;(q,t) by ¢y, and dhl[X/M]( ,t) by dy .

A special case of Macdonald’s Pieri formulas [Mac95, Section 6.6] gives an expression for
d,,, as a quotient of factors of the form (t2q® — t°q%), where a, b, ¢, d have simple combinatorial
descriptions. Garsia found a simplification in this formula, which Garsia and Zabrocki used to
obtain the k = 1 case of the following summation formula [GZ05]. The proof of the result for
general k appears in [BGHT99] and [Garl0).

1/M if k=0,

2 Tt =4 e - (13)
(—1)*ex_1[MB, — 1]/M itk>1,

;u—u

where throughout this article 7" is an abbreviation for 7),/T,. Eq. (13) is closely related to a
corresponding summation formula involving the ¢, , [GT96, Theorem 2.2].
As an exercise in plethystic notation, we show that (13) implies the following.

Lemma 1

kO if k=0,
Z: (1 =TT = {(—1)k_1ek[MB,,]/M ifk>1" 14)



Proof. If k =0 the lemma follows immediately from (13), so assume k& > 1. We begin with the

“addition formula” (see [Hag08, pp. 19-22])

M-

ex[X = Y] = ej[X]ex—;[-Y].
7=0
This implies that
k—1
€k71[MBV - 1] = €j [MBy]ekflfj[—l].
j=0

Now for any symmetric function f of homogeneous degree n,

fI=X]= (=D)"wf(X),

(15)

(16)

(17)

so in particular e;[—1] = (—=1)7h;[1] = (—1)/. Using this, the right-hand-side of (16) simplifies

to
k—1 '
¢j[MB,)(-1)F 1.
j=0
Thus
> Mdy, (1-T)T% =" Md,,T" - Y Md,,T""
w w w
p—v p—v pe—v
k—1 ‘ k '
= (=D"Y gIMBI(=1) T+ (=DM Y ey [MB, (1)
§=0 §=0
= (=" e [MB,).
The following simple fact will be useful later.
Lemma 2
tk _ qk
(=1 Ley[M]/M = . k>1.
- q

Proof. Begin by setting X =1 —¢, Y =1 —t in the Cauchy identity

e[ XY] =D s\[X]sy[Y].
AFE

Using the well-known fact that for any z € C, A F n,

SA[l—Z]:{(_Z)T(l—Z) eilie/\:(n_r’lr)7 0<r<n-—I,
we get
k—1
er[M] =) (=a)" (1 —g)(=t)* 17" (1 - 1),
r=0

which is equivalent to (22).

(18)

(24)

(25)



3 A New Recursive Procedure to Generate the Hilbert Series

By definition we have

efﬁu()aq’t) = Z Cu,yﬁu(X;Qat)' (26)

v
v—

Taking the scalar product of both sides with respect to hrf_l we get
(et Hyo by 1) = (Hyoerhi ™) = Fy = Y e (27)
v—p

Plugging this recurrence for the F), into (7) yields

) T,MI1,B

Hilb(DR,,) = ) “T*‘“ >k (28)
ukn Vi#
B,II T
= > R e (29)
Wu
vkn—1 ©
He—v
Now from (4) we see

B,=B,+T, II,=IL(1-T). (30)

Using this and the f = e; case of (12) in (29) we get

T, F, MTI,
Hilb(DR,) = »  ~“2—2 " d,, (B, +T)(1 - T)T. (31)
vkn—1 Wy uiv
By (14) this implies
T,F,MIL, [e,[MB,]ei[MB, MB,
Hilb(DR,) = Y (61[ JalMB,] _ el ]>.

Wy

2

M M M (32)

vkn—1

(Although e;[M B,|/M can be expressed more simply as e;[B,], leaving (32) in the above form
will prove more useful in the sequel.)

We now iterate the argument; first re-index the sum in (32) as a sum over g - n — 1, and

replace F, by >, u CuFy Then write B,, as B, + T as before, and reverse summation to get

Hilb(DR,) = % -
vEn—2 v
X Yy, (1= T)T (el[M(JE +T)] el[M(J]I\ZZ, +T)] eQ[M(f; n T)]) |

pe—v

Note that by (15), for k > 1

k—1
_ M(B,+T —j
(_1)k IW — by —|—Tkak + Z—Mbka Jak,j, (34)
Jj=1



where we have abbreviated (—1)/~1e;[M]/M by a; and (—1)"'e;[MB,]/M by b; = bj(v).
Here we have used the fact that ex[MT]/M = T*ex[M]/M (since for any expression p;[XT] =
T7p;[X]). Note also that a; = 1. The inner sum in (33) thus becomes

Z dyuy(1=T)T ((b1 + Ta1)* + baar + T?az — Mb1Tay) (35)
e
= b3 + 2byarby + albs + arboby — Mbialby + ajasbs (36)
by (14).
Let
A =b (37)
Ay = b? 4 byay (38)
Az = b3 + 2bjarby + atbs 4 ajbeby — Mbiaiby + ajasbs. (39)
The above discussion implies
Theorem 1 Forpe N, 1 <p<n,
Hilb(DR,) = ) %JYH”AP, (40)

vkEn—p+1

where A, = A,(v) is a certain polynomial in the a;,b;. Moreover, A, can be calculated re-
cursively from Ap_1 by the following procedure. First replace each by in Ap—_1 by by + Tka;, —
Z;:i Mbka*jak,j. Then multiply the resulting expression out to form a polynomial in T, say
> T (41)
J
Finally, replace TV by bjt1, i.e.
Ap = Z cjijrl- (42)
J
(We replace T7 by bjt+1 since, after multiplying the expression above out to get chTj, we still
have another factor of T coming from the outer sum. Applying (14) replaces T7! by bit1.)

We now give a non-recursive expression for A,. Let @, denote the set of all n x n upper-
triangular matrices C of nonnegative integers which satisfy

Jj—1 n
_Zcij —|—Zcﬁ =1, foreachj, 1<j<n. (43)
i=1 i=j
For example,
Q1 ={[1]} (44)
1 0| |0 1
@2 {[0 1]’[0 2]} (45)
1 00 1 00 01 0 010 010 0 0 1 0 0 1
Q:;={|0 1 0[,|0 O 1{,|0 2 O|,(0 1 1|,]{0 O 2(,]|0 1 Of,|0 O 1|}
0 0 1 0 0 2 0 01 0 0 2 0 0 3 0 0 2 0 0 3
(46)



Geometrically, the condition (43) says that for all j, if we add all the entries of C in the jth row
together, and then subtract all the entries in the jth column above the diagonal, we get 1. Note
that these conditions imply that each row of C' must have at least one positive entry.

For C € @y, let Pos(C') denote the multiset of positive entries in C, and pos(C') its cardinality.

Theorem 2 For1 <p<n and Ay, b;, a; as above,

AP = Z (_M)pOS(C)in H bcii H Qe - (47)

CeQyp ci;€Pos(C) ¢ij € Pos(C)
i<j

Proof. Given C € @, note that each row of C' must have at least one positive entry, and so
pos(C) — n can be viewed as the number of pairs of positive entries in the same row, with no
other positive entries between them. Let C’ denote the element of @, _1 obtained by adding
each of the entries in the last column of C' to the diagonal, then removing the last column and
last row, i.e.

c/,:{cij AL i<not (48)
Cii + Cin ifj=1

For example, if

o O O O
SO O =
o O O O
== N O

then
010
c'"=10 2 0f. (50)
0 01

The various elements C' € Q,, for which C’ is a fixed element W of @Q),_1 can be obtained by
the following procedure. First choose an integer k for each 1 <7 < mn — 1 such that 0 < k < wy;,
and set ¢;; = w;; — k, ¢ijp = k. Then let ¢, = 1+ Z;le cjn and ¢;; = w;j for i < j < mn — 1.
In this procedure, if 0 < k < w;; the number of positive entries in row ¢ increases by one, or
equivalently we get a new pair of positive entries with no positive entry between them. It is
now easy to see this process mirrors the recursive description of the A, described above, and
the result follows by induction on n. O

Corollary 1

Hilb(DRn) = Z (_M)pos(C)*n H [Cij]q,ta (51)
CeQn cijGPas(C)
1<i<j<n

where [k]q+ = (t* — ¢¥)/(t — q) is the q,t-analog of the integer k.



Proof. Letting p = n in (40), the sum over pu contains only one term, namely p = (1). Now if
p = (1), (22) shows b;(u) = a;(n) = [jlg,+- From (4) one sees that By = 1,11y = 1,w) = M,
and so (40) reduces to (51). O

Example 1 The weights associated to the elements of Qs, listed in the same left-to-right order
as in (46) are

Lo t+g t4g —M{t+q, (t+aE+at+d), t+g +gt+q.  (52)
Thus Hilb(DR3) is the sum of these terms, namely
14 2q + 2t +2¢° + 3qt + 26> + ¢ + ¢*t + qt* + 3. (53)

The sequence 1,2, 7,40, 357, 4820, ... consisting of the cardinalities of the sets @1, Q2, @3, . ..
form entry A008608 in Sloane’s on-line encyclopedia of integer sequences. In fact, it was com-
paring the number of monomials in A, for small n with sequences in Sloane’s encyclopedia
that led the author to the discovery of the non-recursive expression for the A, in terms of the
elements of @),. The sequence was introduced to Sloane’s list by Glenn Tesler, who in a private
conversation with the author said they arose in unpublished work of Tesler’s from the late 1990’s
on plethystic expressions for Macdonald’s D,,, operators. Although Tesler doesn’t recall any
further details about this work, we will refer to elements of Q),, as “Tesler matrices”.

The explicit formula (51) for Hilb(DR,,) can be formulated as a constant term identity.

Corollary 2 For n > 1, Hilb(DR,,) is the coefficient of z12z9 -+ 2z in

1 (1 —z)(1 — gtz) (1= zi/7)( — qtzi/2;)
(=M™ H (1 —qz)(1 —tz;) 1gg§n (1—qzi/z)(1 —tzi/z;) (54)

=1
Proof. Let
(1 —2)(1 — qtx)
= ) 55
f(x) 1= qn) (1 to) (55)
Expanding f(x) as a Taylor’s series in z about x = 0 gives
f@)=1=M@[gs +2*[2gs + 2 Blgs + -+ 2 klge + ). (56)

Selecting a term of the form —M (z;/z;)¥[k],: in f(zi/z;) corresponds to setting c;; = k in an
associated matrix C' € Q,, while selecting a term of the form —M/(z;)¥[k],; corresponds to
setting ¢;; = k. The condition (43) for the matrix in (51) translates into taking the coefficient
of 2129+ 2, in (54). O

Remark 2 Let

QX) = ha[X], (57)



where hy, = s, is the complete homogeneous symmetric function. Then (54) can be written as

1 (1 —zi/z)(1 — qtz;/zj)
Q(-MZ,) . = (58)
e ME 1 arma e
where Z, = {z1,...,2n}. The argument in the proof of Corollary 2 shows moreover that for
I1<p<mn,
1 (1 —2;/2;)(1 — qtz;/z})
Ap(p) = Q[-MB,Z ! § .
)=t MBAL Tt e %)

1<i<j<p

2”

[13 o
Here |.,...., means “take the coefficient of z1---z,".

Remark 3 Instead of using the recurrence for F), from (27), we could apply et to Ve, and use
(26) to get

T,H,MTIl, (e;[MB,)e;[MB,] es[MB,)]
1 o vily v 1 v] €1 vl €2
Ven= Y o ( i i ) (60)
vkEn—1
More generally, for any integer p, 0 <p <n — 1 we have
T, H, MII
(b PVe, = S 4L w). (61)

vEn—p Wy
For any partition A, as usual let hy = []; sx,. Then (Vey, hy) is the coefficient of the monomial
symmetric function my in the expansion of Ve, into monomials. To try and prove this is in
Z[q,t] by the method of this section we could start by writing h%Ven as a sum over partitions
of n — k, for k an integer in the range 1 < k <n —1. We would then need a formula like (14)
with dl“/ — del[X/M} ek[X/M]

replaced by d,, , but currently no such formula is known.

4 The m-parameter

The formula Ve, for the Frobenius series of DR,, is a special case of a more general result (also
due to Haiman [Hai02]) which says that for any positive integer m, V"™e, is the Frobenius series

(m)

of a certain S,,-module DR;, . Hence, from (6) we have

Hilb(DR{™) = (V™e,, hT) (62)
T™F, M1, B,

— Z I e o) (63)

Using the recursive formula for F},, we can express this as a sum over partitions v of n — 1 as
before. The only difference is that in the inner sum in (31), (1—7)T gets replaced by (1-1)1",
and similarly in the outer sum 7, gets replaced by 177, i.e.

TmF,MII,
Hilb(DR{™) = Y7 e > dyu (B, +T)(1—T)T™. (64)

vkn—1 v pe—v

10



It follows that for any 1 <p <mn,

TmF, MTI,

Wy

Hilb(DR{™) = >~
pFn—p+1

Afm), (65)

where AI(Jm) = Ag)m) (p) is a polynomial in the b;,a; as before. We have Agm) (1) = by, and for
p > 1, we can construct A;m)
A;nf)l by by + T ay, + Zf;% -M bka_j ap—j. Then, multiply the resulting expression out to form
a polynomial in 7" say

recursively by the following procedure. First, replace each by in

ST (66)

J

Finally, replace T7 by bjtm, i.e.

AT =" cibj g (67)
J
In terms of the Tesler matrices, we want the “hook sums” to equal (1,m,m,..., m) instead

of (1,1,...,1). To be precise, define lem) to be the set of upper-triangular matrices C' of
nonnegative integers satisfying

e d 1 ifj=1
— Ci s _|_ [P — ’ . 68
2t 2 {m if2<j<n o
=1 1=
We get the following extensions of the results in the previous section.

Theorem 3 Forl1 <p<mn,m>1, and AI(,m), b, a; as above,

A = 5™ (s T b [ ey (69)

CEQ;E;M) cii€Pos(C) Cij Eii(;'s(C)

Furthermore, the special case p =n of (65) reduces to

Hilb(DR™) = 3= (=) O T] [eijloe. (70)
ceq™ EO

Corollary 3 Forn > 1, Hilb(DRglm)) is the coefficient of z1 25" 25" - 2' in

1y (1—2z)(1 — qtz) (1= 2/2)(1 — gtz )
H H (1—qzi/zj)(1—tzi/zj)‘ (71)

11



5 Conjectures and Open Questions

5.1 Tesler matrices with more general hook sums
In general the coefficient of 2" z5? -+ - 29 in (71) is not a positive polynomial in ¢, ¢, but Maple

calculations suggest it is positive if the a; are positive and nondecreasing.

Conjecture 2 Forn > 1 and «a the reverse of a partition (so 1 < a3 <ag <--- < ay)

@], 2 an s U]
(=M)™ =3 (1= qzi) (1 — tz;) I<iZi<n (1 —qzi/2j)(1 —tz;/2z5) 71 2272
Equivalently, the weighted sum over Tesler matrices with hook sums aq,...,a, is in N|g,t].

We now evaluate the ¢ = 0 case of Conjecture 2. To make the statement more compatible
with the classical theory of symmetric functions, we first reverse a to form a partition y, and
also reverse the z variables, resulting in the statement

1 H (1—2)(1 — gtz;) H (1—2z/2z)(1 - thj/Zi)| 1z _un € N[g, 1]. (73)

iy L = ge) =) L (= gz /a) (1= 15/2) 44

The Hall-Littlewood polynomial @, (X;t) can be defined [Mac95, p. 209-211] as

(1 —2/z) |

Q“(X;t) :Q[(l_t)XZ”] H (1—152]/2)

1<i<j<n

K1 M2 tll«n (74)

21 %2

Using this and (17) it follows that when ¢ = 0, (73) reduces to Q,[—1;t]/(t —1)". From [Mac95,
Exercise 3, p. 226] we have

Q|15 - t”“”H ~ i) (75)

Letting z = 1/t and simplifying we get

where |p| =), ;. This verifies Conjecture 2 when ¢ = 0.

Remark 4 The argument proving Theorem 3 shows that if cy = 1, the coefficient of 2{* z5* - - - 25

in (72) can be obtained by starting with V*e,, applying ell, then applying V3~ applying
ell again, then applying V4~ etc. The author doesn’t know if these polynomials have a

representation-theoretic interpretation for o # (1,m,m,...,m).

5.2 Parking functions and Tesler matrices

In trying to show that (51) implies (3), a natural idea is to try and identify subsets of Tesler
matrix terms from (51) which correspond to subsets of terms from (3). It is easy to see that
the portion of (3) involving those parking functions where car n is in the bottom row equals (3)

12



with n replaced by n — 1, which conjecturally equals Hilb(DR,,—1). Similarly, if we restrict (51)
to those matrices C' with ¢;; = 1, we get Hilb(DR,,—1). Maple calculations indicate the more
general fact that the restriction of (51) to those matrices C' with ¢1; = 1 equals the portion of
(3) where the car in the bottom row is n if i = 1 and @ — 1 if ¢ > 1. For example, the terms in
(51) corresponding to the three matrices with ¢; 2 =1 are

t+q, —M(t+q), (t+q)t>+qt+1t?) (77)

and the sum of these three terms reduces to t? 4 2tq + ¢ + t3 + t2q + tq> + ¢>. One checks that
this equals the sum of ¢4™V¢¥®@ oyer all parking functions on 3 cars with car 1 in the bottom
TOW.

5.3 A refinement of the ¢, t-positivity

Note that [k],; can be expressed as sp_1({q,t}), i.e. the (k — 1)st complete homogeneous
symmetric function evaluated in the set of variables {q,t}. Also, —M =t + q — 1 — gt equals
s1 —1— 511, also in the set of variables {¢,t}. In (51) we can substitute in these Schur function
formulations for [k],+ and —AM, multiply everything out using the Pieri rule for Schur function
multiplication, and thereby obtain a formula for Hilb(DR,,) in terms of Schur functions in the
set of variables {q,t}. If we then cancel terms of the form sy where A has more than two
parts (which becomes zero since our set of variables has only two elements) it appears that the
resulting expression is Schur-positive. For example, for n = 3 the terms from (52) become

1, s1, s1, (s1i—1—s11)s1, S1S2, S1, S, (78)

and the sum of these equals 1 + 2s1 4+ 252 + 511 + s2 — $1.1,1 + s3. Since s1,1,1({¢,t}) = 0, we
can remove this leaving

Hilb(DRg) =1+ 281 + 282 + S1,1 + S2 + S3. (79)

F. Bergeron [Ber09, p.196] has previously conjectured a stronger statement, namely that

Hilb(DRy) = > Ay ({a, 1)), (80)
O’GSn

i.e. that for each permutation on n elements, there is some way of defining a partition (o)
such that the sum of the hy(, gives Hilb(DR;). Here hy = []; sx, as before. When n = 3, the
expansion is

Hilb(DR3) = 1+ 2y + hg + h11 + ha, (81)

in agreement with (79). Bergeron further conjectures that these sums have the remarkable
property that if we evaluate them in the set of variables {q1, g2, ..., qx} we get the Hilbert series
of diagonal coinvariants in k sets of variables, for any k£ > 1. We hope that further study of how
the cancellation in identity (51) results in positivity will lead to progress on the k = 2 case of
Bergeron’s conjecture.
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5.4 Other questions

Conjecture 1 has a more general form [HHLT05] which gives a parking function model for
(V™e,, hy) for any positive integer m and any partition A. Armstrong’s hyperplane arrangement
model [Arm10] includes a parameter m which gives a conjectured combinatorial expression for
(V™ep, hl) for any m € Z. It would be interesting to know if a formula like (54) exists for
(V™ey, hy) for m € Z and X\ a partition.
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