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Abstract

A special case of Haiman’s identity [Invent. Math. 149 (2002), pp. 371–407] for the
character of the quotient ring of diagonal coinvariants under the diagonal action of the
symmetric group yields a formula for the bigraded Hilbert series as a sum of rational functions
in q, t. In this paper we show how a summation identity of Garsia and Zabrocki for Macdonald
polynomial Pieri coefficients can be used to transform Haiman’s formula for the Hilbert series
into an explicit polynomial in q, t with integer coefficients. We also provide an equivalent
formula for the Hilbert series as the constant term in a multivariate Laurent series.

1 Introduction

Let Xn = {x1, . . . , xn}, Yn = {y1, . . . , yn} be two sets of variables and let

DRn = C[Xn, Yn]/
〈

{
∑

i

xh
i yk

i ,∀h, k ≥ 0, h + k > 0}
〉

(1)

be the quotient ring of diagonal coinvariants. Let ∇ be the linear operator defined on the
modified Macdonald polynomial basis {H̃µ(Xn; q, t)}, where µ ⊢ n (i.e. µ is a partition of n), by

∇H̃µ(Xn; q, t) = TµH̃µ(Xn; q, t), (2)

where Tµ = tn(µ)qn(µ′) and n(µ) =
∑

i(i − 1)µi. The symmetric group acts “diagonally” on a
polynomial f(x1, . . . , xn, y1, . . . , yn) by σf = f(xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n)) and this action
extends to DRn. Haiman [Hai02] proved an earlier conjecture of Garsia and Haiman [GH96] that
the Frobenius series of this action is given by∇en(Xn), where en is the nth elementary symmetric
function in a set of variables. (The Frobenius series is obtained by starting with the character
and mapping the irreducible Sn-character χλ to the Schur function sλ.) Since the Frobenius
series of DRn is given by ∇en, the Hilbert series Hilb(DRn) is given by 〈∇en, hn

1 〉 (See [Hag08,
p. 24] for an explanation of why. Here 〈, 〉 is the Hall scalar product, with respect to which the
Schur functions are orthonormal, and h1(X) =

∑

i xi.) This results in a formula for Hilb(DRn)
as an explicit sum of rational functions in q, t, described in detail in the next section. A corollary
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Figure 1: A parking function with area = 9 and dinv = 6

of this formula is that dim(DRn) = (n + 1)n−1. See also [Hai94] and [Ber09] for background
on this problem. We mention that many articles in the literature refer to the space of diagonal
harmonics DHn, which is known to be isomorphic to DRn, and so Hilb(DHn) = Hilb(DRn).

A Dyck path is a lattice path in the first quadrant of the xy-plane from (0, 0) to (n, n)
consisting of unit north N and east E steps which never goes below the diagonal x = y. A
parking function is a placement of the integers 1, 2, . . . , n (called “cars”) just to the right of the N
steps of a Dyck path, so there is strict decrease down columns. An open conjecture of Loehr and
the author expresses Hilb(DRn) as a positive sum of monomials, one for each parking function.
To a given parking function π, we associate two statistics area(π) and dinv(π). The area statistic
is defined as the number of squares strictly below π and strictly above the diagonal. The dinv
statistic is the number of pairs of cars which form either “primary” or “secondary” inversions.
Pairs of cars form a primary inversion if they are in the same diagonal, with the larger car in a
higher row. Pairs form a secondary inversion if they are in successive diagonals, with the larger
car in the outer diagonal and in a lower row. For example, for the parking function in Figure 1,
car 8 forms primary inversions with cars 1 and 5, while car 5 forms a secondary inversion with car
3. The set of inversion pairs for this parking function is {(6, 4), (7, 1), (8, 1), (8, 5), (5, 3), (3, 2)},
so dinv = 6 while area = 9.

Conjecture 1 [HL05], [Hag08, Chap. 5]

Hilb(DRn) =
∑

π

qdinv(π)tarea(π), (3)

where the sum is over all parking functions on n cars.

Remark 1 In a recent preprint, Armstrong [Arm10] introduces a hyperplane arrangement model
for Hilb(DRn) involving a pair of hyperplane arrangements with a statistic associated to each one.
See also [AR]. He gives a bijection with parking functions which sends his pair of hyperplane
arrangement statistics to (area′, bounce), another pair of statistics which Haglund and Loehr
showed have the same distribution over parking functions as (dinv, area).

In this article we use a plethystic summation formula of Garsia and Zabrocki for Macdonald
Pieri coefficients to show how 〈∇en, hn

1 〉 can be expressed as an element of Z[q, t]. The most
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Figure 2: The leg, coleg, arm, and coarm of a square

elegant way of expressing our result is to say that Hilb(DRn) is the coefficient of z1z2 · · · zn in
a certain multivariate Laurent series (see (54)). We are currently unable to see how our result
implies a positive formula such as Conjecture 1, but are hopeful that further work will lead to
such applications.

2 Background Material

For µ ⊢ n, and s a square of the Ferrers diagram of µ, let l(s), a(s), l′(s), a′(s) denote the
leg, arm, coleg, coarm, respectively, of s, i.e. the number of squares above s, to the right of s,
below s, and to the left of s, as in Figure 2. Furthermore let

M = (1− q)(1− t), Bµ =
∑

s∈µ

tl
′

qa′ , Πµ =
∏

s∈µ
s6=(0,0)

(1− tl
′

qa′), wµ =
∏

s∈µ

(qa − tl+1)(tl − qa+1).

(4)

The known expansion

en(X) =
∑

µ⊢n

H̃µ(X; q, t)MΠµBµ

wµ
(5)

then implies

∇en(X) =
∑

µ⊢n

TµH̃µ(X; q, t)MΠµBµ

wµ
. (6)

Letting Fµ = 〈H̃µ, hn
1 〉, by taking the scalar product of both sides of (6) with respect to hn

1 we
get

Hilb(DRn) =
∑

µ⊢n

TµFµMΠµBµ

wµ
. (7)
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Let ⊥ be the operation on symmetric functions which is adjoint to multiplication with respect
to the Hall scalar product, i.e. for any symmetric functions f, g, h,

〈f⊥g, h〉 = 〈g, fh〉. (8)

If µ ⊢ n and ν ⊢ n− 1, then ν → µ means ν is obtained from µ by removing some corner square
of µ, and µ ← ν means µ is obtained from ν by adding a single square to the Ferrers shape

of ν. Define generalized skew Pieri coefficients cf⊥
µ,ν(q, t) and Pieri coefficients df

µ,ν(q, t) by the
formulas

f⊥H̃µ(X; q, t) =
∑

ν
ν→µ

cf⊥

µ,ν(q, t)H̃ν(X; q, t) (9)

fH̃ν(X; q, t) =
∑

µ
µ←ν

df
µ,ν(q, t)H̃µ(X; q, t). (10)

Many of the identities in this paper are expressed using plethystic notation, defined as follows.
If pk(X) =

∑

i x
k
i is the kth power sum, then for any expression E, the plethystic substitution

of E into pk is obtained by replacing all indeterminates in E by their kth powers. We denote
this by pk[E], so for example

pk[X(1 − t)] = pk(X)(1 − tk). (11)

For any symmetric function f(X), we define f [E] by first expressing f as a polynomial in the
pk, then replacing each pk by pk[E].

The cf⊥
µ,ν and the df

µ,ν are related via [GH02, (3.5)]

cf⊥

µ,νwν = dωf [X/M ]
µ,ν wµ, (12)

where ω is the linear operator on symmetric functions satisfying ωsλ = sλ′ . Note d
ωh1[X/M ]
µ,ν =

d
h1[X]
µ,ν /M . We abbreviate ch1⊥

µ,ν (q, t) by cµ,ν and d
h1[X/M ]
µ,ν (q, t) by dµ,ν .

A special case of Macdonald’s Pieri formulas [Mac95, Section 6.6] gives an expression for
dµ,ν as a quotient of factors of the form (taqb − tcqd), where a, b, c, d have simple combinatorial
descriptions. Garsia found a simplification in this formula, which Garsia and Zabrocki used to
obtain the k = 1 case of the following summation formula [GZ05]. The proof of the result for
general k appears in [BGHT99] and [Gar10].

∑

µ
µ←ν

dµ,νT k =

{

1/M if k = 0,

(−1)k−1ek−1[MBν − 1]/M if k ≥ 1,
(13)

where throughout this article T is an abbreviation for Tµ/Tν . Eq. (13) is closely related to a
corresponding summation formula involving the cµ,ν [GT96, Theorem 2.2].

As an exercise in plethystic notation, we show that (13) implies the following.

Lemma 1

∑

µ
µ←ν

dµ,ν(1− T )T k =

{

0 if k = 0,

(−1)k−1ek[MBν ]/M if k ≥ 1
. (14)
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Proof. If k = 0 the lemma follows immediately from (13), so assume k ≥ 1. We begin with the
“addition formula” (see [Hag08, pp. 19–22])

ek[X − Y ] =

k
∑

j=0

ej [X]ek−j [−Y ]. (15)

This implies that

ek−1[MBν − 1] =
k−1
∑

j=0

ej [MBν ]ek−1−j [−1]. (16)

Now for any symmetric function f of homogeneous degree n,

f [−X] = (−1)nωf(X), (17)

so in particular ej [−1] = (−1)jhj [1] = (−1)j . Using this, the right-hand-side of (16) simplifies
to

k−1
∑

j=0

ej [MBν ](−1)k−1−j . (18)

Thus
∑

µ
µ←ν

Mdµ,ν(1− T )T k =
∑

µ
µ←ν

Mdµ,νT k −
∑

µ
µ←ν

Mdµ,νT k+1 (19)

= (−1)k−1
k−1
∑

j=0

ej [MBν ](−1)k−1−j + (−1)k−1
k

∑

j=0

ej [MBν ](−1)k−j (20)

= (−1)k−1ek[MBν ]. (21)

2

The following simple fact will be useful later.

Lemma 2

(−1)k−1ek[M ]/M =
tk − qk

t− q
k ≥ 1. (22)

Proof. Begin by setting X = 1− q, Y = 1− t in the Cauchy identity

ek[XY ] =
∑

λ⊢k

sλ[X]sλ′ [Y ]. (23)

Using the well-known fact that for any z ∈ C, λ ⊢ n,

sλ[1− z] =

{

(−z)r(1− z) if λ = (n − r, 1r), 0 ≤ r ≤ n− 1,

0 else
(24)

we get

ek[M ] =

k−1
∑

r=0

(−q)r(1− q)(−t)k−1−r(1− t), (25)

which is equivalent to (22). 2
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3 A New Recursive Procedure to Generate the Hilbert Series

By definition we have

e⊥1 H̃µ(X; q, t) =
∑

ν
ν→µ

cµ,νH̃ν(X; q, t). (26)

Taking the scalar product of both sides with respect to hn−1
1 we get

〈e⊥1 H̃µ, hn−1
1 〉 = 〈H̃µ, e1h

n−1
1 〉 = Fµ =

∑

ν
ν→µ

cµ,νFν . (27)

Plugging this recurrence for the Fµ into (7) yields

Hilb(DRn) =
∑

µ⊢n

TµMΠµBµ

wµ

∑

ν
ν→µ

cµ,νFν (28)

=
∑

ν⊢n−1

FνM
∑

µ
µ←ν

BµΠµcµ,νTµ

wµ
. (29)

Now from (4) we see

Bµ = Bν + T, Πµ = Πν(1− T ). (30)

Using this and the f = e1 case of (12) in (29) we get

Hilb(DRn) =
∑

ν⊢n−1

TνFνMΠν

wν

∑

µ
µ←ν

dµ,ν(Bν + T )(1− T )T. (31)

By (14) this implies

Hilb(DRn) =
∑

ν⊢n−1

TνFνMΠν

wν

(

e1[MBν ]

M

e1[MBν ]

M
−

e2[MBν ]

M

)

. (32)

(Although e1[MBν ]/M can be expressed more simply as e1[Bν ], leaving (32) in the above form
will prove more useful in the sequel.)

We now iterate the argument; first re-index the sum in (32) as a sum over µ ⊢ n − 1, and
replace Fµ by

∑

ν→µ cµ,νFν . Then write Bµ as Bν + T as before, and reverse summation to get

Hilb(DRn) =
∑

ν⊢n−2

TνFνMΠν

wν
(33)

×
∑

µ
µ←ν

dµ,ν(1− T )T

(

e1[M(Bν + T )]

M

e1[M(Bν + T )]

M
−

e2[M(Bν + T )]

M

)

.

Note that by (15), for k ≥ 1

(−1)k−1 ek[M(Bν + T )]

M
= bk + T kak +

k−1
∑

j=1

−MbjT
k−jak−j, (34)
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where we have abbreviated (−1)j−1ej [M ]/M by aj and (−1)j−1ej [MBν ]/M by bj = bj(ν).
Here we have used the fact that ek[MT ]/M = T kek[M ]/M (since for any expression pj [XT ] =
T jpj [X]). Note also that a1 = 1. The inner sum in (33) thus becomes

∑

µ
µ←ν

dµ,ν(1− T )T
(

(b1 + Ta1)
2 + b2a1 + T 2a2 −Mb1Ta1

)

(35)

= b3
1 + 2b1a1b2 + a2

1b3 + a1b2b1 −Mb1a
2
1b2 + a1a2b3 (36)

by (14).
Let

A1 = b1 (37)

A2 = b2
1 + b2a1 (38)

A3 = b3
1 + 2b1a1b2 + a2

1b3 + a1b2b1 −Mb1a
2
1b2 + a1a2b3. (39)

The above discussion implies

Theorem 1 For p ∈ N, 1 ≤ p ≤ n,

Hilb(DRn) =
∑

ν⊢n−p+1

TνFνMΠν

wν
Ap, (40)

where Ap = Ap(ν) is a certain polynomial in the ai, bi. Moreover, Ap can be calculated re-
cursively from Ap−1 by the following procedure. First replace each bk in Ap−1 by bk + T kak −
∑k−1

j=1 MbjT
k−jak−j. Then multiply the resulting expression out to form a polynomial in T , say

∑

j

cjT
j . (41)

Finally, replace T j by bj+1, i.e.

Ap =
∑

j

cjbj+1. (42)

(We replace T j by bj+1 since, after multiplying the expression above out to get
∑

cjT
j , we still

have another factor of T coming from the outer sum. Applying (14) replaces T j+1 by bj+1.)

We now give a non-recursive expression for Ap. Let Qn denote the set of all n × n upper-
triangular matrices C of nonnegative integers which satisfy

−

j−1
∑

i=1

cij +

n
∑

i=j

cji = 1, for each j, 1 ≤ j ≤ n. (43)

For example,

Q1 = {
[

1
]

} (44)

Q2 = {

[

1 0
0 1

]

,

[

0 1
0 2

]

} (45)

Q3 = {





1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 0 1
0 0 2



 ,





0 1 0
0 2 0
0 0 1



 ,





0 1 0
0 1 1
0 0 2



 ,





0 1 0
0 0 2
0 0 3



 ,





0 0 1
0 1 0
0 0 2



 ,





0 0 1
0 0 1
0 0 3



}.

(46)
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Geometrically, the condition (43) says that for all j, if we add all the entries of C in the jth row
together, and then subtract all the entries in the jth column above the diagonal, we get 1. Note
that these conditions imply that each row of C must have at least one positive entry.

For C ∈ Qn, let Pos(C) denote the multiset of positive entries in C, and pos(C) its cardinality.

Theorem 2 For 1 ≤ p ≤ n and Ap, bj, aj as above,

Ap =
∑

C∈Qp

(−M)pos(C)−n
∏

cii∈Pos(C)

bcii

∏

cij∈Pos(C)

i<j

acij
. (47)

Proof. Given C ∈ Qn, note that each row of C must have at least one positive entry, and so
pos(C) − n can be viewed as the number of pairs of positive entries in the same row, with no
other positive entries between them. Let C ′ denote the element of Qn−1 obtained by adding
each of the entries in the last column of C to the diagonal, then removing the last column and
last row, i.e.

c′ij =

{

cij if j 6= i

cii + cin if j = i
1 ≤ i, j ≤ n− 1. (48)

For example, if

C =









0 1 0 0
0 0 0 2
0 0 0 1
0 0 0 4









, (49)

then

C ′ =





0 1 0
0 2 0
0 0 1



 . (50)

The various elements C ∈ Qn for which C ′ is a fixed element W of Qn−1 can be obtained by
the following procedure. First choose an integer k for each 1 ≤ i ≤ n− 1 such that 0 ≤ k ≤ wii,
and set cii = wii − k, cin = k. Then let cnn = 1 +

∑n−1
j=1 cjn and cij = wij for i < j ≤ n − 1.

In this procedure, if 0 < k < wii the number of positive entries in row i increases by one, or
equivalently we get a new pair of positive entries with no positive entry between them. It is
now easy to see this process mirrors the recursive description of the Ap described above, and
the result follows by induction on n. 2

Corollary 1

Hilb(DRn) =
∑

C∈Qn

(−M)pos(C)−n
∏

cij∈Pos(C)

1≤i≤j≤n

[cij ]q,t, (51)

where [k]q,t = (tk − qk)/(t− q) is the q, t-analog of the integer k.
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Proof. Letting p = n in (40), the sum over µ contains only one term, namely µ = (1). Now if
µ = (1), (22) shows bj(µ) = aj(µ) = [j]q,t. From (4) one sees that B(1) = 1,Π(1) = 1, w(1) = M ,
and so (40) reduces to (51). 2

Example 1 The weights associated to the elements of Q3, listed in the same left-to-right order
as in (46) are

1, t + q, t + q, −M(t + q), (t + q)(t2 + qt + q2), t + q, t2 + qt + q2. (52)

Thus Hilb(DR3) is the sum of these terms, namely

1 + 2q + 2t + 2q2 + 3qt + 2t2 + q3 + q2t + qt2 + t3. (53)

The sequence 1, 2, 7, 40, 357, 4820, . . . consisting of the cardinalities of the sets Q1, Q2, Q3, . . .
form entry A008608 in Sloane’s on-line encyclopedia of integer sequences. In fact, it was com-
paring the number of monomials in An for small n with sequences in Sloane’s encyclopedia
that led the author to the discovery of the non-recursive expression for the An in terms of the
elements of Qn. The sequence was introduced to Sloane’s list by Glenn Tesler, who in a private
conversation with the author said they arose in unpublished work of Tesler’s from the late 1990’s
on plethystic expressions for Macdonald’s Dn,r operators. Although Tesler doesn’t recall any
further details about this work, we will refer to elements of Qn as “Tesler matrices”.

The explicit formula (51) for Hilb(DRn) can be formulated as a constant term identity.

Corollary 2 For n ≥ 1, Hilb(DRn) is the coefficient of z1z2 · · · zn in

1

(−M)n

n
∏

i=1

(1− zi)(1− qtzi)

(1− qzi)(1− tzi)

∏

1≤i<j≤n

(1− zi/zj)(1− qtzi/zj)

(1− qzi/zj)(1− tzi/zj)
. (54)

Proof. Let

f(x) =
(1− x)(1− qtx)

(1− qx)(1− tx)
. (55)

Expanding f(x) as a Taylor’s series in x about x = 0 gives

f(x) = 1−M(x[1]q,t + x2[2]q,t + x3[3]q,t + · · · + xk[k]q,t + · · · ). (56)

Selecting a term of the form −M(zi/zj)
k[k]q,t in f(zi/zj) corresponds to setting cij = k in an

associated matrix C ∈ Qn, while selecting a term of the form −M(zi)
k[k]q,t corresponds to

setting cii = k. The condition (43) for the matrix in (51) translates into taking the coefficient
of z1z2 · · · zn in (54). 2

Remark 2 Let

Ω(X) =

∞
∑

n=0

hn[X], (57)

9



where hn = sn is the complete homogeneous symmetric function. Then (54) can be written as

1

(−M)n
Ω(−MZn)

∏

1≤i<j≤n

(1− zi/zj)(1− qtzi/zj)

(1− qzi/zj)(1− tzi/zj)
, (58)

where Zn = {z1, . . . , zn}. The argument in the proof of Corollary 2 shows moreover that for
1 ≤ p ≤ n,

Ap(µ) =
1

(−M)p
Ω [−MBµZp]

∏

1≤i<j≤p

(1− zi/zj)(1− qtzi/zj)

(1− qzi/zj)(1− tzi/zj)

∣

∣

z1z2···zp
. (59)

Here |z1···zp means “take the coefficient of z1 · · · zp”.

Remark 3 Instead of using the recurrence for Fµ from (27), we could apply e⊥1 to ∇en and use
(26) to get

e⊥1 ∇en =
∑

ν⊢n−1

TνH̃νMΠν

wν

(

e1[MBν ]

M

e1[MBν ]

M
−

e2[MBν ]

M

)

. (60)

More generally, for any integer p, 0 ≤ p ≤ n− 1 we have

(e⊥1 )p∇en =
∑

ν⊢n−p

TνH̃νMΠν

wν
Ap+1(ν). (61)

For any partition λ, as usual let hλ =
∏

i sλi
. Then 〈∇en, hλ〉 is the coefficient of the monomial

symmetric function mλ in the expansion of ∇en into monomials. To try and prove this is in
Z[q, t] by the method of this section we could start by writing h⊥k ∇en as a sum over partitions
of n− k, for k an integer in the range 1 ≤ k ≤ n − 1. We would then need a formula like (14)

with dµ,ν = d
e1[X/M ]
µ,ν replaced by d

ek[X/M ]
µ,ν , but currently no such formula is known.

4 The m-parameter

The formula ∇en for the Frobenius series of DRn is a special case of a more general result (also
due to Haiman [Hai02]) which says that for any positive integer m, ∇men is the Frobenius series

of a certain Sn-module DR
(m)
n . Hence, from (6) we have

Hilb(DR(m)
n ) = 〈∇men, hn

1 〉 (62)

=
∑

µ
µ⊢n

Tm
µ FµMΠµBµ

wµ
. (63)

Using the recursive formula for Fµ, we can express this as a sum over partitions ν of n − 1 as
before. The only difference is that in the inner sum in (31), (1−T )T gets replaced by (1−T )Tm,
and similarly in the outer sum Tν gets replaced by Tm

ν , i.e.

Hilb(DR(m)
n ) =

∑

ν⊢n−1

Tm
ν FνMΠν

wν

∑

µ←ν

dµ,ν(Bν + T )(1− T )Tm. (64)
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It follows that for any 1 ≤ p ≤ n,

Hilb(DR(m)
n ) =

∑

µ⊢n−p+1

Tm
ν FνMΠν

wν
A(m)

p , (65)

where A
(m)
p = A

(m)
p (µ) is a polynomial in the bj, aj as before. We have A

(m)
1 (µ) = b1, and for

p > 1, we can construct A
(m)
p recursively by the following procedure. First, replace each bk in

A
(m)
p−1 by bk +T kak +

∑k−1
j=1 −MbjT

k−jak−j. Then, multiply the resulting expression out to form
a polynomial in T say

∑

j

cjT
j . (66)

Finally, replace T j by bj+m, i.e.

A(m)
p =

∑

j

cjbj+m. (67)

In terms of the Tesler matrices, we want the “hook sums” to equal (1,m,m, . . . ,m) instead

of (1, 1, . . . , 1). To be precise, define Q
(m)
n to be the set of upper-triangular matrices C of

nonnegative integers satisfying

−

j−1
∑

i=1

cij +
n

∑

i=j

cji =

{

1 if j = 1,

m if 2 ≤ j ≤ n
. (68)

We get the following extensions of the results in the previous section.

Theorem 3 For 1 ≤ p ≤ n, m ≥ 1, and A
(m)
p , bj , aj as above,

A(m)
p =

∑

C∈Q
(m)
p

(−M)pos(C)−n
∏

cii∈Pos(C)

bcii

∏

cij∈Pos(C)

i<j

acij
. (69)

Furthermore, the special case p = n of (65) reduces to

Hilb(DR(m)
n ) =

∑

C∈Q
(m)
n

(−M)pos(C)−n
∏

cij∈Pos(C)

1≤i≤j≤n

[cij ]q,t. (70)

Corollary 3 For n ≥ 1, Hilb(DR
(m)
n ) is the coefficient of z1z

m
2 zm

3 · · · z
m
n in

1

(−M)n

n
∏

i=1

(1− zi)(1− qtzi)

(1− qzi)(1− tzi)

∏

1≤i<j≤n

(1− zi/zj)(1− qtzi/zj)

(1− qzi/zj)(1− tzi/zj)
. (71)
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5 Conjectures and Open Questions

5.1 Tesler matrices with more general hook sums

In general the coefficient of zα1
1 zα2

2 · · · z
αn
n in (71) is not a positive polynomial in q, t, but Maple

calculations suggest it is positive if the αi are positive and nondecreasing.

Conjecture 2 For n ≥ 1 and α the reverse of a partition (so 1 ≤ α1 ≤ α2 ≤ · · · ≤ αn)

1

(−M)n

n
∏

i=1

(1− zi)(1− qtzi)

(1− qzi)(1− tzi)

∏

1≤i<j≤n

(1− zi/zj)(1− qtzi/zj)

(1− qzi/zj)(1 − tzi/zj)

∣

∣

z
α1
1 z

α2
2 ···z

αn
n
∈ N[q, t]. (72)

Equivalently, the weighted sum over Tesler matrices with hook sums α1, . . . , αn is in N[q, t].

We now evaluate the q = 0 case of Conjecture 2. To make the statement more compatible
with the classical theory of symmetric functions, we first reverse α to form a partition µ, and
also reverse the z variables, resulting in the statement

1

(−M)n

n
∏

i=1

(1− zi)(1− qtzi)

(1− qzi)(1− tzi)

∏

1≤i<j≤n

(1− zj/zi)(1− qtzj/zi)

(1− qzj/zi)(1− tzj/zi)

∣

∣

z
µ1
1 z

µ2
2 ···z

µn
n
∈ N[q, t]. (73)

The Hall-Littlewood polynomial Qµ(X; t) can be defined [Mac95, p. 209-211] as

Qµ(X; t) = Ω[(1− t)XZn]
∏

1≤i<j≤n

(1− zj/zi)

(1− tzj/zi)

∣

∣

z
µ1
1 z

µ2
2 ···z

µn
n

. (74)

Using this and (17) it follows that when q = 0, (73) reduces to Qµ[−1; t]/(t−1)n. From [Mac95,
Exercise 3, p. 226] we have

Qµ

[

1− z

1− t
; t

]

= tn(µ)
n

∏

i=1

(1− t1−iz). (75)

Letting z = 1/t and simplifying we get

Qµ[−1; t]

(t− 1)n
= [n]!tt

n(µ)+|µ|−(n+1
2 ), (76)

where |µ| =
∑

i µi. This verifies Conjecture 2 when q = 0.

Remark 4 The argument proving Theorem 3 shows that if α1 = 1, the coefficient of zα1
1 zα2

2 · · · z
αn
n

in (72) can be obtained by starting with ∇α2en, applying e⊥1 , then applying ∇α3−α2 , applying
e⊥1 again, then applying ∇α4−α3 , etc. The author doesn’t know if these polynomials have a
representation-theoretic interpretation for α 6= (1,m,m, . . . ,m).

5.2 Parking functions and Tesler matrices

In trying to show that (51) implies (3), a natural idea is to try and identify subsets of Tesler
matrix terms from (51) which correspond to subsets of terms from (3). It is easy to see that
the portion of (3) involving those parking functions where car n is in the bottom row equals (3)

12



with n replaced by n− 1, which conjecturally equals Hilb(DRn−1). Similarly, if we restrict (51)
to those matrices C with c11 = 1, we get Hilb(DRn−1). Maple calculations indicate the more
general fact that the restriction of (51) to those matrices C with c1i = 1 equals the portion of
(3) where the car in the bottom row is n if i = 1 and i − 1 if i > 1. For example, the terms in
(51) corresponding to the three matrices with c1,2 = 1 are

t + q, −M(t + q), (t + q)(t2 + qt + t2) (77)

and the sum of these three terms reduces to t2 + 2tq + q2 + t3 + t2q + tq2 + q3. One checks that
this equals the sum of qdinvtarea over all parking functions on 3 cars with car 1 in the bottom
row.

5.3 A refinement of the q, t-positivity

Note that [k]q,t can be expressed as sk−1({q, t}), i.e. the (k − 1)st complete homogeneous
symmetric function evaluated in the set of variables {q, t}. Also, −M = t + q − 1 − qt equals
s1− 1− s1,1, also in the set of variables {q, t}. In (51) we can substitute in these Schur function
formulations for [k]q,t and −M , multiply everything out using the Pieri rule for Schur function
multiplication, and thereby obtain a formula for Hilb(DRn) in terms of Schur functions in the
set of variables {q, t}. If we then cancel terms of the form sλ where λ has more than two
parts (which becomes zero since our set of variables has only two elements) it appears that the
resulting expression is Schur-positive. For example, for n = 3 the terms from (52) become

1, s1, s1, (s1 − 1− s1,1)s1, s1s2, s1, s2, (78)

and the sum of these equals 1 + 2s1 + 2s2 + s1,1 + s2 − s1,1,1 + s3. Since s1,1,1({q, t}) = 0, we
can remove this leaving

Hilb(DR3) = 1 + 2s1 + 2s2 + s1,1 + s2 + s3. (79)

F. Bergeron [Ber09, p.196] has previously conjectured a stronger statement, namely that

Hilb(DRn) =
∑

σ∈Sn

hλ(σ)({q, t}), (80)

i.e. that for each permutation on n elements, there is some way of defining a partition λ(σ)
such that the sum of the hλ(σ) gives Hilb(DRn). Here hλ =

∏

i sλi
as before. When n = 3, the

expansion is

Hilb(DR3) = 1 + 2h1 + h2 + h1,1 + h3, (81)

in agreement with (79). Bergeron further conjectures that these sums have the remarkable
property that if we evaluate them in the set of variables {q1, q2, . . . , qk} we get the Hilbert series
of diagonal coinvariants in k sets of variables, for any k ≥ 1. We hope that further study of how
the cancellation in identity (51) results in positivity will lead to progress on the k = 2 case of
Bergeron’s conjecture.
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5.4 Other questions

Conjecture 1 has a more general form [HHL+05] which gives a parking function model for
〈∇men, hλ〉 for any positive integer m and any partition λ. Armstrong’s hyperplane arrangement
model [Arm10] includes a parameter m which gives a conjectured combinatorial expression for
〈∇men, hn

1 〉 for any m ∈ Z. It would be interesting to know if a formula like (54) exists for
〈∇men, hλ〉 for m ∈ Z and λ a partition.
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