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ABSTRACT. In classical rook theory there is a fundamental relationship between the
rook numbers and the hit numbers relative to any board. In that theory the k-th
hit number of a board B can be interpreted as the number of permutations whose
intersection with B is of size k. In the case of Ferrers boards there are g-analogues
of the hit numbers and the rook numbers developed by Garsia and Remmel [GaRe],
Dworkin [D1], [D2] and Haglund [H]. In this paper we develop a rook theory appro-
priate for shifted partitions, where hit numbers can be interpreted as the number of
perfect matchings in the complete graph whose intersection with the board is of size
k. We show there is also analogous ¢-theory for the rook and hit numbers for these
shifted Ferrers boards.

INTRODUCTION. PERFECT MATCHINGS AND ROOK BOARDS

In classical rook theory there is a fundamental relationship between the rook
numbers and the hit numbers relative to any board. A board B is a subset of the
n X n board A, pictured in Fig. 1.
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2 J. HAGLUND AND J. B. REMMEL

Given a board B C A,,, we let Ri(B) denote the set of all k element subsets p
of B such that no two elements of p lie in the same row or column. Such a set p is
called a rook placement of nonattacking rooks on B and r(B) = |Ry(B)| is called
the k-th rook number of B. For example, if B C A, is the board consisting of all
shaded squares in Fig. 2, then ro(B) =1, r1(B) =6, r2(B) = 10, r3(B) = 4, and
T4(B) =0.
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FIGURE 2

Given a permutation o in the symmetric group S, we identify ¢ with the rook
placement p, = {(¢,7) : o(¢) = j}. We then define Hy ,,(B) to be the set of all
o € S, such that |p, N B| = k and we call hy ,,(B) = |Hg,»(B)| the k-th hit number
of B relative to A,,. One can easily prove the following formula which relates the
rook numbers r;(B) to the hit numbers hy ,(B) for any board B C A,,.

7

> hen(B)(z+ 1) =) ri(B)(n — k)=, (1)

k=0

That is, it is easy to see that the left-hand side of (1) equals the sum

> AT (2)

(T,po)
TCposNB

However, the right-hand side of (1) also counts (2) since we can first pick T' € Ri(B)
and then extend it to a placement p, for some o € S, in (n — k)! ways.
Replacing z by z — 1 in (1) gives the following classical formula of Riordan and

Kaplansky [KaRi]

7

> hen(B)F =D ri(B)(n — k)i(z — 1)k, (3)

k=0

Garsia and Remmel [GaRe| gave a g¢-analogue of the rook numbers and hit
numbers for a certain collection of boards B C A, called Ferrers boards. Let
Alay,as,... ,a,) denote the board B contained in A, consisting of all squares
{(2,7) : 7 < a;}. For example, A(1,2,2,3) is pictured in Fig. 3.



4
3
=A(L, 2 2 3)
2
1
1 2 3 4
FIGURE 3
Thus A(ay,as,... ,a,) denotes the board whose column heights reading from
left to right are ay,az,...,a,. We shall call a board A(ay,az,...,a,) € A, a
skyline board. A(ay,az,... ,a,)is called a Ferrers board if a3 < ay < -+ < ay,.

Let F = A(ay,as,... ,a,) be some fixed Ferrers board contained in A,,. Given a

placement p € Ri(B), let each rook r cancel all squares to its right and all squares
below r. We let up(p) denote the number of squares of F' which are uncancelled,
i.e. the number of squares which are neither in p nor cancelled by a rook in p. For
example, if F'= A(1,2,2,3,4,4) and p is the placement of R3(F) consisting of the
squares containing an z in Fig. 4, then we put dots e in the squares which are
cancelled by a rook in p. Then up(p) = 5 is the number of uncancelled squares, i.e.
the squares which contain neither a dot nor an .

u-(p) =5
X | u F
X | | | | | | | |
| | X | | | |
FIGURE 4

Garsia and Remmel [GaRe] then defined a ¢-analogue of ri(F') by setting

r(Foq)= > ¢, (4)

PERL(F)
Garsia and Remmel proved [GaRe] that if F' = A(aq,... ,a,) where 0 <ay <--- <
an, < n, then

[T +a+i-1=> rew(F o] L (5)
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where [n] = 1+ ¢+4...+¢" ' ==L and [n] = [n][n—1]---[n — k + 1]. We also

1—¢q

define [n]! = [n][n — 1] -+ [2][1] and

=

Garsia and Remmel also defined a g-analogue of the hit numbers, hy »(F,q), for
Ferrers boards by the formula

n n

Y hea(Fog)zt =) r(Egh -k [ (-4

k=0 t=n—k+1

Garsia and Remmel proved that hy ,(F,¢) is a polynomial in ¢ with nonnegative
coefficients. In fact, they proved that there is a statistic sp(p) such that

hian(F,q) = Z ¢, (6)

pEHE n (L)

However, Garsia and Remmel did not provide a direct description of sz (p) but only
defined sp(p) indirectly via a recursive definition. Later Dworkin [D1], [D2] and
Haglund [H] independently gave direct descriptions of statistics sg q¢(p) and sp (p)
on p € Hy ,,(F) such that

hin(F,q) = Z qSF,d(p) — Z qSF,h(p)‘

PEHE n(I) pEH »(F)

The Dworkin statistic sg q(p) and the Haglund statistic sz ;(p) have very similar
descriptions. Given a placement p € Hy, ,(F'), first let each rook cancel all squares
to its right. Then for each rook r = (¢,7) which is not in F, r cancels all squares
below r which are not in F. Finally for each rook r = (¢,7) in F, in the Dworkin
statistic the rook cancels all squares below r, plus all squares off the board in its
column, and sg 4(p) is the number of uncancelled squares. In the Haglund statistic,
each rook r in F' cancels all squares in F' which lie above r, plus all squares off the
board in its column, and sg ,(p) is the number of uncancelled squares. For example,
in Fig. 5, we picture the two types of cancellations for a placement p € Hj ¢(F)
where F' = A(1,4,4,4,4,4). Once again, we indicate the squares of the placement
by placing an = in those squares and we indicate the cancelled squares by placing
a dot in the cancelled squares.

We should note that the methods of proof employed by Dworkin [D] and Haglund
[H] are very different and up until now there was no known weight preserving bi-
jection which shows that both statistics give rise to the same g-analogue of the
hit numbers for Ferrers boards. (As part of our research for this article we dis-
covered such a bijection, which we describe in section 5). Indeed, it is easy to
see that the definitions of s 4(p) and spp(p) make sense for any skyline board
F=A(ay,... ,a,). However, Dworkin proved combinatorially that for any skyline
board F = A(aq,... ,a,) and any permutation o € S,

Z qSF,d(P) — Z qsc(F),d(p) (7)

pEHL(F) pEH(o(F))
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FIGURE 5

where 0(F) = A(ay(1), ... ,Ug(n)). Haglund showed that (7) does not always hold
if sp4(p) and s,(p) a(p) are replaced by sp p(p) and s,(p) 5(p) respectively.

The main purpose of this paper is to prove analogues of the results described
above where we replace permutations by perfect matchings. Our work was initially
inspired by unpublished work of Reiner and White [ReWh], who suggested that one
consider the board Bs, pictured in Fig. 6.

2 3 = u " 2n-1 2n

2n

2n-2

2n-1

FIGURE ©

Note that for the board A,, a rook placement p is just a partial permutation,
i.e. a set of squares of A, that can be extended to a permutation p, for some
o € S,. For the board Bs,, we replace permutations by perfect matchings of the
complete graph K5, on vertices 1,2,... ,2n. That is, for each perfect matching m
of Ky, consisting of n pairwise vertex disjoint edges in Ks,, we let p,, = {(7,J) :
i < jand {i,j} € m} where (7,7) denotes the square in row ¢ and column j of By,
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according to the labeling of rows and columns pictured in Fig. 6. For example, p,,
is pictured in Fig. 7 where m = {{1,4},{2,7},{3,5},{6,8}} is a perfect matching
of Ky.

FIGURE 7

For the board Bs,,, we thus define a rook placement to be a subset of some p,,
for a perfect matching m of Ks,. Given a board B C By, we let M;(B) denote
the set of k element rook placements of B and let my(B) = |My(B)|. Similarly,
we let Fy on(B) = {pm : |[pm N B| = k and m is a perfect matching of K, } and let
fr2n(B) = |Fr2n(B)|. We call mp(B) the k-th rook number of B and fj 2,(B) the
k-th hit number of B. One can prove that

D Fran(B)Z =) mr(B)(n — k(2 - 1)F (8)

in much the same way that one proved (3). Here we let

nlt=[]2i-1) and (]t = [l2i — 1.
i=1 =1
The analogue of a skyline board in this setting is a board B(ay,asz,... ,a,) =
{(;+7) : 1 <3 < a;}. Thus B(ay,asz,...,azp—1) is the board whose row
lengths are ay,as, ... ,az,—1 respectively. We say that B(ay, ... ,az,—1) is a shifted
Ferrers board if 2n — 1 > ay > ag > --- > as,—1 > 0, and the non-zero entries
of ay,... ,az,—1 are strictly decreasing. For example, B(5,3,2,1,0,0,0) C Bg is

pictured in Fig. 8.

We note that if we identify a board B C By, with the graph Gp = (V, Ep)
where V ={1,... ,2n} and Ep = {{i,j} : (i,j) € B}, then the graph of a shifted
Ferrers board is called a threshold graph in the graph theory literature.

Our investigation of rook numbers and hit numbers was, in part, motivated by
trying to find a ¢-analogue of the following formula of Reiner and White which
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FIGURE 8

holds for any shifted Ferrers board F' = B(aq, ... ,a2,—1) C Bap.

ﬁ (@ 4 azn—i =20 4 2) = i mi(F)(x) Llan—1-k - (9)

=1 k=0

Here (2) |lx= a(a —2)(x —4)---(x — 2k + 2). We can define ¢-rook numbers for
which a g-analogue of Reiner and White’s formula (9) holds as follows. We say
that rook (7,7) with ¢ < j in a rook placement rook-cancels all cells (7,s) in B,
with ¢ < s < j and all cells (¢,75) and (¢,7) with ¢+ < ¢. For example the cells
rook-cancelled by (4,7) in Bg are pictured in Fig. 9.

2 3 4 5 6 7 8

1 . .
2 . .
3 . .
4 . . X
5
6
7
FIGURE 9
Given a shifted Ferrers board F = B(ay,... ,a3,-1) C Bz, and a placement

p € Mi(F), we let up(p) denote the number of cells of F which are neither in p nor
rook-cancelled by a rook in p. Then we define

my(F.q) = Z q”F(P)' (10)

pEmME(B)
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This given, we shall prove the following ¢-analogue of (9).

2n—1 2n—1
H [l‘ + a2n—i — 2 + 2] = Z mk(F7Q)[x] llZn—l—k (11)
i=1 k=0

where [z] || r= [z][z — 2]+ [x — 2k 4+ 2].
We define the ¢g-analogue of the hit numbers for F' by defining fi. »,(F. ¢) via the
formula

7

Y fean(F) =) mp(Fgn =k [ (= =¢*7"). (12)
j=0 k=0

i=n—k+1

We shall show that one can define a Dworkin type statistic tz(p) for p € Fi(F)

such that
fk,Zn(Fv Q) - Z th(p) (13)
PEFL(F)

so that (12) ensures that the fj 2,(F,q) are polynomials in ¢ with nonnegative
coefficients. We note that the ¢g-rook numbers my(F, ¢) appear as a special case of a
more general rook placement model due to Remmel and Wachs [ReWa]. Our results
suggest that there is a natural extension of ¢-hit numbers that can be defined in
their model. However, there is no obvious way to define the analogue of our perfect
matchings in the Remmel-Wachs model much less how one could find a statistic.

The outline of this paper is as follows. In section 1 we develop basic results
for the ¢ = 1 case of rook numbers and hit numbers for shifted Ferrers boards.
In section 2 we define natural g-analogues of the rook and hit numbers for shifted
Ferrers boards and prove some basic identities that these numbers satisfy. Our basic
definition of the ¢-hit numbers for shifted Ferrers boards is algebraic. However we
also define a combinatorial interpretation of these numbers. In section 3 we prove
the combinatorial interpretation and the algebraic definition of the ¢-hit numbers
for shifted Ferrers boards are the same. Section 4 contains a number of algebraic
identities satisfied by the g-rook and ¢-hit numbers for shifted Ferrers boards, which
are used in the proofs of our theorems. In section 5 we introduce new families of
statistics for the ¢-hit numbers in both the classical Ferrers board and shifted
Ferrers board case so that ¢-counting permutations/perfect matchings with respect
to these statistics generate the corresponding ¢-hit numbers. In the classical case
this will give a direct proof that the statistics introduced by Dworkin [D1], [D2]
and Haglund [H] give rise to the same ¢-hit numbers.

1 BASIC RESULTS FOR ROOK NUMBERS AND HIT NUMBERS FOR BOARDS IN By,

In this section, we shall prove a number of basic results for the hit numbers and
rook numbers for boards contained in By,. Let PM(B2,) = {pm : m is a perfect matching of K»,}.
It is easy to see that |[PM(Bsyy,)| = nll. That is, there are 2n — 1 choices for
an edge that contains vertex 1, ie. {1,7},¢ = 2,...,2n. If we pick an edge
{1,7}, then the number of ways to complete {1,;} to a perfect matching of K,
is clearly just the number of perfect matchings on the complete graph on ver-

tices {1,...,2n} — {1,75}. Thus |PM(Bs,)| = (2n — 1)|PM(Bz2,—2)| and hence
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|PM(Bzy)| =1x3x---x(2n —1) = n!l by induction. More generally, it follows
that if we are given k pairwise vertex disjoint edges {i1,71},... , {tg,Jr} in Koy,
then the number of ways to extend {iy,71},...,{ix,jx} to a perfect matching of
Ky, is equal to |PM(Ban—2k)| = (n — k)L

Now recall that given a board B C By, , Fjon(B) = {pm € PM(B3y,) : |pm N
B| = k} and the k-th hit number of B is fi on(B) = |Fr2n(B)|. Aset p C Bis a
rook placement of B if p C BN py, for some p,, € PM(Bs, ). We let M (B) denote
the set of all k-element rook placements of B and we define my(B) = |My(B)| to
be the k-th rook number of B.

Our first result is the analogue of (1) for Bay,,.

Theorem 1. Let B be a board in Bsy,,. Then

ka,zn( (z 4+ 1) ka (n — k)Nzk. (14)
k=0

Proof. It is easy to see that the left-hand s1de of (14) is just
Z 71 (15)

pPm EPM(Bap)
On the other hand, for each rook placement T' C B, there are (n — k)!! ways to
extend T to a perfect matching p,, € PM(Bsz,) if |T| = k so that the right-hand
side of (14) is also equal to (15). O
Note if we replace z by z — 1 in (14), we get the following analogue of the
Riordan-Kaplansky formula (3) for any B C Ba,.

> fran(B)z Z mi(B)(n — k)!(z — 1), (16)

Next we prove a number of s1mple recursions for the rook numbers and hit
numbers of By,-boards. To this end, given a board B C By, and a pair (7,j) € B
with ¢ < j, we define two boards, B/(t,5) and B/(¢,7). B/(4,7) is just the board
which is the result of removing the square (7,j) from B. B/(i,j) is the board
contained in By, _ which is obtained as follows. First let 0(21?) denote the set of

all squares of B, which have either ¢ or j as a coordinate. It is easy to see that
By, — C(Z"]) will be a copy of By,_2 except that it will involve the coordinates
{1,...,2n} — {4,7} instead of {1,...,2n — 2}. Thus we can isomorphically map
the resulting board onto Bj,,_2 by sending a coordinate k to ¢; ;(k) where

k if k<1
gOiJ(k): E—1 ife<k<y
k—2 ifj <k

Then L

B/(i,j) = {(¢ij(s).0ij(t) : (s,1) € B~ C{y ).
This process is pictured in Fig. 10 for the board B = B(6,4,3,2,0,0,0) and
(1,7) = (3,5). In Fig. 10, we construct B/(3,5) and B/(3,5) and we indicate the

cells in Bg which have a coordinate equal to 3 or 5 by placing dots in those squares.
This given, we have the following.
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2 3 4 5 6 7 8
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FiGure 10

Theorem 2. For any board B C By, and (i,7) € B,

(1) mi(B) = mu(B/(1,5)) + mi—1(B/(1,])). (17)

(1)  fran(B) = fran(B/(1,5) + fam1,20—-2(B/(i,])) = fran—2(B/(i,7)). (18)
Proof. For recursion (i), we simply classify the k-element rook placements p accord-
ing to whether (¢,7) € p. That is, let M,(Ci’j)(B) ={p € My(B):(i,5) € p}. Then it
is easy to see that My(B/(i,j)) = Mk(B)—M,(Ci’j)(B). Moreover ; ; inducesal:1
correspondence between M,(Ci’j)(B) and My_1(B/(7,7)). That is, if p € M,(Ci’j)(B),
then we let ¢; ;(p) = {(¢i,;j(s),9i;(t)) : (s,t) € p—{(z,7)}}. Recursion () easily
follows.

To prove recursion (i¢), we again partition the p,, € Fj2,(B) into two sets
according to whether (¢,7) € pp. Let F,gjé]n)(B) = {pm € Fran(B) : (¢,7) € pm}-

Again ¢, jinducesal : 1 correspondence between F,glé]n)(B) and Fy_1 2n—2(B/(1,7))

where if p,, € Fzﬁfé‘Q(B)a then @i j(pm) = {(#i,j(s), 0ij(1) : (5:8) € pm — {0, 1)} ]
Next consider Fi an(B/(i,7)). Note that Fion(B/(i,j))—F\5 (B/(i,7)) = Fkan(B)—
F,glé]n)(B) That is, if (¢,7) € pm, then |p, N B| = |pm N B/(7,7)|. By the same
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argument as above ; ; induces a 1 : 1 correspondence between F,glé‘Q(B/(z,j)) and

Fron—2((B/(1,7))/(¢,7)). However, it is‘e‘asy to see that (B/(¢,7))/(¢,5) = B/(4,7).
Thus |F2n(B/(i, )| = |Fr.an(B) — F)(B)| + | Fr.an—2(B/(i,))| or equivalently

k.2n :
Fian(B) = F{5)(B) = fron(B/(i:)) = frzn—2(B/(.])). Since |F3)(B)| =
|Fr—1,2n—2(B/(1,7))| = fr=1,2n—2(B/(1, 7)), recursion (iz) follows. a

There is one other fundamental recursion for the hit numbers which we shall state
since the ¢g-analogue of this recursion will play a crucial role for our combinatorial
interpretation of the ¢-hit numbers.

Theorem 3. Suppose that B is a board contained in Bay such that BN {(z,2n) :
1<i<2n—1} =0 (Thus B contains no elements in the last column of Bay.)
Then

2n—1
Fron(B) = Y frza—2(B/(i,2n)). (19)

=1
Proof: Note that every p,, € PM(Bz,) must contain a square in the last column
of By, since every perfect matching m of K5, must contain one edge of the form
{1,2n} with ¢« <2n — 1. Thus Fj 2,(B) can be partitioned into Ule_l F,Egin)(B)
since B contains no elements in the last column of By,. But ¢; 2y induces a 1 : 1
correspondence between F,Eféin)(B) and Fy 2,—2(B/(2,2n)) for ¢ = 1,...,2n — 1.

Hence (19) immediately follows. O
We end this section with a proof of the factorization formula (9) for the rook poly-
nomial Y ,_, mi(B)(x) ||an—1— for shifted Ferrers boards. Reiner and White’s
original proof of (9) was recursive. We will give a bijective proof of (9) for a
slightly larger family of boards which we call nearly Ferrers boards. That is,
we say a board B C B, is nearly Ferrers if for all (¢,5) € B, the squares
{(s,7) : s <t} U{(t,7) : t < i} are also in B. It is easy to see that every shifted
Ferrers board F' C B is nearly Ferrers. Moreover, you can construct a nearly Fer-
rers board by starting with a full triangle of squares A; = {(s,) : s <t < ¢} and
then adding any columns to the right of A; of height <. See Fig. 11 for such an

example.

FiGgure 11
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Theorem 4. Let B be a nearly Ferrers board C By, and let a; denote the number

of squares in B that lie in row @ for e =1,... ,2n — 1. Then
2n—1 n
Il (= +azn—i =20 +2) =D mu(B)(x) Llan—1-k - (20)
=1 k=0

Proof. We let Bs,, , denote the board Bs, with = columns of height 2n — 1 added
to the right of Bsy,,; see Fig. 12.

2 3 = = " 2nl1 2n 2n+l 2n+x
1
, I
.
. LI T
.
2n-2
2n-1

X

FIGURE 12: THE BOARD DBay, o

We want to consider the set of all placements of 2n—1 nonattacking rooks in By, ,
but we have to define the set of squares that a rook in a square (¢, ) attacks. Now
if (¢,7) € Bay, then a rook r in (¢, ) attacks all cells in row ¢ and column j plus all
cells in A%i’?j) = {(s,t) € Bay : [{s,t}N{e,5}| = 1}. However, if (¢,7) € Ban » — Ban,
then the cells that a rook in (7, j) attacks in a rook placement p depends on the
other rooks in p N (Bzp » — Bayn). That is, if (¢,7) is the position of the lowest rook
r1 in p N (Bsy,» — Bay), then rq attacks all cells in row ¢ and column j other than
(7,7) plus all cells in the column j —1if 2n +1 < j. If j = 2n 4+ 1 then ry attacks
all cells in row ¢ and column j plus all cells in column 2n + 2. In general, if (¢,7)
is the position of the k-th lowest rook rk in p N (Bayn e — Bay), then ry attacks all
cells in row ¢ and column j other than (7, ) plus all cells in the first column in the
following list of columns j —1,5—2,... ,2n,2n+4z,2n+x—1,...,7+1 that contain
a square which is not attacked by any of the k — 1 lower rooks in By, , — Ba,. Note
that this means that each rook r in p N (Bay o — Bay,) will attack all cells in two
columns of By, » — Bayp. That is, if r is in cell (7, ), r attacks all cells in column
J. It then looks for the first column s > 2n to the left of column j which has a cell
that is not attacked by a lower rook in pN(B2y » — B2y ). If there is no such column
s, then r starts at column 2n + = and looks for the right most column s which has a
square which is not attacked by any lower rook in p N (B2y » — B2y). Note that we
are guaranteed that such a column s exists if # > 4n — 2. Then r attacks all cells in
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column s as well. Our definition of nearly Ferrers board also ensures that each rook
r € p that lies in B also attacks the squares in two columns of B which lie above
r, namely, the squares in column ¢ and j. For example, consider the placement p
pictured in Fig. 13 consisting of 3 rooks, ry in (7,10), r2 in (5,11), and rz in (3,7).
We have indicated all cells attacked by r; by placing an ¢ in the cell.

2 3 4 5 6 7 8 910 11 12 13 14 15 16 17

1 1] 1
2 1

3 3| 3| 3|"3| 31,31,323] 3| 3| 3| 3| 3)23
4 3 1

5 23| 21,212|"2| 2| 2| 2| 2| 2
6 3 1| 2

7 13| 1|21 | 1| 1| 2| 112

FIiGURE 13

Now let B be a board contained in Bs, and assume that x > 4n — 2. Let
Ngmx(B) denote the set of all placements p of 2n — 1 rooks in By, , such that no
cell which contains a rook in p is attacked by another rook in p and any rook r in
Bs, N p is an element of B. We claim that (20) arises from two different ways of
counting N2n7x(B). That is, the number of ways to place a rook ro,—1 in row 2n—1
is just @ + agy,—1. Then ra,_1 attacks two cells in row 2n — 2 of BU (Bay » — Bay)
so that there will be x + as,—2 — 2 ways to place a rook ron_2 in row 2n — 2. Next
in row 2n — 3, ron—1 and ra,_o together will attack four cells so that there will be
T+ azn—3 —4 ways to place a rook ron—g in row 2n — 3. Continuing on in this way,
it is easy to see that

2n—1

WVano(B) = [] (v + a2n—i — 2i +2).

=1

On the other hand, suppose that we fix a placement p of k& nonattacking rooks on
B. Thus p € My(B). We claim that the number of ways to extend p to a placement
q € Ny o(B) such that ¢ N By, = pis a(x —2)---(x —2(2n — 1 — k) 4+ 2). That
is, there are 2n — 1 — k rows in By, » — Bop, say 1 <dj < -+ < dop—1—1 <2n—1
which have no cells which are attacked by rooks in p. Now for the lowest such row
dan—1—%, we have x choices of where to place a rook in By, ;. — B, that lies in
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dan—1—%. The rook in row dsy,—1— will attack exactly two cells in By, , — Ba, that
lie in row dop—1—k—1 so that there will be © — 2 choices of where to place a rook
in row doy—1—g—1. The rooks in rows do,—1—r and do,—p—o will attack a total of
four rooks in (Bsy,,; — Bay) that lie in row dyp,—g—3 so that there will be a total of
r — 4 ways to place a rook in row dy,_k—3. Continuing on in this way, it is easy
to see that there are a total of () ||2,—1—% Wways to extend p to a rook placement

q € Nzn’x(B) such that ¢ N By, = p. Thus
NV2no(B)| = ka(B)(l’) MHon—1—k . O
k=0

Now suppose that we set @ = 2n — 2 in (20). Then (2n — 2) ||2p—1—= 0 for
k=0,...,n—1. Thus the only term that survives on the right-hand side of (20)
is mp(B)(2n —2) ||n—1. Note (2n —2) | |,—1=2""1(n —1)!. Thus the following is

an immediate corollary of Theorem 4.

Corollary 1. Let B be a nearly Ferrers board C By, and for 1 = 1,...,2n — 1,
let a; be the number of squares in row ¢ that are in B. Then the number of perfect

matchings of the graph Gp = ({1,... ,2n}, {{i,5}: (¢,7) € B}) s

2n—1

T (a2n—i =200 —i))/2" ' (n = 1)\,

=1

2. ¢-ROOK NUMBERS AND ¢-HIT NUMBERS FOR BOARDS IN By,.

In this section we shall define ¢g-rook numbers and ¢-hit numbers for boards in
B, and prove some of their basic properties.

Let B be any board contained in Bs,. For any rook r in a square (¢, j), we say
that r rook-cancels squares {(r,¢):r <i}U{(s,s) i+ 1<s<jU{(t,j):t <1}
For example, the squares that are rook-cancelled by arook in (4,7) in Bg are pictured
in Fig. 9 with a dot in them. Thus the squares rook-cancelled by a rook r in cell
(1,7) is just the squares (a, b) which are attacked by r such that a +b < ¢ 4 j. Next
for any rook placement p € M (B) for some k, we let up(p) denote the number
of squares in B — p that are not rook-cancelled by any rook in p. We then define
mi(B,q) for k > 0 by

mi(B,q) = Z q”b(f’)_ (21)

pEmME(B)

We define mo(B, q) = ¢!l
We call my(B,q) the k-th ¢-rook number of B. We shall define the k-th hit
number of B, fi 2n(B,¢q), for any board B C Bj,, by the formula

7

Y frea(Big)zt =) mu(Bh -k [ (- (22)
k=0 k=0

i=n—k+1

Note for & = 0, the product H?:n_k_i_l(z — ¢%'71) is equal to 1 by definition. We
shall call fi 2, (B, ¢) the k-th hit number of B relative to Bs,. For example consider
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the shifted Ferrers board B(2,1,0) C By. Then mo(B, ¢) = ¢* since B has 3 squares

m1(B,q) = 1+ q + ¢* since there are three rook placements in M;(B) pictured in
Fig. 14, and my(B, ¢) = 0 since M>(B) = . Thus

2
me( (2,1,0), ka (2,1,0),¢)[2 — k]! H (2 — ¢¥ 1)
k=0

2—k+1

= q3[3][1] +(1+q+ ¢z —¢%)
=(1+q+¢*)=

Thus fo4(B(2,1,0),q) = f24(B(2,1,0),¢) = 0 and f14(B(2,1,0),q) =1+ ¢+ q°.

X n X ] ]

uB(.’Z,l,O)(pl):2 uB(2,1,0)(p2):1 UB(2,1,0)(p3):O

FiGuRrEe 14

We should note that in general the fi 2,(B,¢) are not polynomials in ¢ with
nonnegative coefficients. That is, consider the board B pictured in Fig. 15, which

gives the 3 rook placements of M;(B), the 1 rook placement in My(B), and the
corresponding values of up(p).

] X ] u X ] ] ] ] X

ug(p,)=2 g (p,)=1 ug(py)=1 ug(p,)=0

FIGURE 15

Thus mo(B, q) = ¢, mi1(B,q) = 2q + ¢*, and my(B,q) = 1. Hence

2 2

Y fraB,) =D mpB2 -k [ (-
k=0

k=0 1=2—k+1
3

=B+ 2+ )z - )+ (=)= —9q)
=+ g+ —¢)z+ 7
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so that fo 4(B,q) = ¢*, fia(B,q) = ¢+ ¢ — ¢, and f24(B,q) = 1.

As mentioned in the introduction, the main result of this paper is to show that
if F is a shifted Ferrers board of By,,, then the ¢-hit numbers fi 2,(F, ¢) are poly-
nomials in ¢ with nonnegative coefficients. Indeed, we can define an analogue ¢ (p)
of the Dworkin statistic sg q¢(p) for boards contained in A,, such that

fk,Zn(Fv Q) - Z th (p) (23)

PELE 20 (F)

Let B be any board contained in By, and suppose that we are given a placement
P € Fon(B). If rook r is on cell (¢,7) € pN B, then r py, -cancels all squares

{(ry0):r<ibU{(s,8): 1 +1<s<y}
U{(t,7):t <ty U{(u,7): u>jand (u,j) ¢ B}.

That is, if r is on B, then it p,,-cancels all squares s to the left of r that it rook-
cancels, and also all squares above r as in the definition of u g, plus all squares in
its column which are below r and not in B. However, if a rook r is on (7, j) and
(1,7) ¢ B, then r py,,-cancels all squares in

{(ry0):r<abU{(t,8):1+1<s<j}U{(t,7):t<eand (t,j) ¢ B}.

That is, if r is off the board, r p,,-cancels the same squares to the left of r that it
rook-cancels plus squares in its column which lie above r and are off the board. We
then let tp(p) be the number of squares in By, — p which are not p,,-cancelled. For
example, for the placement p € F} 10(B(9,7,5,4,2,0,0,0,0)) pictured in Fig. 16,
we have put dots in all the p,,-cancelled squares. There are a total of 13 uncancelled
squares so that tp(p) = 13.

2 3 4 5 6 7 8 9 10

B - o 0| 0| 0| 2| -

2 SO IR I I I .

3 s | X| = .| .

4 = = = | = | = |X =p

5 . .| =

6 el e X t.(p)=13
7 .

8

9

FIGURE 16
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The main goal of this paper is to prove that if B is a shifted Ferrers board
contained in By, and fj 2,(B, ¢) is defined via (22), then (23) holds. For any board
B g an, let

fk,Zn(Bv Q) - Z th(p)‘ (24)

PEFkﬂn(B)

There are two simple recursions that are satisfied by the f~k72n(B,q) which are
g-analogues of (18) and (19).

Theorem 5. Suppose that B is a board contained in Bs, such that
Bn{(j,2n): 1<j<2n—1}={(5,2n): j <i},

where ¢+ > 1. Thus in the last column of Ba,, B contains exactly the squares

(1,2n),(2,2n),... ,(#,2n). Let o = (7,2n). Then

fk,Zn(Bv Q) = Q.fk,Zn(B/av Q) + fk—l,Zn—Z(B/av Q) - qzn_lfk,Zn—Z(B/av Q) (25)

Proof. Just as in the proof of Theorem 2.12, we partition Fj 2,(B) into two sets,

F,Egin)(B) and Fj 2n(B) — F,Egin)(B) Now if p € F,giéin)(B), then the rook r on
(7,2n) pm-cancels all cells (j,2n) such that j # ¢ since (i,2n) is the lowest cell of B

in column 2n. It follows that ¢; 2, induces a weight preserving bijection between

F(i’zn)(B) and Fy_1 2n—2(B/@) so that

k.2n

Z g3 = Z g 217 W) = fi 1 2na(B/@,q). (26)

pEF M (B) PEFL_1,2n—2(B/@)

Again it is the case that Fysq(B/(i,2n))~F\ 52 (B/(i,2n)) = Fi2n(B)—Fy'52"(B)
since if (z,2n) ¢ pp, for some p,, € PM(Bzy,), then |p, N B| = |pm N B/(i,2n)|.
However, there is a difference between tp/(; 2n)(Pm ) and tg(pm) for such p,,. That
is, pm contains one rook r in the last column of Bg,. Say ris on square (J,2n). Now
if 7 < ¢, then r is on both B and B/(t,2n). However relative to B, r pp,-cancels
all cells (s,2n) with s < j or s > ¢. Relative to B/(,2n), r py,-cancels all cells
(s,2n) with s < j or s > ¢. That is, (7,2n) is not py,,-cancelled relative to B but
it is p,-cancelled relative to B/(7,2n). Similarly, if j > ¢ so that (j,2n) ¢ B and
(7,2n) ¢ B/(,2n), (i,2n) is not p,,-cancelled relative to B but it is cancelled rela-
tive to B/(¢,2n). If v’ is any rook in p— {r} then it is easy to see that v’ p,,-cancels
the same squares relative to B that it p,,-cancels relative to B/(¢,2n). It follows
that for all

p € Fian(B) — F{'32"(B) = Frn(B/a) — Fy'5(Ba),

tp(p) =1+ 1tpa(p). (27)

Next suppose that p € F,Eféin)(B/oz). Then the rook r on (¢,2n) in p does not
pm-cancel any squares in the last column relative to B/(i,2n) so there are 2n — 2
uncancelled squares in the last column of Bs,,. This given, it is easy to see that ¢; 2,
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induces a 1 : 1 correspondence between F,giéin)(B/oz) and Fjon—2((B/a))/a@) =

F} 2n—2(B/@) which shows that

Z th/a(P) — q2n—2 Z th/E(P)

pEF(i’2n)(B/a) PEFk an_2(B/a)

k,2n
= qzn_z.fk,Zn—Z(B/57Q)' (28)

Thus by (27) and (28),

¢from(Blosg)=q > ¢ g > g'w1=®
PEFL M (Ba) PEFk 20 (B/a)=FL2 (B/a)
= ¢ fron—2(B/a,q) + > g2 . (29)
PEFk,2n(B)—F;£f§2nn)(B)
Hence
2. (P = gfean(Blaq) — " franoa(B/Ta) (30)
PEFk,2n(B)—F;£f§2nn)(B)
Clearly (25) follows immediately from (26) and (30). O

We have the following analogue of Theorem 3.

Theorem 6. Suppose that B s any board contained in Bs, such that B has no
cells in the last column, then for any k

2n—1

Fran(B) = Z ¢ fec120-2(B/(i,2n)). (31)

Proof. As in the proof of Theorem 3, we partition Fj, 2,(B) into Ule_l F,Egin)(B)
(1,2n)
F

For a placement p € Fy 5, (B), the rook r on (i,2n) in p pp,-cancels all squares
(7,2n) with j < ¢ since there are no cells in B in the last column. Thus there are
2n — 1 — ¢ uncancelled squares in the last column of B, relative to p. It is then

easy to see that the 1 :1 correspondence that ¢; 2, induces between F,Eféin)(B) and

Fion—2(B/(2,2n)) proves that for ¢ =1,... ,2n — 1,

Z g1 = gn—iml Z th/m(p)

PGFéfﬁ")(B) PEFY 2n_2(B(,2n))
= ¢*" fan-2(B(,20)). (32)
Thus (31) holds. O

It is easy to check that for all boards B C By and for all k € {0,1}, fi2(B,q) =
fr2(B,q). Thus to prove that fi 2n(B,q) = fr2n(B, ¢) for all nearly Ferrers boards
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B C By, and all k € {0,... ,n}, we only need show that the analogues of Theo-
rems 5 and 6 hold for all shifted Ferrers boards B when f~k72n(B, q) is replaced by
fk,Zn(Bv Q)‘

First we shall show that the analogue of Theorem 5 follows from the following
simple recursion for the my(B,q)’s. We shall say that a square (7,7) of a board
B C Bj, is a corner square of B if BN A; ; = § where A; ; = {(s,1) € Bayy, :
{s,t} N {¢,7}| = land s+t > ¢+ j}. Note that A;; represents the squares
S € By, such that a rook on S could rook-cancel the cell (i, 7) relative to the up(p)
statistic. If B is a shifted Ferrers board, it is easy to see that (¢,7) is a corner
square if and only if there are no squares in B to the south-east of (7,7 ) in Ba,.

Theorem 7. Let B be a board contained in B, and o = (i,7) be a corner square

of B. Then for any k,

mi(B,q) = qmi(B/a,q) + mr-1(B/a, q). (33)
Proof. Set M,(Ci’j)(B) = {p € My(B) : (¢,5) € p}. First we partition the rook
placements of My(B) into two sets, namely M,(Ci’j)(B) and My(B) — M,(Ci’j)(B).
Now if p € M,(Ci’j)(B), then the rook r on (¢,j) rook-cancels all squares in B in
C’Z? N B since (¢,7) is a corner square. Thus ¢; ; induces a 1 : 1 weight preserving

correspondence between M,(Ci’j)(B) and My_1(B/@). Hence it follows that
> ¢ =my 4 (B/a,g). (34)
peM(B)
If p e Mp(B) — M,(Ci’j)(B), then cell (¢,7) is not rook-cancelled by any rook in p
since (7,7 ) is a corner cell. Thus ug(p) =1+ up/a(p). Hence
2. g e = N gt — gmy(Bfa,g). O (35)
peM,(B)—M.")(B) PEMy(B/a)

Corollary 2. Let B be a board contained in Bz, and let o« = (¢,7) be a corner
square of B. Then for any k,

fk,Zn(Bv Q) = ka,Zn(B/av Q) + fk—l,Zn—Z(B/av Q) - qzn_lfk,Zn—Z(B/av Q) (36)
Proof. By (33),

kaanq kaBq [n — KN H (Z_q2i—1)
i=n—k+1

:quk(B/%Q)[n—k]!! H (2 — ¢¥ 1)
k=0

i=n—k+1
n n—1
+ ) mpa(B/a, g)n —1— (k= D)z — ¢ ") 1T (z—¢*")
k=0 i=n—1+4+1—(k—1)
n—1 n—1 ‘
—Qka (Bl ) +(z=*"") Y mi(B/a,gn—1-41" [ (z=¢*")
k=0 J=0 i=n—14+1—j

n n—1
=dq Z fk,Zn(B/av Q)Zk + (Z - q2n—1) Z fk,Zn—Z(B/av Q)Zk (37)
k=0

k=0
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Taking the coefficient of ¥ on both sides of (37) yields (36). O

Note that the recursion (36) which holds for the fi(B,¢)’s represents a more
general recursion than the recursion (25) which holds for the f~k72n(B,q)7S. We
could prove that fi2n(B,q) = fk,zn(B,q) for all shifted Ferrers boards B if we
could give a direct combinatorial proof of the analogue of (36) for the fk,zn(B, q)’s.
However we have not been able to find such a direct combinatorial proof. The
method of proof of Theorem 5 does not extend for arbitrary corner squares even
for shifted Ferrers boards. For example consider the board B = B(2,1,0) C By. In
our proof of Theorem 5, we showed that if B was a shifted Ferrers board and « is
the corner square in the last column of B, then

Z th(P) — fk_172n—2(B/a7Q)

PEFZ(B)

and

> 0" " = qfi2n(Bla,q) — " fran—2(B/T.q).
pEFR(B)—FX(B)

Now suppose a = (2,3). One can see from Fig. 17 that

Z th (r) — q2 and Z th(P) =1+gq.
pEF(B) pEF(B)—F}(B)
| | | | X | | X | | X | | | |
pl_ X p2: " X p3: " M
X
tg(p) =2 tg(p,) =1 tg(py) =0
FiGurE 17

However one can easily calculate fo o(B/@,q) = fo2(0,q) =1, fi2(B/a,q) =0,
and f174(B/0z,q) =1+ ¢. Thus

. ¢ £ foa(B/a,g)

pEF(B)

and

> ¢"?) £ qfi4(Bla,q) — ¢ fi2(B/a, q).

pEF(B)—F}(B)

Our inability to give a direct proof of the analogue of recursion (36) for the fk,zn(B, q)’s
forced us to take a different path of proof to establish the equality of the fi 2,(B,q)
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and f~k72n(B,q) for shifted Ferrers boards. Namely, we show that the f; 2,(B,¢)’s
satisfy the analogue of the recursion (31) which holds for the fk,zn(B, q)’s. Unfor-
tunately it is not at all straightforward to show that the fj 2,(B,¢)’s satisfy the
analogue of (31). Indeed most of section 3 will be devoted to proving such a recur-
sion. In preparation for this proof, we shall end this section by proving a number
of identities for the my(B, ¢)’s which will be used in section 3.

We start with a g-analogue of Theorem 4.

Theorem 8. Let B be a nearly Ferrers board contained in Boy, such that B has a;
cells in row 1. Then

2n—1 n
H [l‘ + a2n—i — 2 + 2] = ka(37Q)[x] llZn—l—k . (38)
i=1 k=0

Proof. As in the proof of Theorem 4, we shall consider rook placements in Nz, ,(B).
Now suppose that r is a rook in p where p € Ny, »(B). Then if r is on (i,j) € B,
then we say r N -cancels all cells in

{(ryg):r<itU{(d,8): i+ 1<s<juU{(t,e): t<i}
U{(¢,u): u>jand (u,7) ¢ B}.

Note that the first three sets in this union are the same cells that r rook-cancels
relative to the up(pN B) statistic and the last set in the union is all the cells to the
right of r which are not in B. If ris on (¢,j) € By »— Ban, let A%i’?j) denote the set
of cells attacked by r as defined in Theorem 4. Then r N -cancels all cells in A%i’?j)
that lie in a row s with s < ¢ plus all cells in row ¢ that are either in By, — B or to
the right of (z,7). We let ua(p) denote the number of squares in B, , — p which

are not N -cancelled by any rook in p. We claim that (38) results by computing the

sum
Z qUN(P) (39)

p€N2n,m(B)

in two different ways.

Consider the ways to place a rook ron—1 in row 2n — 1. If we place the rook in
the rightmost position in B, then ran_1 will MV-cancel all cells in row 2n — 1. If we
place ro,—1 in the next to rightmost position in B, then ra,—71 will cancel all but
one cell in row 2n — 1. As we continue to move ro,_1 to the left in B in row 2n—1,
we increase the number of uncancelled cells in row 2n — 1 by one until we reach
the leftmost cell in row 2n — 1 of B where we would have as,_1 — 1 uncancelled
cells. Next consider the placement of r,_1 in cell (2n —1,2n +1). In that case, we
would have a total of as,—1 uncancelled cells in row 2n — 1, namely the cells that
lie in row 2n — 1 and in B. Then as we move ra,_1 successively to the right, we
would increase the number of uncancelled cells by one until we reach the rightmost
position, namely (2n — 1,2n + x), where we would have a total of © 4+ az,—1 — 1
uncancelled cells. Thus the factor of (38) contributed by the possible placements
of rop_pinrow2n —1is 14+ q+... +¢"Te2-171 = [z + a9, 4].

Note that if rop_1 is placed in a cell in B, our definition of nearly Ferrers board
ensures that it will M'-cancel exactly two cells in B in every row i with ¢ < 2n—1. If
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ran_1 is placed in Bs,, » — Bay,, then it will N -cancel exactly two cells in Byp,o—Ban
in every row ¢ with ¢ < 2n — 1. Thus when we consider the placement of a rook
ran—2 in row 2n — 2, we can use the same argument to prove that the factor of (39)
contributed by the possible placement of ran_o is [ 4+ a2,—2 — 2]. Once again if
ran_2 is placed in a cell in B, it will A'-cancel an additional two cells in B in each
row ¢ with ¢ < 2n —2 and if ran_» is placed in a cell in Ba,, » — Bay, it will N -cancel
an additional two cells in By, , — B2y, in each row ¢ with ¢ < 2n — 2. Hence the
factor of (39) contributed by the possible placement of a rook ran_g in row 2n — 3
is [z + agp—3 — 4]. Continuing on in this way, it is easy to see that

2n—1
Z quN(P) — H [ + agp_i — 20 + 2]. (40)
PEN2n, 4 (B) =1

Next suppose that we fix a placement p € M (B) and we consider the sum

Z un\f(P)_

P ENap 5 (B)
p'NB=p

It is easy to check that our definitions ensure that for any p’ € Ny, ,(B) such that
p’' N B = p, the number of squares of By, — p that are not A'-cancelled by some
rook in p’ is just up(p). Moreover, by the same type of argument that we used
above, the factor of (4) that arises from the possible placements of 2n — 1 — k rooks
in Boy p — Bap is just [z][z —2]---[¢ —2(2n — 1 — k) + 2] = [2] ||l2n—1—k. Thusit
follows that

Z V) = Z Z UB(P) 2] Ll2n_1—k

PEN2y,2(B) k=0 pe My (B)

—kaBq | Llon—1—k - O

We end this section by proving three recursions for the my(B, ¢), where B is a
shifted Ferrers board or nearly Ferrers board which has no cells in the last column

of an.

Theorem 9. Suppose that B is a board contained in Bo, which has no cells in the
last column of Bay,. Let o = (i,71) be the cell which is at the bottom of the rightmost

column of B. Then
(a) if B is a nearly Ferrers board,

1—1

mi(B/(i,2n),¢) = ¢'"'mi(B/a,q) + Y ¢' T I mii((B/@)/(j,2n — 2),q), (41)

J=1

(b) if B is a shifted Ferrers board,

mu(B/(r,2n),q) = [r — 2klme—1(B/@,q) + " 'mp(B/a.q),  (42)
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(¢) if B is a shifted Ferrers board,

2n—1
> T m(B/(j,2n), 9)
i=1

= (20— 1= 2kmi(Bag) — (" — " i (Blg). (43)

Proof. Before proceeding with the proof of these three recursions, it will be useful
to see the relations between three boards mentioned in recursion (a) and (b). It is
easy to see from Fig. 18 that B/(¢,2n) is just the board B/@ with an extra column
of height ¢+ — 1 added in column r — 1. The board B/(r,2n) is just the board B
with the last column removed.

For recursion (a), we simply classify the rook placements p of my(B/(i,2n))

according to whether or not p has a rook in the last column of B/(¢,2n). That is,
if pe M,(C]’r_l)(B/(i,Qn)) where 7 <7 — 1, then the rook on square (j,r — 1) in p
will cancel all but 2+ — 1 — j squares in the last column. It follows that

tu/(ign)(P) — qi_l_jqu(B/—(i,2n))/—(j,r—1)(L'Dj’T_l(p))‘

Clearly (B/(¢,2n))/(j,r — 1) is the same board as (B/(¢,7))/(j,2n — 2). Thus

1—1

D S
1=t pemr- ”(B/(z 2n))

— Z ¢ Z q”<B/a>/<j,2n—2>(p/)

=1 p'EMy_1 ((B/)/(7,2n—2))
i—1
= ¢ e ((B/@)/(j,2n — 2),q). (44)
7=1

On the other hand given a p € My(B/(¢,2n)) having no rook in column r — 1, all
the squares in column r — 1 will not be rook-cancelled so that

uB/(i,zn)(P) = qi_luB/a(P)-
Thus

3 g" s = ¢l (B, q).  (45)

pEM(B/(izn) ~UiZh MY "~V (B/(i2n))

Combining (44) and (45) yields (41) as desired.
For recursion (b), note that the shifted Ferrers board B/@ is the board which
results by removing the last column and the first row from B. Thus B/@ is the

result of removing the first row from B/(r,2n). It follows that recursion (b) can be
rephrased as follows. Suppose that D is a shifted Ferrers board with r — 2 columns
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2 3 4 5 6 7 8 2 3 4 5 6
l | | | |
2 | | | |
3 | | | | X | | |
4 . B/l g =
B=
5 [ ]
6 n n
7
| | | |
| | | |
| | | | | | | | X
B = .
- B/ 2n) =
n
n
n
| | | |
n | ]
| | | |
n | |
B= . . B/tr,2n) =
" X
| |
FIiGURE 18

and C' is the shifted Ferrers board that results from removing the first row of D.
Then
mi(D,q) = [r —2k]mi—1(C,q) + ¢ 7*Fmy(C, q). (46)

Once we have rephrased recursion (b) in this way, it is simple to prove. Namely we
simply partition the elements p of M (D) depending on whether or not p has a rook
in the first row of D. That is, let M} (D) = {p € My(D) : p has a rook in the first row}.
Now if p € My(D) — M} (D), then p has all k rooks below the first row. Since each
of these rooks rook-cancel two squares in row 1, there will be r —2 — 2k uncancelled
squares in the first row. Of course, the board C' is just the rows of D below row 1
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so that

Z quD(p) _ qr—2—2k Z quc(p)

PEMy (D)~ M} (D) PEMK(C)
= ¢ 77 m(Cq). (47)

Next suppose that p’ € My_1(C). We can think of p’ as a rook placement in D
with no rooks in the first row. There will be r — 2 — 2(k — 1) = r — 2k uncancelled
squares in the first row of D. Thus we can extend p’ to a placement p € M} (D)
in r — 2k ways by placing a rook r in one of these r — 2k uncancelled squares in
the first row of D. If we placed r in the 2-th uncancelled square in row 1 starting
from the right, r will rook-cancel all squares to its left and leave ¢ — 1 uncancelled
squares in row 1. It follows that

S =gt Y )
pEM}(D) pEME_1(C)

= [r — 2k]mi_1(C, q). (48)

Hence (46) holds.

We do not have a simple combinatorial proof of recursion (c). Instead we shall
prove recursion (c¢) by induction, first on 2n and then on the number of squares in
B. Tt is easy to verify that recursion (¢) holds for all boards B C By. Thus assume
that (¢) holds for all boards B’ C By,_2. Now if B is the empty board contained
in By, then it is easy to see that both sides of (43) are zero if & > 1. If k = 0,

B/(j,2n) is the empty board for all j so that mo(B/(j,2n),q) = me(B,q) =1 and
m1(B,q) = 0. Thus in that case (43) becomes

2n—1

Z ¢ =20 — 1]
=1

Thus (43) holds for the empty board for all n.

Finally by induction, assume that (43) holds for all shifted Ferrers boards with
less than t squares and that B C Bj, is a shifted Ferrers board with ¢ squares
which has no squares in the last column of Bs,. Let a = (¢,r) denote the corner
square in the rightmost column of B. Applying recursion (33) and then recursion
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(¢) to B/a and B/& by induction, we find that

2n — 1 —2k]mi(B,q) — (¢*" 7" — "7 )mrga(B.gq) =

g([2n — 1= 2k]mi(B/a,q) = (""" = " ymp g1 (B/a, q))
+[2n — 1= 2k]mg—1(B/a@, q) — (""" =" ymp(B/a, q) =

2n—1

¢ Y " I mi((B/a)/(j,2n),9)

j=1
+[2(n=1) =1 =2(k = D)]ms—1(B/a@,q) — (¢* "V~ =Dy (Ba, g)
i (q2(n—1)—1 . q2(n—1)—3—2(k—1) . q2n—1 i q2"_3_2k)mk(B/a,q) _

0 Y @ Ima((BJa)/ 7.2, 0)
EY T (B0 D) (@ g (BT a). (49

We would also like to apply recursion (33) to the left-hand side of (43) but this
requires some care. That is, if j < ¢, then the image of a = (¢,r) under ¢;2p

is B = (i —1,r — 1) which will still be the rightmost corner square of B/(j,2n).
Similarly if ¢ < j < r, then the image of & under ¢; 2, is v = (¢,7 — 1) will also be

the rightmost corner square of B/(j,2n). If j > r, then (j,2n) only attacks empty

squares so that « is the rightmost corner cell of B/(j,2n). See Fig. 19.
It is easy to see that if j < ¢, then B/(j,2n)/3 = (B/«)/(j,2n) and B/(j,2n)/3

(B/a)/(j,2n—2). Ifi < j <r,then B/(j,2n)/y = (B/a)/(j,2n)and B/(j,2n)/5 =
(B/a)/(j —1,2n —2). Finally if j > r, then B/(j,2n)/a = (B/a)/(j,2n) and

B/(j3,2n)/a = (B/@)/(j —2,2n — 2). This given, we can apply recursion (a) to
obtain the following

> B 20,0
= qzn_l_imk(B/(i, 2n),q) + qzn_l_rmk(B/(r, 2n),q)
3 S ami((B o)/ 20),4) + e ((B/@)/ 20— 2)a)
T P (gm(BJa) (T2 ) + mi((Bfa)/ T~ L.2n —2).q)
j=it+1
X P gmil(BJe) (G20 )+ mis (BJ@)/ G~ 230~ 2.q)). (50)
j=r+1

Comparing the right-hand sides of (49) and (50), we can prove (43) if we can show
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that
¢ T tme(B/(i,2n),q) + ¢ T ma(B/(r,2n), )
+ Z qzn_l_jmk—l((B/a)/m7 9)
£ I (B .20 20)
; Z_ @ Imi o (BJ@)/(.2n — 2).4)

= ¢*""'mi((B/a)(i,2n),q) + ¢*""mi((B/a)(r, 2n), )

+ Y @ (B2 = 20) — (¢ = " mBag). (51)

j=1

It is easy to see that (B/«)/(i,2n) = B/(¢,2n) and (B/«)/(r,2n) = B/(r,2n) since
both (7,2n) and (j,2n) attack «. Thus (51) is equivalent to

1—1

Y (@ = ) mea (B/@) /(5,20 = 2),9)

j=1

£ 2 i (B (.20 D))

= (""" = "7 T ma(B/(i,2n), ) + (¢" 7" = ¢ )me(B/(r, 2n), )
— (¢ =" )ymk(B/a, q). (52)
Dividing both sides by ¢ — 1 gives

1—1

(¢+1) Z " Img— (B/@)/(j,2n — 2),q)
+ z_: q2"_3_jmk—1((B/a)/m7 9)
= 2" B/ (4,2n), ) + ¢ me (B (1,20), ) — (1 4+ )¢*" P mr(B/a, q).

(53)

But we can now apply recursions (a) and (b) to the first two terms on the right-hand

side of (53) to show that the right-hand side of (53) is
1—1 ‘ -
" Pm(Blaq) + Y " mi(B/@)/(7,2n — 2),q)
=1
+ 7" e = 2kmi 1 (B/@, q) + ¢ T mn(B/a, o) — (1+ ¢)¢*" P ma(B/@, q).
(54)
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Now replacing the right-hand side of (53) by (54) and collecting terms we get that
(43) is equivalent to proving

r—2

S " i (BJ@)/G2n — 2).q)

i=1

=" e = 2k (B/@, q) — ("0 — "y (B @, q). (55)

Note however that by induction

2n—3

S @ (B /.20~ 2).0)

j=1
— 20— 3= 2(k - Dl (B/@q) — (¢ = 752Dy (B, q)

— [Pn— 1 — 2] (BfT, ) — (" — "y (B, q). (56)

Moreover since B had only r — 1 columns then B/& has at most » — 3 columns.

Thus (B/@)/(j,2n — 2)) = B/a for j > r — 2 since (j, 2n — 2) will only attack cells
in empty columns. Hence

N T (B (20 2)0)
= 3 P (BfEq) = 20— 1~ e (B q)

Thus subtracting [2n — 1 — rjmg_1(B/@,q) from both sides of (56) yields (55) as
desired. O

3. MAIN THEOREM

In this section we prove our main result, namely that f;(B,q) = fj(B, q) for all
shifted Ferrers boards B. We start by proving two identities which hold for any
board.

n

Theorem 10. If B is a board, B C By,, 0 <7 <n, and [k

] 18 the g-binomial
q2

coefficient base ¢, then

Tk ki
fj72n(37Q) = ka(37Q)[n - k]”(_l)k ! |:]:| q(k 7 F ])'
k>j q?

Proof. Recall the ¢-binomial theorem [A]:

’Eu o= 3 ek [ 7]

Theorem 10 follows by applying this to the product on the right-hand side of (22).
O
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Theorem 11. If B s a board, B C By, then for 0 <k <n,

P>k @’

=3yl Boag)ln M (PR g, (<1, (5T)

p>k ?

where (2;¢)r = (1 — 2)(1 — zq) - (1 — z¢*71).
Proof. Using Theorem 10, the left-hand side of (57) equals

Z {2} Zj—kq(j—k)(Zn—l—Zk)
q2

jzk

> mp(B,g)ln — plli(=1)P7 M 2 ¢ P=D(n=p=j)

4 J
P>

3 [i] [ﬂ SR R =2 (=) (2n—p=)( 1)k i~k
q? q?

p—k
p p— k w(2n—1-2k)+(p—k—u)(2n—p—k—u)/ _q1\u_u
Ll o

p—k
— — n—p— —k u?—u U u
=Y my(B,g)[n — pli(—1)p~* {Z} g PPN {pu } ¢ (1)
¢’ u=0 ¢’

p>k

q2

p>k
using the ¢-binomial theorem. O
Theorem 12. If B s a shifted Ferrers board, B C Bsy,, then
2n—1
fion(B,q) Z q2n - lfJ,Zn Z(B/(Z 2n), q).
i=1

Proof. We start by setting z = ¢~2 in eq. (57) to get
Zf] o B q |: :| (j—k)(2n—3—2k)
P>k ?
= mi(B,q)[n — k! = mip1 (B, g)ln — 1 = KUk + 1) 2*" 72711 = ¢72)
= mp(B,)[n — kN —mpy1(B,q)[n — 1 — KNk +1],2¢*" 7 (* —1). (58)
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On the other hand if B has less than 2n — 1 columns in B,,, then

2n—1 .
YOY " fian-2(B/(i,2n),q))2 {ﬂ R
i>k i=1 q?
2n—1 ‘ _____ . ‘ ‘
- zqZ"—Hij,zn_zw/(i,zn),q)[;@] LIk qUmRICn =12 (50)
i=1 >k q?

Setting z = ¢~ % in (59) we get

2n—1

Z( Z qzn_i_lfj,Zn—Z(B/mv 7)) {i:| q(J—k)(2n—3—2k)
i>k i=1 q?
2n—1
_ Z q2n i— 12]272” 2B/ 2n) ){ ] q(j—k)(Zn—3—2k)
>k q*
2n—1

= Z T (B (1, 2n), ¢)[n — 1 — K] (60)

where the last equality follows by using the special case of (57) with z = 1 for the
boards B/(¢,2n). Comparing (59) and (60), we get that if B has less than 2n — 1

columns,

SO BT [§] a0 e

if we can show that

2n—1

Z qzn_i_lmk(B/(i, 2n),q)

q2k—|—2 _1

o1 2 (g = Dmita(B, q)

= [2n — 1 = 2kJmi(B.q) — (¢*" 7" = ¢*" 77N mpga(B, ).

= [2n — 1 —2k]m(B,q) — g

Since this is equation (43), (61) holds for all k£ assuming B is contained in the first
2n — 2 columns of By,,. If & = n this reduces to

2n—1

fn 2n B q Z q2n - lfn 2n— 2(B/(Z 2”) )) (62)

=1
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If k=n—1(61) reduces to

n 32—
fn,2n(B7q) |:TL o 1:| q2 3% 2 + fn_172n(B7Q)
q2

2n—1

n—i— - n n—=3—2(n—
= Z q2 1fn72n—2(B/(Z72n)7Q) |:n o 1:| q2 32 b
i=1 q?
2n—1 ‘
+ Z qzn_l_lfn—lﬂn—?(B/(iv2”)7Q)' (63)
=1

Thus we can use (62) to cancel the first terms on both sides of (63) to get

2n—1

frn— 12n B q Z q2n - 1fn 1,2n— 2(3/(l 2n) )

=1
Continuing in this manner we get

2n—1

fian(B.q) = Y "7 fian—a(B/(i,2n),q)

=1

for all j. O

Corollary 3. If B is a shifted Ferrers board, B C By, and 0 < k < n, then (23)
holds, 1.e.

fk,Zn(Ba Q) == fk,Zn(Bv Q)

Proof. If B has no cells in the last column of By, then f; 2,(B,¢) and fk,zn(B, q)
satisfy the same recursion by Theorem’s 6 and 10. If B has at least one cell in the
last column of Bj,, then they both satisfy the same recursion by Theorem 5 and
Corollary 2. If B is the empty board, then f~k72n(B,q) = x(k = 0)[n]!l. For this
board, my(B,¢) = x(k = 0) and so by (22), fr2.(B,q) = x(k = 0)[»]!!. Since the
fr,2n and the fkgn satisfy the same recursion with the same initial conditions, they
are equal for all B. O

4. ALGEBRAIC IDENTITIES

In this section we prove a number of algebraic identities for the mj and the f;. In
many cases these are analogues for nearly Ferrers boards of known identities for ¢-
rook and ¢-hit numbers. We use the notation (a; ¢)x = (1—a)(1—aq)---(1—ag*™1).

Theorem 13. If B C By, s a nearly Ferrers board with b; squares in row t for
t=1,...,2n—1, and 0 < k <2n —1, then

204 - [2k1m2n1k3qzzu D T] 27+ b 2i 42

]:O =1
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Proof. By Theorem 8, the right-hand side above equals

3 [ f] O S5 025 25+ 2B

s>0

=S msciou(Bog) Y (2002 — 2]+ [2) - 25+ 2] m 203 (1))

5>0 s<j<k ¢’
=2 k ks
= ZmZn—l—s(B7Q)Z[2(U+S)][2u—|—2] |:u—|—3:| qz( 2 )(_]_)(k_S_U)
s>0 u=0 q?

= ngn_l_s(B,q) [f] 2 (_1)(k—s)[2][4] .- [2s]

’“Z[zk—zs][zk—zs—z] 2k — 25 — 2u + 2

] 2(*757") (1)
u=0 (2][4] - - - [2u] q (—1)

= S B2l 124 [ F] 00 g e

s>0
k—s
k — S 2 g ”
{ " ] K ()(-1)
u=0 q
= [2][4] - - - [2k]man—1-#(B, q)
by the ¢-binomial theorem. O

Theorem 14. If B C By, s a nearly Ferrers board with b; squares in row 1 for
1=1,...,2n—1, then

2n—1
”men (B, )[z] Uan-1—j [x—2n+2j +1] ll;= J] [z +b:i—2i +2]. (64)
7>0 =1

Proof. By Theorem 10,
fi2n(B.q) ka (B, q)[n — k)!(— 1) {f} q(k—J‘)(Zn—k—j)7
k>j q*

so the left-hand side of (64) equals

,,Z Wanoi—j [v =20+ 25 + 1] 1,

7>0

x> mi(B,q)[n — kN(—1)F [k] k=i 2n—k=j)
k> 7l
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k>0

k
2 i (e D)2k .
e I S NI A TRR R TP
q2

k 2\ .
% Z (™" q ?] (_qzk)jq—z(;)(_1)k—jq(k—j)(2n—k—j)

(qx—2n+3; q2)]

(qx—4n—|—4; q2)]

[2][z = 2] - [x = 2(2n - 2)]

- (_1)qu(2n—k)

—2k —2 3. 2k+1—-2 2
5 q R, grTEn S 2k oy
2¥1 qx—4n—|—4

where in the last equality we have used the fact that 2kj — (5% —7)+k(2n—k)—j2n+
jk—jk+3%=j(2k+1—2n) + k(2n — k). Using the ¢-Vandermonde convolution
for the sum of a terminating ¢, [GR, p.236], the equation above equals

Al — 2] — A - [n — k! ok k() (¢ =27 %)
e +4]1; HBa) [n]!! (=1 (qr=4ntd g2

=Y mi(B,Qallr = 2]+ [r =220 -1 k)+2] x C,
k>0

where

n— k! k(zn—k)
€= I B O (= 1 R

[n — k]! gk(2n=Fk)

IR
ql—2n—|—3—2n—|—...—|—2k—1—2n(q2n—1 . 1)(q2n—3 . 1) . (q2n—2k—|—1 o 1)(_1)k

— kN 2
= %qk@"—k”k “Ikon —1][2n —3]---[2n — 2k +1] = 1.

Theorem 14 now follows from Theorem 8. O
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Corollary 4. If B is a nearly Ferrers board, B C Bs,, then
Z fj,Zn(Bv Q) = [n]”
=0

Proof. Letting © — oo in the left-hand side of Theorem 14 we get

1 — 1 1
W ]z:% f],Zn(Bv Q)(l _ q)zn_l - (1 _ q)Zn—l . 4

Remark: Corollaries 3 and 4 together show that for any fixed shifted Ferrers board
B C Bj,, the statistic t¢(B) has what could be called the “Mahonian” property
for perfect matchings, i.e. its distribution is [n]!!.

Theorem 15. If B C By, s a nearly Ferrers board with b; squares in row t for
1=1,...,2n—1, then

[S]” 2n—1

X B~ 3T 5] IT 2n 2425+ 0 —2i +2).

1=

Proof. Using Theorem 8, the right-hand side above equals

"i‘ [ n+1/2 ] 2qz("—;—5)(_1)"—f‘8

L n—j—s
[s]!!

B2y 2y B = 2 2] L

The coefficient of m(B, q) above is clearly zero unless 2n —2+42s > 2(2n —1— k),
or 2k > 2n —2s,or k >n —s and since s <n —j we have k > n—(n—j) = j.
Thus the right-hand side of Theorem 15 equals

- ‘ n+1/2 g(mIm k) kg [P — B 4 ull!
2 (Bl P T

kE—j

n N —2(k—yj). 2 Y
= ka(B,q)[n — k! [ k—l_ 1/.2} 2 q2(2) (g 1q)

(q2n—|—1—2k—|—2j—|—2; q2)u

ke i (q2n—2k+1;q2)u i
><q2( 2 )(_1)(k Jtu) . (—g? =y,
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Now

k—j—

k—3 k—37
:2< 2]>—u2—|—u—|—u2—|—u—uk—|—uj—uk—|—uj—|—2uk—|—2uj:2u—|—2< 2]>

so the right-hand side of Theorem 15 now equals

ka(B,q)[n — k]!! {nk—l_ 1/.2} 2 q2(k§j)

k> J

‘ —2(k—j) 2n+1—2k. 2 2
E— q q q q
X (=1)"a¢1 <q2n—2k—|—2j—7|—3 ’ 7 >

—J

v (_1)k—j (92‘7—'—2;‘92)16—]‘ q(2n—|—1—2k)(k—j)
(q2n—2k—|—2]—|—3; qz)k_j

= Z mi(B, q)[n — k)I(—=1)k—7gnt1=2ktk—j—1)(k=j)

2n+ 1][2n —1]---[2n+ 1 — 2k + 25 + 2]
[2][4]--- [2k — 2]
27 + 2025 +4]--- 27 +2+42(k —j) — 2]
[2n — 2k +2j +3]|[2n — 2k + 25 +5]---[2n — 2k +2j + 3+ 2k — 2j — 2]

=" (B, q)[n — kN(—1)F T g —hmD D) {k K ]
q2

k> —J
= fj.2n(B,q) by Theorem 10. O

Corollary 5. For B C By, a nearly Ferrers board with b; squares in row t for
1=1,...,2n—1,

n oo

2n 1
4 2RI 2n + 2k 4 b; — 2]
Z Z]f]‘72n(Bv Q) = (zq2"+1 oo Z [Qn — 2+ Qk]

J=0 =0

Proof. Using the ¢g-binomial theorem, the coefficient of 2"~/ in the right-hand side
above is

Z[ TR 20+ 2k 4 b — 24] (¢~ @+ )i (2D (n—i=k),

p [2][4] - [2n — 2 4 2K] (4%54% ) n—j—k



Since

(q_(Zn-I—l); @ n—j—k q(2n+1)(n_j_k) _

(4% 4% )n—j—k
1 — 27 t1y(1 — ¢2n—1y... (1 — 2n4+1—(2n—25—2k)+2) ]
( q )( q ) ( q (_1)n—]—kq2(
(4% 4% )n—j—k
_ [(2n+1)/2 _qym—i—k 2"
=[O DR] e,
the corollary follows from Theorem 15. g

Theorem 16. If B is a nearly Ferrers board, B C By, and 0 < k < n,
j ) — n—1—
mk(37Q)[n_k]” :Z |:k:| 2fj72n(37Q)q(] k)(2 ! 2k).
izk L7
Proof. By Theorem 10,
fian(B,q) ka B,q)[n — kN(—=1)F~ [k] k=D @n—k=j)
J 1,2

k>3 q

Plugging this into the right-hand side of Theorem 16 yields

Z {2} q(j—k)(Zn—l—Zk)
q2

jzk

m>j J

=k

= 3 mal B - mli(-1)" Y {kl_u][ﬁu}

m>k u>0

(G=k+u)

n—j—k
2

Y mn(B,g)ln —m]l(=1)" {m} ) S Cnm—)

Z{J} [m] (1)1 gUi=D(@n=1=20) +(m=j) (2n=m—j)
k2171,

(_1)k—l—uqu(Zn—l—2k)—|—(m—k—u)(2n—m—k—u)

= X B =iy Y Hﬂﬁ

m>k u>0

—(u?—u m—k)u _u(2n—1— m—k—u)(2n—m—k—u)\4
q ( )q2( k) q (2n—1-2k)+( k—u)(2 k )(

—2(m—k).

qz)u

(¢%F 42 42),

37
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= Z mm (B, q)[n — m]!!(—l)m+k {72 q(m—k)(2n—m—k)

m>k

q2

—2(m—k).
Z (q 2(m )’qz)u qu(1+2(m—k)+2n—1—2k—2n—|—m—|—k—m—|—k)

= (@5

= Xl Buln — -1yt [ ] gy

X 1¢o (g72m=R) gRm=k) g2

E n m+k | T (m—k)2n—m—k) (17 q2)00
q A

=my(B,q)[n — k]!l O

5. SOME RELATED STATISTICS FOR THE ¢-HIT NUMBERS

We begin this section by giving the first direct combinatorial proof that the
statistics sp 4(p) and spp(p) discussed in the introduction generate the same ¢-hit
numbers for Ferrers boards contained in A4,. We then derive an analogous result
for shifted Ferrers boards contained in Bs,,.

Theorem 17. Let F = A(aq,... ,a,) be a Ferrers board. Then for 0 <k <n,

Z qSF,d(p) — Z qSF,h(p)‘

pEHE n(F) pEH »(F)

Proof. Let v be a fixed placement of n — k nonattacking rooks on A4,,, all of which
are off F', and consider the set A(y, F') of all placements A which extend v to a
placement of n nonattacking rooks on A, , with k rooks on F. We first show that

Z quyd(p) _ Z QSF,h(P)_ (65)

AEA(y,F) AEA (v, F)

It follows from the definition of sp4(p) and sp,(p) that the set of uncancelled
squares in either Dworkin or Haglund cancellation that occur either off F', or in
columns of F' which contain a rook from +, is the same for all A\. Let F’ C Ay
be the Ferrers board obtained from F' by deleting all the rows and columns in A4,
containing a rook in v, and collapsing the remaining rows to form a smaller Ferrers
board. To complete the proof of (65), we need to show that

Z qu/Vd(p) — Z qu’,h(p)‘ (66)

pEHok(F") pEHo K (F")

If F/' = A(by,...,by), it is easy to see by induction that both sides of (66) equal
[b1][b2 — 1] - - - [bx — k+ 1]. For if we place rooks in columns 1 thru k' — 1 of F”, there
will be by — k + 1 open squares in column k of F’, and whether we use Dworkin
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or Haglund cancellation, we will generate a factor of [by — k 4+ 1] when placing a
rook in the last column of F’ in the by — k + 1 open squares. This proves (65), and
Theorem 17 follows by summing over all . O

The proof of Theorem 17 shows that one could also define other “hybrid” statis-
tics to generate hy »(F. ¢), by changing the cancellation scheme for the squares of
F in columns with rooks on F' to any scheme which gives the same value for (66).
For example, one could use Dworkin cancellation in some columns and Haglund
cancellation in others.

In [H] it was shown that to any statistic for the ¢-hit numbers there is an asso-
ciated pair of “Euler-Mahonian” permutation statistics which are equi-distributed
with the number of descents and the major index. The pair associated to sp q4(p)
is the number of excedances and Denert’s statistic, while associated to sg ;(p) was
a new Euler-Mahonian pair. This new pair has been analyzed and placed within
a general classification scheme of Mahonian statistics by Babson and Steingri,mson
[BaSt]. The proof of Theorem 17 shows that these pairs are part of a general family
of related pairs.

The proof of Theorem 17 also carries over to shifted Ferrers boards F' C Bs,.
To construct other statistics for fi 2,(F,¢), we could use the same cancellation
as in tp(p) for those rooks off F', and modify the cancellation for rooks on F
appropriately. In particular, we could count squares of F' which are above rooks on
F instead of below rooks on F' (and not to the left of any rook). All that we need
for the cancellation scheme for the rooks on the board is that when we sum over all
perfect matchings with all rooks on a shifted Ferrers board F' = B(ay,... ,a2,-1)
we get H?gl_l[agn_i — 2i + 2] (the = 0 case of eq. (11)).

In [H] the proof that sg,(p) generates hy n(F,q) grew out of a relationship
between ¢-rook numbers and matrices over finite fields. Theorem 18 shows there is
a corresponding connection for rook placements on shifted Ferrers boards, although
we have been unable to prove Corollary 3 by exploiting this relationship.

Given a skew-symmetric matrix S, let S’ denote the upper-triangular portion of

S.
Theorem 18. Let B C By, be a shifted Ferrers board. Let Pyi(B,q) denote the

number of 2n x 2n skew-symmetric matrices S of rank 2k with entries in the finite
field By, where the entries in S’ are zero outside of the squares of B. Then for
0<k<n,

P(B.q) = (¢ = )" """ mu(B.q7").

Sketch of Proof. We perform a modified form of Gaussian elimination on such a
matrix S. Find the lowest nonzero entry in the rightmost nonzero column of S’,
occurring say in square (7, j ). By adding appropriate multiples of row ¢ and column
J, zero out the entries of S in row ¢ and column j above and to the left of (7, ),
and leave a 1 in square (7, j). Do similar operations to square (j,¢). The resulting
matrix S; is also skew-symmetric. Call squares (7, ) and (j,¢) “pivot spots”. Now
iterate; find the lowest nonzero entry in the first nonzero column of S7 to the left
of column j and pivot as before. We eventually end up with &k pivots above the
main diagonal and k below, where if we placed rooks on the pivot spots in S/, they
would form a set of k nonattacking rooks on F. How many matrices S give rise to
the same set of pivot spots? Theorem 18 follows after noting that the pivots spots
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of S’ could originally have held any of ¢ — 1 entries, and the entries above and to
their left which they attack could have been any of ¢ entries. O

In section 2 we pointed out that our algebraic definition of fj 2n(B,¢q) (eq. (12))
did not always result in a polynomial with nonnegative coefficients for boards which
are not shifted Ferrers boards. However, there are larger classes of boards than
shifted Ferrers boards for which we can show the fi2,(B,q) € N[g] and give a
combinatorial interpretation of these polynomials. For example, we can start with
a shifted Ferrers board and shift the rightmost nonzero column all the way to the
right. However, it is not clear what the most general class is and we’ll pursue this
question in subsequent work.
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