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Abstract. In classical rook theory there is a fundamental relationship between the
rook numbers and the hit numbers relative to any board. In that theory the k-th
hit number of a board B can be interpreted as the number of permutations whose
intersection with B is of size k. In the case of Ferrers boards there are q-analogues
of the hit numbers and the rook numbers developed by Garsia and Remmel [GaRe],
Dworkin [D1], [D2] and Haglund [H]. In this paper we develop a rook theory appro-
priate for shifted partitions, where hit numbers can be interpreted as the number of
perfect matchings in the complete graph whose intersection with the board is of size
k. We show there is also analogous q-theory for the rook and hit numbers for these
shifted Ferrers boards.

Introduction. Perfect Matchings and Rook Boards

In classical rook theory there is a fundamental relationship between the rook
numbers and the hit numbers relative to any board. A board B is a subset of the
n� n board An pictured in Fig. 1.
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Given a board B � An, we let Rk(B) denote the set of all k element subsets p
of B such that no two elements of p lie in the same row or column. Such a set p is
called a rook placement of nonattacking rooks on B and rk(B) = jRk(B)j is called
the k-th rook number of B. For example, if B � A4 is the board consisting of all
shaded squares in Fig. 2, then r0(B) = 1, r1(B) = 6, r2(B) = 10, r3(B) = 4, and
r4(B) = 0.
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Given a permutation � in the symmetric group Sn, we identify � with the rook
placement p� = f(i; j) : �(i) = jg. We then de�ne Hk;n(B) to be the set of all
� 2 Sn such that jp� \Bj = k and we call hk;n(B) = jHk;n(B)j the k-th hit number
of B relative to An. One can easily prove the following formula which relates the
rook numbers rk(B) to the hit numbers hk;n(B) for any board B � An.

nX
k=0

hk;n(B)(z + 1)k =
nX

k=0

rk(B)(n � k)!zk: (1)

That is, it is easy to see that the left-hand side of (1) equals the sum

X
(T;p� )
T�p�\B

zjT j: (2)

However, the right-hand side of (1) also counts (2) since we can �rst pick T 2 Rk(B)
and then extend it to a placement p� for some � 2 Sn in (n� k)! ways.

Replacing z by z � 1 in (1) gives the following classical formula of Riordan and
Kaplansky [KaRi]

nX
k=0

hk;n(B)z
k =

nX
k=0

rk(B)(n � k)!(z � 1)k: (3)

Garsia and Remmel [GaRe] gave a q-analogue of the rook numbers and hit
numbers for a certain collection of boards B � An called Ferrers boards. Let
A(a1; a2; : : : ; an) denote the board B contained in An consisting of all squares
f(i; j) : j � aig. For example, A(1; 2; 2; 3) is pictured in Fig. 3.
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Thus A(a1; a2; : : : ; an) denotes the board whose column heights reading from
left to right are a1; a2; : : : ; an. We shall call a board A(a1; a2; : : : ; an) � An a
skyline board. A(a1; a2; : : : ; an) is called a Ferrers board if a1 � a2 � � � � � an.

Let F = A(a1; a2; : : : ; an) be some �xed Ferrers board contained in An. Given a
placement p 2 Rk(B), let each rook r cancel all squares to its right and all squares
below r. We let uF (p) denote the number of squares of F which are uncancelled,
i.e. the number of squares which are neither in p nor cancelled by a rook in p. For
example, if F = A(1; 2; 2; 3; 4; 4) and p is the placement of R3(F ) consisting of the
squares containing an x in Fig. 4, then we put dots � in the squares which are
cancelled by a rook in p. Then uF (p) = 5 is the number of uncancelled squares, i.e.
the squares which contain neither a dot nor an x.
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Garsia and Remmel [GaRe] then de�ned a q-analogue of rk(F ) by setting

rk(F; q) =
X

p2Rk(F )

quF (p): (4)

Garsia and Remmel proved [GaRe] that if F = A(a1; : : : ; an) where 0 � a1 � � � � �
an � n, then

nY
i=1

[x + ai + i� 1] =

nX
k=0

rn�k(F; q)[x] #k (5)
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where [n] = 1+ q+ : : :+ qn�1 = 1�qn

1�q and [n] #k= [n][n� 1] � � � [n� k+1]. We also

de�ne [n]! = [n][n� 1] � � � [2][1] and
�
n
k

�
=

[n]!

[k]![n� k]!
:

Garsia and Remmel also de�ned a q-analogue of the hit numbers, hk;n(F; q), for
Ferrers boards by the formula

nX
k=0

hk;n(F; q)z
k =

nX
k=0

rk(F; q)[n � k]!
nY

i=n�k+1

(z � qi):

Garsia and Remmel proved that hk;n(F; q) is a polynomial in q with nonnegative
coe�cients. In fact, they proved that there is a statistic sF (p) such that

hk;n(F; q) =
X

p2Hk;n(F )

qsF (p): (6)

However, Garsia and Remmel did not provide a direct description of sF (p) but only
de�ned sF (p) indirectly via a recursive de�nition. Later Dworkin [D1], [D2] and
Haglund [H] independently gave direct descriptions of statistics sF;d(p) and sF;h(p)
on p 2 Hk;n(F ) such that

hk;n(F; q) =
X

p2Hk;n(F )

qsF;d(p) =
X

p2Hk;n(F )

qsF;h(p):

The Dworkin statistic sF;d(p) and the Haglund statistic sF;h(p) have very similar
descriptions. Given a placement p 2 Hk;n(F ), �rst let each rook cancel all squares
to its right. Then for each rook r = (i; j) which is not in F , r cancels all squares
below r which are not in F . Finally for each rook r = (i; j) in F , in the Dworkin
statistic the rook cancels all squares below r, plus all squares o� the board in its
column, and sF;d(p) is the number of uncancelled squares. In the Haglund statistic,
each rook r in F cancels all squares in F which lie above r, plus all squares o� the
board in its column, and sF;h(p) is the number of uncancelled squares. For example,
in Fig. 5, we picture the two types of cancellations for a placement p 2 H3;6(F )
where F = A(1; 4; 4; 4; 4; 4). Once again, we indicate the squares of the placement
by placing an x in those squares and we indicate the cancelled squares by placing
a dot in the cancelled squares.

We should note that the methods of proof employed by Dworkin [D] and Haglund
[H] are very di�erent and up until now there was no known weight preserving bi-
jection which shows that both statistics give rise to the same q-analogue of the
hit numbers for Ferrers boards. (As part of our research for this article we dis-
covered such a bijection, which we describe in section 5). Indeed, it is easy to
see that the de�nitions of sF;d(p) and sF;h(p) make sense for any skyline board
F = A(a1; : : : ; an). However, Dworkin proved combinatorially that for any skyline
board F = A(a1; : : : ; an) and any permutation � 2 Sn,X

p2Hk(F )

qsF;d(p) =
X

p2Hk(�(F ))

qs�(F );d(p) (7)



5

x x

xx

x

x

x

x

x

x

x

x

.
.

. . . .
.

. .
. . .

.

.

.
.

. . .
.

.

F,hsF,ds

Dworkin Cancellation Haglund Cancellation

.

.
.
.

. .
.

.

. .
.

.

.

.

.

.

.

.

.

.

(p) = 10(p) = 9

Figure 5

where �(F ) = A(a�(1); : : : ; a�(n)). Haglund showed that (7) does not always hold
if sF;d(p) and s�(F );d(p) are replaced by sF;h(p) and s�(F );h(p) respectively.

The main purpose of this paper is to prove analogues of the results described
above where we replace permutations by perfect matchings. Our work was initially
inspired by unpublished work of Reiner and White [ReWh], who suggested that one
consider the board B2n pictured in Fig. 6.

= B2n
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Note that for the board An, a rook placement p is just a partial permutation,
i.e. a set of squares of An that can be extended to a permutation p� for some
� 2 Sn. For the board B2n, we replace permutations by perfect matchings of the
complete graph K2n on vertices 1; 2; : : : ; 2n. That is, for each perfect matching m
of K2n consisting of n pairwise vertex disjoint edges in K2n, we let pm = f(i; j) :
i < j and fi; jg 2 mg where (i; j) denotes the square in row i and column j of B2n



6 J. HAGLUND AND J. B. REMMEL

according to the labeling of rows and columns pictured in Fig. 6. For example, pm
is pictured in Fig. 7 where m = ff1; 4g; f2; 7g; f3; 5g; f6; 8gg is a perfect matching
of K8.
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For the board B2n, we thus de�ne a rook placement to be a subset of some pm
for a perfect matching m of K2n. Given a board B � B2n, we let Mk(B) denote
the set of k element rook placements of B and let mk(B) = jMk(B)j. Similarly,
we let Fk;2n(B) = fpm : jpm \Bj = k and m is a perfect matching of K2ng and let
fk;2n(B) = jFk;2n(B)j. We call mk(B) the k-th rook number of B and fk;2n(B) the
k-th hit number of B. One can prove that

nX
k=0

fk;2n(B)z
k =

nX
k=0

mk(B)(n � k)!!(z � 1)k (8)

in much the same way that one proved (3). Here we let

n!! =
nY
i=1

(2i � 1) and [n]!! =
nY
i=1

[2i� 1]:

The analogue of a skyline board in this setting is a board B(a1; a2; : : : ; an) =
f(i; i + j) : 1 � j � aig. Thus B(a1; a2; : : : ; a2n�1) is the board whose row
lengths are a1; a2; : : : ; a2n�1 respectively. We say that B(a1; : : : ; a2n�1) is a shifted
Ferrers board if 2n � 1 � a1 � a2 � � � � � a2n�1 � 0, and the non-zero entries
of a1; : : : ; a2n�1 are strictly decreasing. For example, B(5; 3; 2; 1; 0; 0; 0) � B8 is
pictured in Fig. 8.

We note that if we identify a board B � B2n with the graph GB = (V;EB)
where V = f1; : : : ; 2ng and EB = ffi; jg : (i; j) 2 Bg, then the graph of a shifted
Ferrers board is called a threshold graph in the graph theory literature.

Our investigation of rook numbers and hit numbers was, in part, motivated by
trying to �nd a q-analogue of the following formula of Reiner and White which
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Figure 8

holds for any shifted Ferrers board F = B(a1; : : : ; a2n�1) � B2n.

2n�1Y
i=1

(x + a2n�i � 2i+ 2) =
2n�1X
k=0

mk(F )(x) ##2n�1�k : (9)

Here (x) ##k= x(x � 2)(x � 4) � � � (x � 2k + 2). We can de�ne q-rook numbers for
which a q-analogue of Reiner and White's formula (9) holds as follows. We say
that rook (i; j) with i < j in a rook placement rook-cancels all cells (i; s) in Bn

with i < s < j and all cells (t; j) and (t; i) with t < i. For example the cells
rook-cancelled by (4; 7) in B8 are pictured in Fig. 9.
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Given a shifted Ferrers board F = B(a1; : : : ; a2n�1) � B2n and a placement
p 2Mk(F ), we let uF (p) denote the number of cells of F which are neither in p nor
rook-cancelled by a rook in p. Then we de�ne

mk(F; q) =
X

p2mk(B)

quF (p): (10)
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This given, we shall prove the following q-analogue of (9).

2n�1Y
i=1

[x + a2n�i � 2i+ 2] =
2n�1X
k=0

mk(F; q)[x] ##2n�1�k (11)

where [x] ##k= [x][x� 2] � � � [x� 2k + 2].
We de�ne the q-analogue of the hit numbers for F by de�ning fk;n(F; q) via the

formula

nX
j=0

fk;2n(F; q)z
j =

nX
k=0

mk(F; q)[n � k]!!
nY

i=n�k+1

(z � q2i�1): (12)

We shall show that one can de�ne a Dworkin type statistic tF (p) for p 2 Fk(F )
such that

fk;2n(F; q) =
X

p2Fk(F )

qtF (p) (13)

so that (12) ensures that the fk;2n(F; q) are polynomials in q with nonnegative
coe�cients. We note that the q-rook numbersmk(F; q) appear as a special case of a
more general rook placement model due to Remmel and Wachs [ReWa]. Our results
suggest that there is a natural extension of q-hit numbers that can be de�ned in
their model. However, there is no obvious way to de�ne the analogue of our perfect
matchings in the Remmel-Wachs model much less how one could �nd a statistic.

The outline of this paper is as follows. In section 1 we develop basic results
for the q = 1 case of rook numbers and hit numbers for shifted Ferrers boards.
In section 2 we de�ne natural q-analogues of the rook and hit numbers for shifted
Ferrers boards and prove some basic identities that these numbers satisfy. Our basic
de�nition of the q-hit numbers for shifted Ferrers boards is algebraic. However we
also de�ne a combinatorial interpretation of these numbers. In section 3 we prove
the combinatorial interpretation and the algebraic de�nition of the q-hit numbers
for shifted Ferrers boards are the same. Section 4 contains a number of algebraic
identities satis�ed by the q-rook and q-hit numbers for shifted Ferrers boards, which
are used in the proofs of our theorems. In section 5 we introduce new families of
statistics for the q-hit numbers in both the classical Ferrers board and shifted
Ferrers board case so that q-counting permutations/perfect matchings with respect
to these statistics generate the corresponding q-hit numbers. In the classical case
this will give a direct proof that the statistics introduced by Dworkin [D1], [D2]
and Haglund [H] give rise to the same q-hit numbers.

1 Basic results for rook numbers and hit numbers for boards in B2n

In this section, we shall prove a number of basic results for the hit numbers and
rook numbers for boards contained inB2n. Let PM(B2n) = fpm : m is a perfect matching of K2ng.
It is easy to see that jPM(B2n)j = n!!. That is, there are 2n � 1 choices for
an edge that contains vertex 1, i.e. f1; ig; i = 2; : : : ; 2n. If we pick an edge
f1; jg, then the number of ways to complete f1; jg to a perfect matching of K2n

is clearly just the number of perfect matchings on the complete graph on ver-
tices f1; : : : ; 2ng � f1; jg. Thus jPM(B2n)j = (2n � 1)jPM(B2n�2)j and hence
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jPM(B2n)j = 1� 3� � � � � (2n � 1) = n!! by induction. More generally, it follows
that if we are given k pairwise vertex disjoint edges fi1; j1g; : : : ; fik; jkg in K2n,
then the number of ways to extend fi1; j1g; : : : ; fik; jkg to a perfect matching of
K2n is equal to jPM(B2n�2k)j = (n� k)!!.

Now recall that given a board B � B2n , Fk;2n(B) = fpm 2 PM(B2n) : jpm \
Bj = kg and the k-th hit number of B is fk;2n(B) = jFk;2n(B)j. A set p � B is a
rook placement of B if p � B \ pm for some pm 2 PM(B2n). We let Mk(B) denote
the set of all k-element rook placements of B and we de�ne mk(B) = jMk(B)j to
be the k-th rook number of B.

Our �rst result is the analogue of (1) for B2n.

Theorem 1. Let B be a board in B2n. Then
nX
k=0

fk;2n(B)(z + 1)k =

nX
k=0

mk(B)(n � k)!!zk: (14)

Proof. It is easy to see that the left-hand side of (14) is justX
(T;pm)

T�pm\B
pm2PM(B2n)

zjT j: (15)

On the other hand, for each rook placement T � B, there are (n � k)!! ways to
extend T to a perfect matching pm 2 PM(B2n) if jT j = k so that the right-hand
side of (14) is also equal to (15). �

Note if we replace z by z � 1 in (14), we get the following analogue of the
Riordan-Kaplansky formula (3) for any B � B2n.

nX
k=0

fk;2n(B)z
k =

nX
k=0

mk(B)(n � k)!!(z � 1)k: (16)

Next we prove a number of simple recursions for the rook numbers and hit
numbers of B2n-boards. To this end, given a board B � B2n and a pair (i; j) 2 B

with i < j, we de�ne two boards, B=(i; j) and B=(i; j). B=(i; j) is just the board

which is the result of removing the square (i; j) from B. B=(i; j) is the board
contained in B2n�2 which is obtained as follows. First let C2n

(i;j) denote the set of

all squares of Bn which have either i or j as a coordinate. It is easy to see that
B2n � C2n

(i;j) will be a copy of B2n�2 except that it will involve the coordinates

f1; : : : ; 2ng � fi; jg instead of f1; : : : ; 2n � 2g. Thus we can isomorphically map
the resulting board onto B2n�2 by sending a coordinate k to 'i;j(k) where

'i;j(k) =

8><
>:

k if k < i

k � 1 if i < k < j

k � 2 if j < k:

Then
B=(i; j) = f('i;j(s); 'i;j (t)) : (s; t) 2 B � C2n

(i;j)g:

This process is pictured in Fig. 10 for the board B = B(6; 4; 3; 2; 0; 0; 0) and

(i; j) = (3; 5). In Fig. 10, we construct B=(3; 5) and B=(3; 5) and we indicate the
cells in B8 which have a coordinate equal to 3 or 5 by placing dots in those squares.

This given, we have the following.
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Figure 10

Theorem 2. For any board B � B2n and (i; j) 2 B,

(i) mk(B) = mk(B=(i; j)) +mk�1(B=(i; j)): (17)

(ii) fk;2n(B) = fk;2n(B=(i; j)) + fk�1;2n�2(B=(i; j))� fk;2n�2(B=(i; j)): (18)

Proof. For recursion (i), we simply classify the k-element rook placements p accord-

ing to whether (i; j) 2 p. That is, let M
(i;j)
k (B) = fp 2Mk(B) : (i; j) 2 pg. Then it

is easy to see thatMk(B=(i; j)) =Mk(B)�M
(i;j)
k (B). Moreover 'i;j induces a 1 : 1

correspondence between M
(i;j)
k (B) and Mk�1(B=(i; j)). That is, if p 2 M

(i;j)
k (B),

then we let 'i;j(p) = f('i;j(s); 'i;j(t)) : (s; t) 2 p � f(i; j)gg. Recursion (i) easily
follows.

To prove recursion (ii), we again partition the pm 2 Fk;2n(B) into two sets

according to whether (i; j) 2 pm. Let F (i;j)
k;2n (B) = fpm 2 Fk;2n(B) : (i; j) 2 pmg.

Again 'i;j induces a 1 : 1 correspondence between F
(i;j)
k;2n (B) and Fk�1;2n�2(B=(i; j))

where if pm 2 F
(i;j)
k;2n (B), then 'i;j(pm) = f('i;j(s); 'i;j(t)) : (s; t) 2 pm � f(i; j)gg.

Next consider Fk;2n(B=(i; j)). Note that Fk;2n(B=(i; j))�F
(i;j)
k;2n (B=(i; j)) = Fk;2n(B)�

F
(i;j)
k;2n (B). That is, if (i; j) =2 pm, then jpm \ Bj = jpm \ B=(i; j)j. By the same
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argument as above 'i;j induces a 1 : 1 correspondence between F
(i;j)
k;2n (B=(i; j)) and

Fk;2n�2((B=(i; j))=(i; j)). However, it is easy to see that (B=(i; j))=(i; j) = B=(i; j).

Thus jFk;2n(B=(i; j))j = jFk;2n(B)�F
(i;j)
k;2n (B)j+ jFk;2n�2(B=(i; j))j or equivalently

jFk;2n(B) � F
(i;j)
k;2n (B)j = fk;2n(B=(i; j)) � fk;2n�2(B=(i; j)). Since jF

(i;j)
k;2n (B)j =

jFk�1;2n�2(B=(i; j))j = fk�1;2n�2(B=(i; j)), recursion (ii) follows. �

There is one other fundamental recursion for the hit numbers which we shall state
since the q-analogue of this recursion will play a crucial role for our combinatorial
interpretation of the q-hit numbers.

Theorem 3. Suppose that B is a board contained in B2n such that B \ f(i; 2n) :
1 � i � 2n � 1g = ; (Thus B contains no elements in the last column of B2n.)
Then

fk;2n(B) =

2n�1X
i=1

fk;2n�2(B=(i; 2n)): (19)

Proof: Note that every pm 2 PM(B2n) must contain a square in the last column
of B2n since every perfect matching m of K2n must contain one edge of the form

fi; 2ng with i � 2n � 1. Thus Fk;2n(B) can be partitioned into
S2n�1
i=1 F

(i;2n)
k;2n (B)

since B contains no elements in the last column of B2n. But 'i;2n induces a 1 : 1

correspondence between F
(i;2n)
k;2n (B) and Fk;2n�2(B=(i; 2n)) for i = 1; : : : ; 2n � 1.

Hence (19) immediately follows. �

We end this section with a proof of the factorization formula (9) for the rook poly-
nomial

Pn
k=0mk(B)(x) ##2n�1�k for shifted Ferrers boards. Reiner and White's

original proof of (9) was recursive. We will give a bijective proof of (9) for a
slightly larger family of boards which we call nearly Ferrers boards. That is,
we say a board B � B2n is nearly Ferrers if for all (i; j) 2 B, the squares
f(s; j) : s < ig [ f(t; i) : t < ig are also in B. It is easy to see that every shifted
Ferrers board F � B is nearly Ferrers. Moreover, you can construct a nearly Fer-
rers board by starting with a full triangle of squares �i = f(s; t) : s < t � ig and
then adding any columns to the right of �i of height � i. See Fig. 11 for such an
example.

Figure 11
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Theorem 4. Let B be a nearly Ferrers board � B2n and let ai denote the number
of squares in B that lie in row i for i = 1; : : : ; 2n� 1. Then

2n�1Y
i=1

(x + a2n�i � 2i+ 2) =

nX
k=0

mk(B)(x) ##2n�1�k : (20)

Proof. We let B2n;x denote the board B2n with x columns of height 2n� 1 added
to the right of B2n; see Fig. 12.

2 3 2n-1 2n

2n-2

2n-1

1

2

.

.

.

. . . 2n+1 2n+x

x

. . .

Figure 12: The board B2n;x

We want to consider the set of all placements of 2n�1 nonattacking rooks inB2n;x

but we have to de�ne the set of squares that a rook in a square (i; j) attacks. Now
if (i; j) 2 B2n, then a rook r in (i; j) attacks all cells in row i and column j plus all
cells in A2n

(i;j) = f(s; t) 2 B2n : jfs; tg\fi; jgj = 1g. However, if (i; j) 2 B2n;x�B2n,

then the cells that a rook in (i; j) attacks in a rook placement p depends on the
other rooks in p \ (B2n;x�B2n). That is, if (i; j) is the position of the lowest rook
r1 in p \ (B2n;x �B2n), then r1 attacks all cells in row i and column j other than
(i; j) plus all cells in the column j � 1 if 2n+ 1 < j. If j = 2n+ 1 then r1 attacks
all cells in row i and column j plus all cells in column 2n + x. In general, if (i; j)
is the position of the k-th lowest rook rk in p \ (B2n;x � B2n), then rk attacks all
cells in row i and column j other than (i; j) plus all cells in the �rst column in the
following list of columns j�1; j�2; : : : ; 2n; 2n+x; 2n+x�1; : : : ; j+1 that contain
a square which is not attacked by any of the k�1 lower rooks in B2n;x�B2n. Note
that this means that each rook r in p \ (B2n;x � B2n) will attack all cells in two
columns of B2n;x � B2n. That is, if r is in cell (i; j), r attacks all cells in column
j. It then looks for the �rst column s > 2n to the left of column j which has a cell
that is not attacked by a lower rook in p\ (B2n;x�B2n). If there is no such column
s, then r starts at column 2n+x and looks for the right most column s which has a
square which is not attacked by any lower rook in p \ (B2n;x�B2n). Note that we
are guaranteed that such a column s exists if x � 4n�2. Then r attacks all cells in
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column s as well. Our de�nition of nearly Ferrers board also ensures that each rook
r 2 p that lies in B also attacks the squares in two columns of B which lie above
r, namely, the squares in column i and j. For example, consider the placement p
pictured in Fig. 13 consisting of 3 rooks, r1 in (7; 10), r2 in (5; 11), and r3 in (3; 7).
We have indicated all cells attacked by ri by placing an i in the cell.

1

2

3

4

5

6

7

3

3

3 3 3 3

3

3

3

3

3 3 3 33

1 1 1 1 11

1

1

1

1 1

1

1

1

2 2 2 2 2

2

2

2

22

2

2

2

22 2

8 12 14 15 16 171110 13765432 9

1,21,3

1,21,2

2,31,31,3

1,2

2,3

2,3

r3

r2

r1

Figure 13

Now let B be a board contained in B2n and assume that x � 4n � 2. Let
N2n;x(B) denote the set of all placements p of 2n� 1 rooks in B2n;x such that no
cell which contains a rook in p is attacked by another rook in p and any rook r in
B2n \ p is an element of B. We claim that (20) arises from two di�erent ways of
countingN2n;x(B). That is, the number of ways to place a rook r2n�1 in row 2n�1
is just x+ a2n�1. Then r2n�1 attacks two cells in row 2n� 2 of B [ (B2n;x�B2n)
so that there will be x+ a2n�2 � 2 ways to place a rook r2n�2 in row 2n� 2. Next
in row 2n� 3, r2n�1 and r2n�2 together will attack four cells so that there will be
x+ a2n�3� 4 ways to place a rook r2n�3 in row 2n� 3. Continuing on in this way,
it is easy to see that

jN2n;x(B)j =
2n�1Y
i=1

(x + a2n�i � 2i+ 2):

On the other hand, suppose that we �x a placement p of k nonattacking rooks on
B. Thus p 2Mk(B). We claim that the number of ways to extend p to a placement
q 2 N2n;x(B) such that q \ B2n = p is x(x � 2) � � � (x � 2(2n � 1 � k) + 2). That
is, there are 2n� 1� k rows in B2n;x �B2n, say 1 � d1 < � � � < d2n�1�k � 2n� 1
which have no cells which are attacked by rooks in p. Now for the lowest such row
d2n�1�k, we have x choices of where to place a rook in B2n;k � B2n that lies in
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d2n�1�k. The rook in row d2n�1�k will attack exactly two cells in B2n;x�B2n that
lie in row d2n�1�k�1 so that there will be x � 2 choices of where to place a rook
in row d2n�1�k�1. The rooks in rows d2n�1�k and d2n�k�2 will attack a total of
four rooks in (B2n;x �B2n) that lie in row d2n�k�3 so that there will be a total of
x � 4 ways to place a rook in row d2n�k�3. Continuing on in this way, it is easy
to see that there are a total of (x) ##2n�1�k ways to extend p to a rook placement
q 2 N2n;x(B) such that q \B2n = p. Thus

jN2n;x(B)j =
nX

k=0

mk(B)(x) ##2n�1�k : �

Now suppose that we set x = 2n � 2 in (20). Then (2n � 2) ##2n�1�k= 0 for
k = 0; : : : ; n � 1. Thus the only term that survives on the right-hand side of (20)
is mn(B)(2n� 2) ##n�1. Note (2n� 2) ##n�1= 2n�1(n� 1)!. Thus the following is
an immediate corollary of Theorem 4.

Corollary 1. Let B be a nearly Ferrers board � B2n and for i = 1; : : : ; 2n � 1,
let ai be the number of squares in row i that are in B. Then the number of perfect
matchings of the graph GB = (f1; : : : ; 2ng; ffi; jg : (i; j) 2 Bg) is

2n�1Y
i=1

(a2n�i � 2(n � i))=2n�1(n� 1)!:

2. q-Rook numbers and q-hit numbers for boards in B2n.

In this section we shall de�ne q-rook numbers and q-hit numbers for boards in
B2n and prove some of their basic properties.

Let B be any board contained in B2n. For any rook r in a square (i; j), we say
that r rook-cancels squares f(r; i) : r < ig [ f(i; s) : i+ 1 � s < jg [ f(t; j) : t < ig.
For example, the squares that are rook-cancelled by a rook in (4; 7) inB8 are pictured
in Fig. 9 with a dot in them. Thus the squares rook-cancelled by a rook r in cell
(i; j) is just the squares (a; b) which are attacked by r such that a+ b < i+ j. Next
for any rook placement p 2 Mk(B) for some k, we let uB(p) denote the number
of squares in B � p that are not rook-cancelled by any rook in p. We then de�ne
mk(B; q) for k > 0 by

mk(B; q) =
X

p2mk(B)

qub(p): (21)

We de�ne m0(B; q) = qjBj.
We call mk(B; q) the k-th q-rook number of B. We shall de�ne the k-th hit

number of B, fk;2n(B; q), for any board B � B2n by the formula

nX
k=0

fk;2n(B; q)z
k =

nX
k=0

mk(B; q)[n � k]!!
nY

i=n�k+1

(z � q2i�1): (22)

Note for k = 0, the product
Qn

i=n�k+1(z � q2i�1) is equal to 1 by de�nition. We
shall call fk;2n(B; q) the k-th hit number of B relative to B2n. For example consider
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the shifted Ferrers board B(2; 1; 0) � B4. Thenm0(B; q) = q3 sinceB has 3 squares
m1(B; q) = 1 + q + q2 since there are three rook placements in M1(B) pictured in
Fig. 14, and m2(B; q) = 0 since M2(B) = ;. Thus

2X
k=0

fk;4(B(2; 1; 0); q)z
k =

2X
k=0

mk(B(2; 1; 0); q)[2 � k]!!
2Y

i=2�k+1

(z � q2i�1)

= q3[3][1] + (1 + q + q2)[1](z � q3)

= (1 + q + q2)z:

Thus f0;4(B(2; 1; 0); q) = f2;4(B(2; 1; 0); q) = 0 and f1;4(B(2; 1; 0); q) = 1 + q + q2.

. . .X

X

X

uB(2,1,0)(p1)=2 uB(2,1,0)(p2)=1 uB(2,1,0)(p3)=0

Figure 14

We should note that in general the fk;2n(B; q) are not polynomials in q with
nonnegative coe�cients. That is, consider the board B pictured in Fig. 15, which
gives the 3 rook placements of M1(B), the 1 rook placement in M2(B), and the
corresponding values of uB(p).

u B (p1)=2

. . . . . . .X

X X

XX

u B (p2)=1 u B (p3)=1 u B (p4)=0

Figure 15

Thus m0(B; q) = q3, m1(B; q) = 2q + q2, and m2(B; q) = 1. Hence

2X
k=0

fk;4(B; q)z
k =

2X
k=0

mk(B; q)[2 � k]!!

2Y
i=2�k+1

(z � q2i�1)

= q3[3] + (2q + q2)(z � q3) + (z � q3)(z � q)

= q3 + (q + q2 � q3)z + z2
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so that f0;4(B; q) = q3, f1;4(B; q) = q + q2 � q3, and f2;4(B; q) = 1.
As mentioned in the introduction, the main result of this paper is to show that

if F is a shifted Ferrers board of B2n, then the q-hit numbers fk;2n(F; q) are poly-
nomials in q with nonnegative coe�cients. Indeed, we can de�ne an analogue tF (p)
of the Dworkin statistic sF;d(p) for boards contained in An such that

fk;2n(F; q) =
X

p2Fk;2n(F )

qtF (p): (23)

Let B be any board contained in B2n and suppose that we are given a placement
p 2 Fk;2n(B). If rook r is on cell (i; j) 2 p \B, then r pm-cancels all squares

f(r; i) : r < ig [ f(i; s) : i + 1 � s < jg

[ f(t; j) : t < ig [ f(u; j) : u > j and (u; j) =2 Bg:

That is, if r is on B, then it pm-cancels all squares s to the left of r that it rook-
cancels, and also all squares above r as in the de�nition of uF , plus all squares in
its column which are below r and not in B. However, if a rook r is on (i; j) and
(i; j) =2 B, then r pm-cancels all squares in

f(r; i) : r < ig [ f(i; s) : i+ 1 � s < jg [ f(t; j) : t < i and (t; j) =2 Bg:

That is, if r is o� the board, r pm-cancels the same squares to the left of r that it
rook-cancels plus squares in its column which lie above r and are o� the board. We
then let tB(p) be the number of squares in B2n�p which are not pm-cancelled. For
example, for the placement p 2 Fk;10(B(9; 7; 5; 4; 2; 0; 0; 0; 0)) pictured in Fig. 16,
we have put dots in all the pm-cancelled squares. There are a total of 13 uncancelled
squares so that tF (p) = 13.

4
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6

7

8

9

1098765432

3
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1

= p

t f

. .
. . . . . .

. .
. . .
. . .

. .
.

. .
.. . . x

x

x

x

x

. .
(p) = 13

Figure 16
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The main goal of this paper is to prove that if B is a shifted Ferrers board
contained in B2n and fk;2n(B; q) is de�ned via (22), then (23) holds. For any board
B � B2n, let

~fk;2n(B; q) =
X

p2Fk;2n(B)

qtB(p): (24)

There are two simple recursions that are satis�ed by the ~fk;2n(B; q) which are
q-analogues of (18) and (19).

Theorem 5. Suppose that B is a board contained in B2n such that

B \ f(j; 2n) : 1 � j � 2n� 1g = f(j; 2n) : j � ig;

where i � 1. Thus in the last column of B2n, B contains exactly the squares
(1; 2n); (2; 2n); : : : ; (i; 2n). Let � = (i; 2n). Then

~fk;2n(B; q) = q ~fk;2n(B=�; q) + ~fk�1;2n�2(B=�; q)� q2n�1 ~fk;2n�2(B=�; q): (25)

Proof. Just as in the proof of Theorem 2:ii, we partition Fk;2n(B) into two sets,

F
(i;2n)
k;2n (B) and Fk;2n(B) � F

(i;2n)
k;2n (B). Now if p 2 F

(i;2n)
k;2n (B), then the rook r on

(i; 2n) pm-cancels all cells (j; 2n) such that j 6= i since (i; 2n) is the lowest cell of B
in column 2n. It follows that 'i;2n induces a weight preserving bijection between

F
(i;2n)
k;2n (B) and Fk�1;2n�2(B=�) so that

X
p2F (i;2n)

k;2n (B)

qtB(p) =
X

p2Fk�1;2n�2(B=�)

qtB=�(p) = ~fk�1;2n�2(B=�; q): (26)

Again it is the case that Fk;2n(B=(i; 2n))�F
(i;2n)
k;2n (B=(i; 2n)) = Fk;2n(B)�F

(i;2n)
k;2n (B)

since if (i; 2n) =2 pm for some pm 2 PM(B2n), then jpm \ Bj = jpm \ B=(i; 2n)j.
However, there is a di�erence between tB=(i;2n)(pm) and tB(pm) for such pm. That
is, pm contains one rook r in the last column of B2n. Say r is on square (j; 2n). Now
if j < i, then r is on both B and B=(i; 2n). However relative to B, r pm-cancels
all cells (s; 2n) with s < j or s > i. Relative to B=(i; 2n), r pm-cancels all cells
(s; 2n) with s < j or s � i. That is, (i; 2n) is not pm-cancelled relative to B but
it is pm-cancelled relative to B=(i; 2n). Similarly, if j > i so that (j; 2n) =2 B and
(j; 2n) =2 B=(i; 2n), (i; 2n) is not pm-cancelled relative to B but it is cancelled rela-
tive to B=(i; 2n). If r0 is any rook in p�frg then it is easy to see that r0 pm-cancels
the same squares relative to B that it pm-cancels relative to B=(i; 2n). It follows
that for all

p 2 Fk;2n(B) � F
(i;2n)
k;2n (B) = Fk;2n(B=�) � F

(i;2n)
k;2n (B=�);

tB(p) = 1 + tB=�(p): (27)

Next suppose that p 2 F
(i;2n)
k;2n (B=�). Then the rook r on (i; 2n) in p does not

pm-cancel any squares in the last column relative to B=(i; 2n) so there are 2n � 2
uncancelled squares in the last column of B2n. This given, it is easy to see that 'i;2n
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induces a 1 : 1 correspondence between F
(i;2n)
k;2n (B=�) and Fk;2n�2((B=�))=�) =

Fk;2n�2(B=�) which shows that

X
p2F (i;2n)

k;2n (B=�)

qtB=�(p) = q2n�2
X

p2Fk;2n�2(B=�)

qtB=�(p)

= q2n�2 ~fk;2n�2(B=�; q): (28)

Thus by (27) and (28),

q ~fk;2n(B=�; q) = q
X

p2F (i;2n)
k;2n (B=�)

qtB=�(p) + q
X

p2Fk;2n(B=�)�F
(i;2n)
k;2n (B=�)

qtB=�(p)

= q2n�1 ~fk;2n�2(B=�; q) +
X

p2Fk;2n(B)�F
(i;2n)
k;2n (B)

qtB(p): (29)

Hence

X
p2Fk;2n(B)�F

(i;2n)
k;2n (B)

qtB(p) = q ~fk;2n(B=�; q) � q2n�1 ~fk;2n�2(B=�; q): (30)

Clearly (25) follows immediately from (26) and (30). �

We have the following analogue of Theorem 3.

Theorem 6. Suppose that B is any board contained in B2n such that B has no
cells in the last column, then for any k

~fk;2n(B) =

2n�1X
i=1

q2n�i�1 ~fk�1;2n�2(B=(i; 2n)): (31)

Proof. As in the proof of Theorem 3, we partition Fk;2n(B) into
S2n�1
i=1 F

(i;2n)
k;2n (B).

For a placement p 2 F
(i;2n)
k;2n (B), the rook r on (i; 2n) in p pm-cancels all squares

(j; 2n) with j < i since there are no cells in B in the last column. Thus there are
2n � 1 � i uncancelled squares in the last column of B2n relative to p. It is then

easy to see that the 1 : 1 correspondence that 'i;2n induces between F
(i;2n)
k;2n (B) and

Fk;2n�2(B=(i; 2n)) proves that for i = 1; : : : ; 2n� 1,

X
p2F (i;2n)

k;2n (B)

qtB(p) = q2n�i�1
X

p2Fk;2n�2(B(i;2n))

q
t
B=(i;2n)

(p)

= q2n�i�1 ~fk;2n�2(B(i; 2n)): (32)

Thus (31) holds. �

It is easy to check that for all boards B � B2 and for all k 2 f0; 1g, fk;2(B; q) =
~fk;2(B; q). Thus to prove that fk;2n(B; q) = ~fk;2n(B; q) for all nearly Ferrers boards
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B � B2n and all k 2 f0; : : : ; ng, we only need show that the analogues of Theo-

rems 5 and 6 hold for all shifted Ferrers boards B when ~fk;2n(B; q) is replaced by
fk;2n(B; q).

First we shall show that the analogue of Theorem 5 follows from the following
simple recursion for the mk(B; q)'s. We shall say that a square (i; j) of a board
B � B2n is a corner square of B if B \ Ai;j = ; where Ai;j = f(s; t) 2 B2n :
jfs; tg \ fi; jgj = 1 and s + t > i + jg. Note that Ai;j represents the squares
S 2 B2n such that a rook on S could rook-cancel the cell (i; j) relative to the uB(p)
statistic. If B is a shifted Ferrers board, it is easy to see that (i; j) is a corner
square if and only if there are no squares in B to the south-east of (i; j) in B2n.

Theorem 7. Let B be a board contained in B2n and � = (i; j) be a corner square
of B. Then for any k,

mk(B; q) = qmk(B=�; q) +mk�1(B=�; q): (33)

Proof. Set M (i;j)
k (B) = fp 2 Mk(B) : (i; j) 2 pg. First we partition the rook

placements of Mk(B) into two sets, namely M
(i;j)
k (B) and Mk(B) � M

(i;j)
k (B).

Now if p 2 M
(i;j)
k (B), then the rook r on (i; j) rook-cancels all squares in B in

C2n
i;j \ B since (i; j) is a corner square. Thus 'i;j induces a 1 : 1 weight preserving

correspondence between M
(i;j)
k (B) and Mk�1(B=�). Hence it follows thatX

p2M
(i;j)
k (B)

quB(p) =mk�1(B=�; q): (34)

If p 2 Mk(B) �M
(i;j)
k (B), then cell (i; j) is not rook-cancelled by any rook in p

since (i; j) is a corner cell. Thus uB(p) = 1 + uB=�(p). HenceX
p2Mk(B)�M

(i;j)
k (B)

quB(p) =
X

p2Mk(B=�)

q1+uB=�(p) = q mk(B=�; q): � (35)

Corollary 2. Let B be a board contained in B2n and let � = (i; j) be a corner
square of B. Then for any k,

fk;2n(B; q) = qfk;2n(B=�; q) + fk�1;2n�2(B=�; q)� q2n�1fk;2n�2(B=�; q): (36)

Proof. By (33),
nX

k=0

fk;2n(B; q)z
k =

nX
k=0

mk(B; q)[n � k]!!
nY

i=n�k+1

(z � q2i�1)

=
nX

k=0

qmk(B=�; q)[n � k]!!
nY

i=n�k+1

(z � q2i�1)

+
nX

k=0

mk�1(B=�; q)[n� 1� (k � 1)]!!(z � q2n�1)
n�1Y

i=n�1+1�(k�1)

(z � q2i�1)

= q

nX
k=0

fk;2n(B=�; q)z
k+(z�q2n�1)

n�1X
j=0

mj(B=�; q)[n�1�j]!!
n�1Y

i=n�1+1�j

(z�q2i�1)

= q

nX
k=0

fk;2n(B=�; q)z
k + (z � q2n�1)

n�1X
k=0

fk;2n�2(B=�; q)z
k: (37)
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Taking the coe�cient of zk on both sides of (37) yields (36). �

Note that the recursion (36) which holds for the fk(B; q)'s represents a more

general recursion than the recursion (25) which holds for the ~fk;2n(B; q)'s. We

could prove that fk;2n(B; q) = ~fk;2n(B; q) for all shifted Ferrers boards B if we

could give a direct combinatorial proof of the analogue of (36) for the ~fk;2n(B; q)'s.
However we have not been able to �nd such a direct combinatorial proof. The
method of proof of Theorem 5 does not extend for arbitrary corner squares even
for shifted Ferrers boards. For example consider the board B = B(2; 1; 0) � B4. In
our proof of Theorem 5, we showed that if B was a shifted Ferrers board and � is
the corner square in the last column of B, then

X
p2F�k (B)

qtB(p) = ~fk�1;2n�2(B=�; q)

and X
p2Fk(B)�F�k (B)

qtB(p) = q ~fk;2n(B=�; q) � q2n�1 ~fk;2n�2(B=�; q):

Now suppose � = (2; 3). One can see from Fig. 17 that

X
p2F�1 (B)

qtB(p) = q2 and
X

p2F1(B)�F�1 (B)

qtB(p) = 1 + q:

XX

X X

X

X

.

. .
.

.
.

...

t B (p1 t B (p2 t B (p3) = 0) = 1) = 2

p1= p2= p3=

Figure 17

However one can easily calculate ~f0;2(B=�; q) = ~f0;2(;; q) = 1, ~f1;2(B=�; q) = 0,

and ~f1;4(B=�; q) = 1 + q. Thus

X
p2F�1 (B)

qtB(p) 6= ~f0;2(B=�; q)

and X
p2F1(B)�F�1 (B)

qtB(p) 6= q ~f1;4(B=�; q) � q3 ~f1;2(B=�; q):

Our inability to give a direct proof of the analogue of recursion (36) for the ~fk;2n(B; q)'s
forced us to take a di�erent path of proof to establish the equality of the fk;2n(B; q)
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and ~fk;2n(B; q) for shifted Ferrers boards. Namely, we show that the fk;2n(B; q)'s

satisfy the analogue of the recursion (31) which holds for the ~fk;2n(B; q)'s. Unfor-
tunately it is not at all straightforward to show that the fk;2n(B; q)'s satisfy the
analogue of (31). Indeed most of section 3 will be devoted to proving such a recur-
sion. In preparation for this proof, we shall end this section by proving a number
of identities for the mk(B; q)'s which will be used in section 3.

We start with a q-analogue of Theorem 4.

Theorem 8. Let B be a nearly Ferrers board contained in B2n such that B has ai
cells in row i. Then

2n�1Y
i=1

[x+ a2n�i � 2i+ 2] =

nX
k=0

mk(B; q)[x] ##2n�1�k : (38)

Proof. As in the proof of Theorem 4, we shall consider rook placements inN2n;x(B).
Now suppose that r is a rook in p where p 2 N2n;x(B). Then if r is on (i; j) 2 B,
then we say r N -cancels all cells in

f(r; j) : r < ig [ f(i; s) : i+ 1 � s < jg [ f(t; i) : t < ig

[ f(i; u) : u > j and (u; i) =2 Bg:

Note that the �rst three sets in this union are the same cells that r rook-cancels
relative to the uB(p\B) statistic and the last set in the union is all the cells to the
right of r which are not in B. If r is on (i; j) 2 B2n;x�B2n, let A2n

(i;j) denote the set

of cells attacked by r as de�ned in Theorem 4. Then r N -cancels all cells in A2n
(i;j)

that lie in a row s with s < i plus all cells in row i that are either in B2n�B or to
the right of (i; j). We let uN (p) denote the number of squares in B2n;x � p which
are not N -cancelled by any rook in p. We claim that (38) results by computing the
sum X

p2N2n;x(B)

quN (p) (39)

in two di�erent ways.
Consider the ways to place a rook r2n�1 in row 2n � 1. If we place the rook in

the rightmost position in B, then r2n�1 will N -cancel all cells in row 2n� 1. If we
place r2n�1 in the next to rightmost position in B, then r2n�1 will cancel all but
one cell in row 2n�1. As we continue to move r2n�1 to the left in B in row 2n�1,
we increase the number of uncancelled cells in row 2n � 1 by one until we reach
the leftmost cell in row 2n � 1 of B where we would have a2n�1 � 1 uncancelled
cells. Next consider the placement of rn�1 in cell (2n� 1; 2n+1). In that case, we
would have a total of a2n�1 uncancelled cells in row 2n � 1, namely the cells that
lie in row 2n � 1 and in B. Then as we move r2n�1 successively to the right, we
would increase the number of uncancelled cells by one until we reach the rightmost
position, namely (2n � 1; 2n + x), where we would have a total of x + a2n�1 � 1
uncancelled cells. Thus the factor of (38) contributed by the possible placements
of r2n�1 in row 2n� 1 is 1 + q + : : : + qx+a2n�1�1 = [x + a2n�1].

Note that if r2n�1 is placed in a cell in B, our de�nition of nearly Ferrers board
ensures that it will N -cancel exactly two cells in B in every row i with i < 2n�1. If
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r2n�1 is placed in B2n;x�B2n, then it will N -cancel exactly two cells in B2n;x�B2n

in every row i with i < 2n � 1. Thus when we consider the placement of a rook
r2n�2 in row 2n�2, we can use the same argument to prove that the factor of (39)
contributed by the possible placement of r2n�2 is [x + a2n�2 � 2]. Once again if
r2n�2 is placed in a cell in B, it will N -cancel an additional two cells in B in each
row i with i < 2n�2 and if r2n�2 is placed in a cell in B2n;x�B2n, it will N -cancel
an additional two cells in B2n;x � B2n in each row i with i < 2n � 2. Hence the
factor of (39) contributed by the possible placement of a rook r2n�3 in row 2n� 3
is [x+ a2n�3 � 4]. Continuing on in this way, it is easy to see that

X
p2N2n;x(B)

quN (p) =
2n�1Y
i=1

[x + a2n�i � 2i+ 2]: (40)

Next suppose that we �x a placement p 2Mk(B) and we consider the sum

X
p02N2n;x(B)

p0\B=p

quN (p):

It is easy to check that our de�nitions ensure that for any p0 2 N2n;x(B) such that
p0 \ B = p, the number of squares of B2n � p that are not N -cancelled by some
rook in p0 is just uB(p). Moreover, by the same type of argument that we used
above, the factor of (4) that arises from the possible placements of 2n�1�k rooks
in B2n;x �B2n is just [x][x � 2] � � � [x � 2(2n� 1� k) + 2] = [x] ##2n�1�k. Thus it
follows that

X
p2N2n;x(B)

quN (p) =

nX
k=0

X
p2Mk(B)

quB(p)[x] ##2n�1�k

=
nX

k=0

mk(B; q)[x] ##2n�1�k : �

We end this section by proving three recursions for the mk(B; q), where B is a
shifted Ferrers board or nearly Ferrers board which has no cells in the last column
of B2n.

Theorem 9. Suppose that B is a board contained in B2n which has no cells in the
last column of B2n. Let � = (i; r) be the cell which is at the bottom of the rightmost
column of B. Then
(a) if B is a nearly Ferrers board,

mk(B=(i; 2n); q) = qi�1mk(B=�; q) +
i�1X
j=1

qi�1�jmk�1((B=�)=(j; 2n� 2); q); (41)

(b) if B is a shifted Ferrers board,

mk(B=(r; 2n); q) = [r � 2k]mk�1(B=�; q) + qr�2�2kmk(B=�; q); (42)
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(c) if B is a shifted Ferrers board,

2n�1X
j=1

q2n�j�1mk(B=(j; 2n); q)

= [2n� 1� 2k]mk(B; q) � (q2n�1 � q2n�3�2k)mk+1(B; q): (43)

Proof. Before proceeding with the proof of these three recursions, it will be useful
to see the relations between three boards mentioned in recursion (a) and (b). It is

easy to see from Fig. 18 that B=(i; 2n) is just the board B=� with an extra column

of height i � 1 added in column r � 1. The board B=(r; 2n) is just the board B
with the last column removed.

For recursion (a), we simply classify the rook placements p of mk(B=(i; 2n))

according to whether or not p has a rook in the last column of B=(i; 2n). That is,

if p 2 M
(j;r�1)
k (B=(i; 2n)) where j � i � 1, then the rook on square (j; r � 1) in p

will cancel all but i� 1� j squares in the last column. It follows that

q
u
B=(i;2n)

(p)
= qi�1�jq

u
(B=(i;2n))=(j;r�1)

('j;r�1(p)):

Clearly (B=(i; 2n))=(j; r � 1) is the same board as (B=(i; r))=(j; 2n � 2). Thus

i�1X
j=1

X
p2M (j;r�1)

k (B=(i;2n))

q
u
B=(i;2n)

(p)

=
i�1X
j=1

qi�1�j
X

p02Mk�1((B=�)=(j;2n�2))

q
u
(B=�)=(j;2n�2)

(p0)

=
i�1X
j=1

qi�1�jmk�1((B=�)=(j; 2n� 2); q): (44)

On the other hand given a p 2 Mk(B=(i; 2n)) having no rook in column r � 1, all
the squares in column r � 1 will not be rook-cancelled so that

uB=(i;2n)(p) = qi�1uB=�(p):

Thus

X
p2Mk(B=(i;2n))�

Si�1
j=1M

(j;r�1)
k (B=(i;2n))

q
u
B=(i;2n)

(p)
= qi�1mk(B=�; q): (45)

Combining (44) and (45) yields (41) as desired.
For recursion (b), note that the shifted Ferrers board B=� is the board which

results by removing the last column and the �rst row from B. Thus B=� is the

result of removing the �rst row from B=(r; 2n). It follows that recursion (b) can be
rephrased as follows. Suppose that D is a shifted Ferrers board with r� 2 columns
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and C is the shifted Ferrers board that results from removing the �rst row of D.
Then

mk(D; q) = [r � 2k]mk�1(C; q) + qr�2�2kmk(C; q): (46)

Once we have rephrased recursion (b) in this way, it is simple to prove. Namely we
simply partition the elements p ofMk(D) depending on whether or not p has a rook
in the �rst row ofD. That is, letM1

k (D) = fp 2Mk(D) : p has a rook in the �rst rowg.
Now if p 2Mk(D)�M1

k (D), then p has all k rooks below the �rst row. Since each
of these rooks rook-cancel two squares in row 1, there will be r�2�2k uncancelled
squares in the �rst row. Of course, the board C is just the rows of D below row 1
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so that

X
p2Mk(D)�M1

k
(D)

quD(p) = qr�2�2k
X

p2Mk(C)

quC(p)

= qr�2�2kmk(C; q): (47)

Next suppose that p0 2Mk�1(C). We can think of p0 as a rook placement in D
with no rooks in the �rst row. There will be r � 2� 2(k � 1) = r � 2k uncancelled
squares in the �rst row of D. Thus we can extend p0 to a placement p 2 M1

k (D)
in r � 2k ways by placing a rook r in one of these r � 2k uncancelled squares in
the �rst row of D. If we placed r in the i-th uncancelled square in row 1 starting
from the right, r will rook-cancel all squares to its left and leave i � 1 uncancelled
squares in row 1. It follows that

X
p2M1

k(D)

quD(p) = (1 + q + : : :+ qr�k�1)
X

p02Mk�1(C)

quC(p
0)

= [r � 2k]mk�1(C; q): (48)

Hence (46) holds.

We do not have a simple combinatorial proof of recursion (c). Instead we shall
prove recursion (c) by induction, �rst on 2n and then on the number of squares in
B. It is easy to verify that recursion (c) holds for all boards B � B2. Thus assume
that (c) holds for all boards B0 � B2n�2. Now if B is the empty board contained
in B2n, then it is easy to see that both sides of (43) are zero if k � 1. If k = 0,

B=(j; 2n) is the empty board for all j so that m0(B=(j; 2n); q) = m0(B; q) = 1 and
m1(B; q) = 0. Thus in that case (43) becomes

2n�1X
j=1

q2n�1�j = [2n� 1]:

Thus (43) holds for the empty board for all n.

Finally by induction, assume that (43) holds for all shifted Ferrers boards with
less than t squares and that B � B2n is a shifted Ferrers board with t squares
which has no squares in the last column of B2n. Let � = (i; r) denote the corner
square in the rightmost column of B. Applying recursion (33) and then recursion
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(c) to B=� and B=� by induction, we �nd that

[2n� 1� 2k]mk(B; q) � (q2n�1 � q2n�3�2k)mk+1(B; q) =

q([2n� 1� 2k]mk(B=�; q) � (q2n�1 � q2n�3�2k)mk+1(B=�; q))

+ [2n� 1� 2k]mk�1(B=�; q)� (q2n�1 � q2n�3�2k)mk(B=�; q) =

q

2n�1X
j=1

q2n�1�jmk((B=�)=(j; 2n); q)

+[2(n�1)�1�2(k�1)]mk�1(B=�; q)� (q2(n�1)�1�q2(n�1)�3�2(k�1))mk(B=�; q)

+ (q2(n�1)�1 � q2(n�1)�3�2(k�1)� q2n�1 + q2n�3�2k)mk(B=�; q) =

q

2n�1X
j=1

q2n�1�jmk((B=�)=(j; 2n); q)

+

2n�3X
j=1

q2n�3�jmk�1((B=�)=(j; 2n � 2); q)� (q2n�1 � q2n�3)mk(B=�; q): (49)

We would also like to apply recursion (33) to the left-hand side of (43) but this
requires some care. That is, if j < i, then the image of � = (i; r) under 'j;2n
is � = (i � 1; r � 1) which will still be the rightmost corner square of B=(j; 2n).
Similarly if i < j < r, then the image of � under 'j;2n is 
 = (i; r � 1) will also be

the rightmost corner square of B=(j; 2n). If j > r, then (j; 2n) only attacks empty

squares so that � is the rightmost corner cell of B=(j; 2n). See Fig. 19.

It is easy to see that if j < i, thenB=(j; 2n)=� = (B=�)=(j; 2n) andB=(j; 2n)=� =

(B=�)=(j; 2n� 2). If i < j < r, thenB=(j; 2n)=
 = (B=�)=(j; 2n) andB=(j; 2n)=
 =

(B=�)=(j � 1; 2n� 2). Finally if j > r, then B=(j; 2n)=� = (B=�)=(j; 2n) and

B=(j; 2n)=� = (B=�)=(j � 2; 2n� 2). This given, we can apply recursion (a) to
obtain the following

2n�1X
j=1

q2n�1�jmk(B=(j; 2n); q)

= q2n�1�imk(B=(i; 2n); q) + q2n�1�rmk(B=(r; 2n); q)

+
i�1X
j=1

q2n�1�j(qmk((B=�)=(j; 2n); q) +mk�1((B=�)=(j; 2n � 2); q))

+

r�1X
j=i+1

q2n�1�j(qmk((B=�)=(j; 2n); q) +mk�1((B=�)=(j � 1; 2n� 2); q))

+

2n�1X
j=r+1

q2n�1�j(qmk((B=�)=(j; 2n); q) +mk�1((B=�)=(j � 2; 2n� 2); q)): (50)

Comparing the right-hand sides of (49) and (50), we can prove (43) if we can show
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that

q2n�1�imk(B=(i; 2n); q) + q2n�1�rmk(B=(r; 2n); q)

+
i�1X
j=1

q2n�1�jmk�1((B=�)=(j; 2n� 2); q)

+

r�2X
j=i

q2n�2�jmk�1((B=�)=(j; 2n� 2); q)

+

2n�3X
j=r�1

q2n�3�jmk�1((B=�)=(j; 2n� 2); q)

= q2n�imk((B=�)(i; 2n); q) + q2n�rmk((B=�)(r; 2n); q)

+
2n�3X
j=1

q2n�3�jmk((B=�)=(j; 2n � 2); q)� (q2n�1 � q2n�2)mk(B=�; q): (51)

It is easy to see that (B=�)=(i; 2n) = B=(i; 2n) and (B=�)=(r; 2n) = B=(r; 2n) since
both (i; 2n) and (j; 2n) attack �. Thus (51) is equivalent to

i�1X
j=1

(q2n�1�j � q2n�3�j)mk�1((B=�)=(j; 2n� 2); q)

+

r�2X
j=i

(q2n�2�j � q2n�3�j)mk�1((B=�)=(j; 2n� 1); q)

= (q2n�i � q2n�i�1)mk(B=(i; 2n); q) + (q2n�r � q2n�r�1)mk(B=(r; 2n); q)

� (q2n�1 � q2n�3)mk(B=�; q): (52)

Dividing both sides by q � 1 gives

(q + 1)
i�1X
j=1

q2n�3�jmk�1((B=�)=(j; 2n� 2); q)

+
r�2X
j=i

q2n�3�jmk�1((B=�)=(j; 2n� 2); q)

= q2n�i�1mk(B=(i; 2n); q) + q2n�r�1mk(B=(r; 2n); q) � (1 + q)q2n�3mk(B=�; q):
(53)

But we can now apply recursions (a) and (b) to the �rst two terms on the right-hand
side of (53) to show that the right-hand side of (53) is

q2n�2mk(B=�; q) +

i�1X
j=1

q2n�2�jmk((B=�)=(j; 2n� 2); q)

+ q2n�r�1[r � 2k]mk�1(B=�; q) + q2n�3�2kmk(B=�; q)� (1 + q)q2n�3mk(B=�; q):
(54)
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Now replacing the right-hand side of (53) by (54) and collecting terms we get that
(43) is equivalent to proving

r�2X
j=1

q2n�3�jmk�1((B=�)=(j; 2n� 2); q)

= q2n�r�1[r � 2k]mk�1(B=�; q)� (q2n�3 � q2n�3�2k)mk(B=�; q): (55)

Note however that by induction

2n�3X
j=1

q2n�3�jmk�1((B=�)=(j; 2n� 2); q)

= [2n� 3� 2(k � 1)]mk�1(B=�; q) � (q2n�3 � q2n�5�2(k�1))mk(B=�; q)

= [2n� 1� 2k]mk�1(B=�; q)� (q2n�3 � q2n�3�2k)mk(B=�; q): (56)

Moreover since B had only r � 1 columns then B=� has at most r � 3 columns.

Thus (B=�)=(j; 2n� 2)) = B=� for j � r� 2 since (j; 2n� 2) will only attack cells
in empty columns. Hence

2n�3X
j=r�1

q2n�3�jmk�1((B=�)=(j; 2n� 2); q)

=
2n�3X
j=r�1

q2n�3�jmk�1(B=�; q) = [2n� 1� r]mk�1(B=�; q):

Thus subtracting [2n � 1 � r]mk�1(B=�; q) from both sides of (56) yields (55) as
desired. �

3. Main Theorem

In this section we prove our main result, namely that fj (B; q) = ~fj (B; q) for all
shifted Ferrers boards B. We start by proving two identities which hold for any
board.

Theorem 10. If B is a board, B � B2n, 0 � j � n, and

�
n
k

�
q2

is the q-binomial

coe�cient base q2, then

fj;2n(B; q) =
X
k�j

mk(B; q)[n � k]!!(�1)k�j
�
k
j

�
q2
q(k�j)(2n�k�j):

Proof. Recall the q-binomial theorem [A]:

m�1Y
i=0

(1 + xqi) =
mX
k=0

xkq(
k
2)
�
m
k

�
:

Theorem 10 follows by applying this to the product on the right-hand side of (22).
�
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Theorem 11. If B is a board, B � B2n, then for 0 � k � n,

X
j�k

fj;2n(B; q)

�
j
k

�
q2
zj�kq(j�k)(2n�1�2k)

=
X
p�k

mp(B; q)[n � p]!!

�
p
k

�
q2
q(p�k)(2n�k�p)(z; q2)p�k(�1)

p�k; (57)

where (z; q)k = (1� z)(1 � zq) � � � (1 � zqk�1).

Proof. Using Theorem 10, the left-hand side of (57) equals

X
j�k

�
j
k

�
q2
zj�kq(j�k)(2n�1�2k)

X
p�j

mp(B; q)[n � p]!!(�1)p�j
�
p
j

�
q2
q(p�j)(2n�p�j)

=
X
p�k

mp(B; q)[n � p]!!(�1)p�k

X
k�j�p

�
j
k

�
q2

�
p
j

�
q2
q(j�k)(2n�1�2k)+(p�j)(2n�p�j)(�1)j�kzj�k

=
X
p�k

mp(B; q)[n � p]!!(�1)p�k

�
p
k

�
q2

p�kX
u=0

�
p� k
u

�
q2
qu(2n�1�2k)+(p�k�u)(2n�p�k�u)(�1)uzu

=
X
p�k

mp(B; q)[n � p]!!(�1)p�k
�
p
k

�
q2
q(p�k)(2n�p�k)

p�kX
u=0

�
p� k
u

�
q2
qu

2�u(�1)uzu

=
X
p�k

mp(B; q)[n � p]!!(�1)p�k
�
p
k

�
q2
q(p�k)(2n�p�k)(z; q2)p�k

using the q-binomial theorem. �

Theorem 12. If B is a shifted Ferrers board, B � B2n, then

fj;2n(B; q) =
2n�1X
i=1

q2n�i�1fj;2n�2(B=(i; 2n); q):

Proof. We start by setting z = q�2 in eq. (57) to get

X
j�k

fj;2n(B; q)

�
j
k

�
q2
q(j�k)(2n�3�2k)

= mk(B; q)[n � k]!!�mk+1(B; q)[n � 1� k]!![k+ 1]q2q
2n�2k�1(1� q�2)

= mk(B; q)[n � k]!!�mk+1(B; q)[n � 1� k]!![k+ 1]q2q
2n�3�2k(q2 � 1): (58)
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On the other hand if B has less than 2n� 1 columns in B2n then

X
j�k

(
2n�1X
i=1

q2n�i�1fj;2n�2(B=(i; 2n); q))z
j�k

�
j
k

�
q2
q(j�k)(2n�1�2k)

=
2n�1X
i=1

q2n�i�1
X
j�k

fj;2n�2(B=(i; 2n); q)

�
j
k

�
q2
zj�kq(j�k)(2n�1�2k): (59)

Setting z = q�2 in (59) we get

X
j�k

(

2n�1X
i=1

q2n�i�1fj;2n�2(B=(i; 2n); q))

�
j
k

�
q2
q(j�k)(2n�3�2k)

=
2n�1X
i=1

q2n�i�1
X
j�k

fj;2n�2(B=(i; 2n); q)

�
j
k

�
q2
q(j�k)(2n�3�2k)

=
2n�1X
i=1

q2n�i�1mk(B=(i; 2n); q)[n� 1� k]!! (60)

where the last equality follows by using the special case of (57) with z = 1 for the

boards B=(i; 2n). Comparing (59) and (60), we get that if B has less than 2n� 1
columns,

X
j�k

fj;2n(B; q)

�
j
k

�
q2
q(j�k)(2n�3�2k)

=
X
j�k

(
2n�1X
i=1

q2n�i�1fj;2n�2(B=(i; 2n); q))

�
j
k

�
q2
q(j�k)(2n�3�2k) (61)

if we can show that

2n�1X
i=1

q2n�i�1mk(B=(i; 2n); q)

= [2n� 1� 2k]mk(B; q) �
q2k+2 � 1

q2 � 1
q2n�3�2k(q2 � 1)mk+1(B; q)

= [2n� 1� 2k]mk(B; q) � (q2n�1 � q2n�3�2k)mk+1(B; q):

Since this is equation (43), (61) holds for all k assuming B is contained in the �rst
2n� 2 columns of B2n. If k = n this reduces to

fn;2n(B; q) =

2n�1X
i=1

q2n�i�1fn;2n�2(B=(i; 2n); q)): (62)
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If k = n� 1 (61) reduces to

fn;2n(B; q)

�
n

n� 1

�
q2
q2n�3�2(n�1) + fn�1;2n(B; q)

=
2n�1X
i=1

q2n�i�1fn;2n�2(B=(i; 2n); q)

�
n

n� 1

�
q2
q2n�3�2(n�1)

+

2n�1X
i=1

q2n�i�1fn�1;2n�2(B=(i; 2n); q): (63)

Thus we can use (62) to cancel the �rst terms on both sides of (63) to get

fn�1;2n(B; q) =
2n�1X
i=1

q2n�i�1fn�1;2n�2(B=(i; 2n); q):

Continuing in this manner we get

fj;2n(B; q) =
2n�1X
i=1

q2n�i�1fj;2n�2(B=(i; 2n); q)

for all j. �

Corollary 3. If B is a shifted Ferrers board, B � B2n, and 0 � k � n, then (23)
holds, i.e.

fk;2n(B; q) = ~fk;2n(B; q):

Proof. If B has no cells in the last column of B2n, then fk;2n(B; q) and ~fk;2n(B; q)
satisfy the same recursion by Theorem's 6 and 10. If B has at least one cell in the
last column of B2n, then they both satisfy the same recursion by Theorem 5 and
Corollary 2. If B is the empty board, then ~fk;2n(B; q) = �(k = 0)[n]!!. For this
board, mk(B; q) = �(k = 0) and so by (22), fk;2n(B; q) = �(k = 0)[n]!!. Since the

fk;2n and the ~fk;2n satisfy the same recursion with the same initial conditions, they
are equal for all B. �

4. Algebraic Identities

In this section we prove a number of algebraic identities for themk and the fj . In
many cases these are analogues for nearly Ferrers boards of known identities for q-
rook and q-hit numbers. We use the notation (a; q)k = (1�a)(1�aq) � � � (1�aqk�1).

Theorem 13. If B � B2n is a nearly Ferrers board with bi squares in row i for
i = 1; : : : ; 2n� 1, and 0 � k � 2n� 1, then

[2][4] � � � [2k]m2n�1�k(B; q) =
kX
j=0

�
k
j

�
q2
q2(

k�j
2 )(�1)(k�j)

2n�1Y
i=1

[2j + bi � 2i+ 2]:
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Proof. By Theorem 8, the right-hand side above equals

X
j�0

�
k
j

�
q2
q2(

k�j
2 )(�1)(k�j)

X
s�0

[2j][2j � 2] � � � [2j � 2s+ 2]m2n�1�s(B; q)

=
X
s�0

m2n�1�s(B; q)
X

s�j�k

[2j][2j � 2] � � � [2j � 2s + 2]

�
k
j

�
q2
q2(

k�j
2 )(�1)(k�j)

=
X
s�0

m2n�1�s(B; q)
k�sX
u=0

[2(u+ s)] � � � [2u+ 2]

�
k

u+ s

�
q2
q2(

k�s�u
2 )(�1)(k�s�u)

=
X
s�0

m2n�1�s(B; q)

�
k
s

�
q2
(�1)(k�s)[2][4] � � � [2s]

�
k�sX
u=0

[2k � 2s][2k � 2s� 2] � � � [2k � 2s� 2u+ 2]

[2][4] � � � [2u]
q2(

k�s�u
2 )(�1)u

=
X
s�0

m2n�1�s(B; q)[2][4] � � � [2s]

�
k
s

�
q2
(�1)(k�s)

k�sX
u=0

�
k � s
u

�
q2
q2(

k�s�u
2 )(�1)u

=
X
s�0

m2n�1�s(B; q)[2][4] � � � [2s]

�
k
s

�
q2
(�1)(k�s)(�1)(k�s)

k�sX
u=0

�
k � s
u

�
q2
q2(

u
2)(�1)u

= [2][4] � � � [2k]m2n�1�k(B; q)

by the q-binomial theorem. �

Theorem 14. If B � B2n is a nearly Ferrers board with bi squares in row i for
i = 1; : : : ; 2n� 1, then

1

[n]!!

X
j�0

fj;2n(B; q)[x] �2n�1�j [x� 2n+ 2j + 1] �j=

2n�1Y
i=1

[x+ bi � 2i+ 2]: (64)

Proof. By Theorem 10,

fj;2n(B; q) =
X
k�j

mk(B; q)[n � k]!!(�1)k�j
�
k
j

�
q2
q(k�j)(2n�k�j);

so the left-hand side of (64) equals

1

[n]!!

X
j�0

[x] �2n�1�j [x � 2n+ 2j + 1] �j

�
X
k�j

mk(B; q)[n � k]!!(�1)k�j
�
k
j

�
q2
q(k�j)(2n�k�j)
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=
X
k�0

mk(B; q)
[n � k]!!

[n]!!

�
kX
j=0

�
k
j

�
q2
(�1)k�jq(k�j)(2n�k�j)[x] �2n�1�j [x � 2n+ 2j + 1] �j

=
X
k�0

mk(B; q)
[n � k]!!

[n]!!

�
kX

j=0

(q�2k; q2)j
(q2; q2)j

(�q2k)jq�2(
j
2)(�1)k�jq(k�j)(2n�k�j)

[x][x � 2] � � � [x� 2(2n� 2)]
(qx�2n+3; q2)j
(qx�4n+4; q2)j

= [x][x � 2] � � � [x� 4n+ 4]
X
k�0

mk(B; q)
[n� k]!!

[n]!!
(�1)kqk(2n�k)

2�1

�
q�2k; qx�2n+3; q2k+1�2n; q2

qx�4n+4

�

where in the last equality we have used the fact that 2kj�(j2�j)+k(2n�k)�j2n+
jk � jk + j2 = j(2k + 1� 2n) + k(2n� k). Using the q-Vandermonde convolution
for the sum of a terminating 2�1 [GR, p.236], the equation above equals

[x][x� 2] � � � [x � 4n+ 4]
X
k�0

mk(B; q)
[n � k]!!

[n]!!
(�1)kqk(2n�k)

(q1�2n; q2)k
(qx�4n+4; q2)k

=
X
k�0

mk(B; q)[x][x � 2] � � � [x � 2(2n� 1� k) + 2]� C;

where

C =
[n� k]!!

[n]!!
(�1)k

qk(2n�k)

(1 � q)k
(1� q1�2n)(1 � q3�2n) � � � (1 � q2k�1�2n)

=
[n� k]!!

[n]!!

qk(2n�k)

(1� q)k

q1�2n+3�2n+:::+2k�1�2n(q2n�1 � 1)(q2n�3 � 1) � � � (q2n�2k+1 � 1)(�1)k

=
[n� k]!!

[n]!!
qk(2n�k)+k

2�2nk[2n� 1][2n� 3] � � � [2n� 2k + 1] = 1:

Theorem 14 now follows from Theorem 8. �
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Corollary 4. If B is a nearly Ferrers board, B � B2n, then

nX
j=0

fj;2n(B; q) = [n]!!:

Proof. Letting x!1 in the left-hand side of Theorem 14 we get

1

[n]!!

nX
j=0

fj;2n(B; q)
1

(1 � q)2n�1
=

1

(1� q)2n�1
: �

Remark: Corollaries 3 and 4 together show that for any �xed shifted Ferrers board
B � B2n, the statistic tf (B) has what could be called the \Mahonian" property
for perfect matchings, i.e. its distribution is [n]!!.

Theorem 15. If B � B2n is a nearly Ferrers board with bi squares in row i for
i = 1; : : : ; 2n� 1, then

fj;2n(B; q) =

n�jX
s=0

�
n+ 1=2
n� j � s

�
q2
q2(

n�j�s
2 )(�1)n�j�s

�
[s]!!

[2][4] � � � [2n� 2 + 2s]

2n�1Y
i=1

[2n� 2 + 2s+ bi � 2i+ 2]:

Proof. Using Theorem 8, the right-hand side above equals

n�jX
s=0

�
n+ 1=2
n� j � s

�
q2
q2(

n�j�s
2 )(�1)n�j�s

�
[s]!!

[2][4] � � � [2n� 2 + 2s]

X
k�0

mk(B; q)[2n � 2 + 2s] �2n�1�k :

The coe�cient of mk(B; q) above is clearly zero unless 2n� 2+2s � 2(2n� 1� k),
or 2k � 2n � 2s, or k � n � s and since s � n � j we have k � n � (n � j) = j.
Thus the right-hand side of Theorem 15 equals

X
k�j

mk(B; q)

k�jX
u=0

(s=n�k+u)

�
n+ 1=2
k � j � u

�
q2
q2(

n�j�(n�k+u)
2 )(�1)n�j�(n�k+u)

[n� k + u]!!

[2][4] � � � [2u]

=
X
k�j

mk(B; q)[n � k]!!

�
n+ 1=2
k � j

�
q2

k�jX
u=0

q2(
u
2) (q�2(k�j); q2)u
(q2n+1�2k+2j+2; q2)u

� q2(
k�j+u

2 )(�1)(k�j+u)
(q2n�2k+1; q2)u

(q2; q2)u
(�q2(k�j))u:
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Now

�2

�
u

2

�
+2

�
k � j � u

2

�
+u(2k�2j) = �u2+u+(k�j�u)(k�j�1�u)+2uk�2uj

= 2

�
k � j

2

�
� u2 + u+ u2 + u� uk + uj � uk + uj + 2uk + 2uj = 2u+ 2

�
k � j

2

�

so the right-hand side of Theorem 15 now equals

X
k�j

mk(B; q)[n � k]!!

�
n+ 1=2
k � j

�
q2
q2(

k�j
2 )

� (�1)k�j2�1

�
q�2(k�j); q2n+1�2k; q2; q2

q2n�2k+2j+3

�

=
X
k�j

mk(B; q)[n � k]!!

�
n+ 1=2
k � j

�
q2
q2(

k�j
2 )

� (�1)k�j
(q2j+2; q2)k�j

(q2n�2k+2j+3; q2)k�j
q(2n+1�2k)(k�j)

=
X
k�j

mk(B; q)[n � k]!!(�1)k�jq(2n+1�2k+k�j�1)(k�j)

�
[2n+ 1][2n� 1] � � � [2n+ 1� 2k + 2j + 2]

[2][4] � � � [2k � 2j]

[2j + 2][2j + 4] � � � [2j + 2 + 2(k � j)� 2]

[2n� 2k + 2j + 3][2n� 2k + 2j + 5] � � � [2n� 2k + 2j + 3+ 2k � 2j � 2]

=
X
k�j

mk(B; q)[n � k]!!(�1)k�jq(2n�k�j)(k�j)
�

k
k � j

�
q2

= fj;2n(B; q) by Theorem 10. �

Corollary 5. For B � B2n a nearly Ferrers board with bi squares in row i for
i = 1; : : : ; 2n� 1,

nX
j=0

zjfj;2n(B; q) =
(z; q2)1

(zq2n+1; q2)1

1X
k=0

zk[k]!!
Q2n�1
i=1 [2n+ 2k + bi � 2i]

[2][4] � � � [2n� 2 + 2k]
:

Proof. Using the q-binomial theorem, the coe�cient of zn�j in the right-hand side
above is

X
k

[k]!!
Q2n�1
i=1 [2n+ 2k + bi � 2i]

[2][4] � � � [2n� 2 + 2k]

(q�(2n+1); q2)n�j�k
(q2; q2)n�j�k

q(2n+1)(n�j�k):
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Since

(q�(2n+1); q2)n�j�k
(q2; q2)n�j�k

q(2n+1)(n�j�k) =

(1� q2n+1)(1 � q2n�1) � � � (1� q2n+1�(2n�2j�2k)+2)

(q2; q2)n�j�k
(�1)n�j�kq2(

n�j�k
2 )

=

�
(2n+ 1)=2
n� j � k

�
q2
(�1)n�j�kq2(

n�j�k
2 );

the corollary follows from Theorem 15. �

Theorem 16. If B is a nearly Ferrers board, B � B2n, and 0 � k � n,

mk(B; q)[n � k]!! =
X
j�k

�
j
k

�
q2
fj;2n(B; q)q

(j�k)(2n�1�2k):

Proof. By Theorem 10,

fj;2n(B; q) =
X
k�j

mk(B; q)[n � k]!!(�1)k�j
�
k
j

�
q2
q(k�j)(2n�k�j):

Plugging this into the right-hand side of Theorem 16 yields

X
j�k

�
j
k

�
q2
q(j�k)(2n�1�2k)

X
m�j

mm(B; q)[n �m]!!(�1)m�j
�
m
j

�
q2
q(m�j)(2n�m�j)

=
X
m�k

mm(B; q)[n �m]!!(�1)m

mX
j=k

�
j
k

�
q2

�
m
j

�
q2
(�1)jq(j�k)(2n�1�2k)+(m�j)(2n�m�j)

=
X
m�k

mm(B; q)[n �m]!!(�1)m
X
u�0

(j=k+u)

�
k + u
u

�
q2

�
m

k + u

�
q2

(�1)k+uqu(2n�1�2k)+(m�k�u)(2n�m�k�u)

=
X
m�k

mm(B; q)[n �m]!!(�1)m+k
X
u�0

(q2k+2; q2)u
(q2; q2)u

�
m
k

�
q2

q�(u
2�u)q2(m�k)uqu(2n�1�2k)+(m�k�u)(2n�m�k�u)

(q�2(m�k); q2)u
(q2k+2; q2)u
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=
X
m�k

mm(B; q)[n �m]!!(�1)m+k

�
m
k

�
q2
q(m�k)(2n�m�k)

X
u�0

(q�2(m�k); q2)u
(q2; q2)u

qu(1+2(m�k)+2n�1�2k�2n+m+k�m+k)

=
X
m�k

mm(B; q)[n �m]!!(�1)m+k

�
m
k

�
q2
q(m�k)(2n�m�k)

� 1�0 ( q�2(m�k); q2(m�k); q2 )

=
X
m�k

mm(B; q)[n �m]!!(�1)m+k

�
m
k

�
q2
q(m�k)(2n�m�k)

(1; q2)1
(q2(m�k); q2)1

=mk(B; q)[n � k]!!: �

5. Some Related Statistics for the q-Hit Numbers

We begin this section by giving the �rst direct combinatorial proof that the
statistics sF;d(p) and sF;h(p) discussed in the introduction generate the same q-hit
numbers for Ferrers boards contained in An. We then derive an analogous result
for shifted Ferrers boards contained in B2n.

Theorem 17. Let F = A(a1; : : : ; an) be a Ferrers board. Then for 0 � k � n,

X
p2Hk;n(F )

qsF;d(p) =
X

p2Hk;n(F )

qsF;h(p):

Proof. Let 
 be a �xed placement of n� k nonattacking rooks on An, all of which
are o� F , and consider the set �(
; F ) of all placements � which extend 
 to a
placement of n nonattacking rooks on An, with k rooks on F . We �rst show that

X
�2�(
;F )

qsF;d(p) =
X

�2�(
;F )

qsF;h(p): (65)

It follows from the de�nition of sF;d(p) and sF;h(p) that the set of uncancelled
squares in either Dworkin or Haglund cancellation that occur either o� F , or in
columns of F which contain a rook from 
, is the same for all �. Let F 0 � Ak

be the Ferrers board obtained from F by deleting all the rows and columns in An

containing a rook in 
, and collapsing the remaining rows to form a smaller Ferrers
board. To complete the proof of (65), we need to show that

X
p2H0;k(F 0)

qsF0;d(p) =
X

p2H0;k(F 0)

qsF0;h(p): (66)

If F 0 = A(b1; : : : ; bk), it is easy to see by induction that both sides of (66) equal
[b1][b2� 1] � � � [bk � k+1]. For if we place rooks in columns 1 thru k� 1 of F 0, there
will be bk � k + 1 open squares in column k of F 0, and whether we use Dworkin
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or Haglund cancellation, we will generate a factor of [bk � k + 1] when placing a
rook in the last column of F 0 in the bk � k+1 open squares. This proves (65), and
Theorem 17 follows by summing over all 
. �

The proof of Theorem 17 shows that one could also de�ne other \hybrid" statis-
tics to generate hk;n(F; q), by changing the cancellation scheme for the squares of
F in columns with rooks on F to any scheme which gives the same value for (66).
For example, one could use Dworkin cancellation in some columns and Haglund
cancellation in others.

In [H] it was shown that to any statistic for the q-hit numbers there is an asso-
ciated pair of \Euler-Mahonian" permutation statistics which are equi-distributed
with the number of descents and the major index. The pair associated to sF;d(p)
is the number of excedances and Denert's statistic, while associated to sF;h(p) was
a new Euler-Mahonian pair. This new pair has been analyzed and placed within
a general classi�cation scheme of Mahonian statistics by Babson and Steingr�imson
[BaSt]. The proof of Theorem 17 shows that these pairs are part of a general family
of related pairs.

The proof of Theorem 17 also carries over to shifted Ferrers boards F � B2n.
To construct other statistics for fk;2n(F; q), we could use the same cancellation
as in tF (p) for those rooks o� F , and modify the cancellation for rooks on F
appropriately. In particular, we could count squares of F which are above rooks on
F instead of below rooks on F (and not to the left of any rook). All that we need
for the cancellation scheme for the rooks on the board is that when we sum over all
perfect matchings with all rooks on a shifted Ferrers board F = B(a1; : : : ; a2n�1)

we get
Q2n�1

i=1 [a2n�i � 2i+ 2] (the x = 0 case of eq. (11)).
In [H] the proof that sF;h(p) generates hk;n(F; q) grew out of a relationship

between q-rook numbers and matrices over �nite �elds. Theorem 18 shows there is
a corresponding connection for rook placements on shifted Ferrers boards, although
we have been unable to prove Corollary 3 by exploiting this relationship.

Given a skew-symmetric matrix S, let S0 denote the upper-triangular portion of
S.

Theorem 18. Let B � B2n be a shifted Ferrers board. Let P2k(B; q) denote the
number of 2n� 2n skew-symmetric matrices S of rank 2k with entries in the �nite
�eld Fq , where the entries in S0 are zero outside of the squares of B. Then for
0 � k � n,

P2k(B; q) = (q � 1)kqjBj�kmk(B; q
�1):

Sketch of Proof. We perform a modi�ed form of Gaussian elimination on such a
matrix S. Find the lowest nonzero entry in the rightmost nonzero column of S0,
occurring say in square (i; j). By adding appropriate multiples of row i and column
j, zero out the entries of S in row i and column j above and to the left of (i; j),
and leave a 1 in square (i; j). Do similar operations to square (j; i). The resulting
matrix S1 is also skew-symmetric. Call squares (i; j) and (j; i) \pivot spots". Now
iterate; �nd the lowest nonzero entry in the �rst nonzero column of S01 to the left
of column j and pivot as before. We eventually end up with k pivots above the
main diagonal and k below, where if we placed rooks on the pivot spots in S0, they
would form a set of k nonattacking rooks on F . How many matrices S give rise to
the same set of pivot spots? Theorem 18 follows after noting that the pivots spots
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of S0 could originally have held any of q � 1 entries, and the entries above and to
their left which they attack could have been any of q entries. �

In section 2 we pointed out that our algebraic de�nition of fk;2n(B; q) (eq. (12))
did not always result in a polynomial with nonnegative coe�cients for boards which
are not shifted Ferrers boards. However, there are larger classes of boards than
shifted Ferrers boards for which we can show the fk;2n(B; q) 2 N[q] and give a
combinatorial interpretation of these polynomials. For example, we can start with
a shifted Ferrers board and shift the rightmost nonzero column all the way to the
right. However, it is not clear what the most general class is and we'll pursue this
question in subsequent work.
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