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Abstract. We discuss some recent progress on the Monotone Column Permanent (MCP) conjecture. We use a
general method for proving that a univariate polynomial has real roots only, namely by showing that a corresponding
multivariate polynomial is stable. Recent connections between stability of polynomials and the strong Rayleigh
property revealed by Brändén allows for a computationally feasible check of stability for multi-affine polynomials.
Using this method we obtain a simpler proof for the n = 3 case of the MCP conjecture, and a new proof for the
n = 4 case. We also show a multivariate version of the stability of Eulerian polynomials for n ≤ 5 which arises as a
special case of the multivariate MCP conjecture.

Résumé. Nous présentons des développements récents concernant la conjecture Monotone Column Permanent
(MCP). Nous utilisons une méthode générale pour prouver qu’un polynôme univarié a uniquement des racines réelles,
c’est-à-dire que nous prouvons qu’un polynôme correspondant a plusieurs variables est stable. Les nouveaux liens,
établis par Brändén, entre la stabilité des polynômes et la propriété forte de Rayleigh, permettent de vérifier facile-
ment la stabilité de polynômes multi-affines. En utilisant cette méthode nous obtenons une preuve plus simple pour la
conjecture MCP pour le cas n = 3, et la première preuve pour le cas n = 4. Nous présentons également une version
multivarée de stabilité des polynômes d’Euler pour le cas n ≤ 5, qui apparaı̂t comme un cas spécial de la conjecture
MCP multivarée.
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1 Introduction
We discuss some recent progress on the Monotone Column Permanent (MCP) conjecture of Haglund,
Ono and Wagner (HOW99; Hag00).

The Monotone Column Permanent (MCP) conjecture Let A be an n × n matrix with real entries
weakly increasing down columns, i.e., ai,j ≤ ai+1,j for i = 1, . . . , n − 1, j = 1, . . . , n. Then, the
polynomial p(z) = per(B), the permanent of matrix B with bi,j = ai,j + z has only real zeros.

The conjecture was proven for some special cases in (HOW99), but the general case was left open for
n > 3 and the proof for the n = 3 case was rather lengthy (May). In this paper we give a new proof
for the n = 3 case and prove the n = 4 case. We also prove a special case for n = 5 and conjecture a
multivariate version of the stability of Eulerian polynomials.

1.1 Real rootedness and stability
To prove real rootedness of a polynomial f , i.e., that all roots of f are all real, we will use a method
of showing that a multivariate generalization of f is stable. Similar ideas have been applied before in
different contexts, e.g., the multivariate Heilmann–Lieb and Lee–Young theorems (HL72; Sok05), and
recently remarkable results were proved concerning reality of roots, using stable polynomials in (BB08).

We start our discussion with some necessary definitions first.

Stability We call a polynomial f ∈ R[z1, . . . , zn] stable if

(∀i : =(zi) > 0)⇒ f(z1, . . . , zn) 6= 0.

For a univariate polynomial f(z) ∈ R[z] stability is equivalent to the fact that f(z) has only real roots.
Observe that if f(z1, . . . , zn) is a stable multivariate polynomial then g(z) = f(z, . . . , z) is also stable.
By this observation it is clear that the following conjecture would imply the MCP conjecture:

Multivariate MCP conjecture Let A be an n × n matrix with real entries weakly increasing down
columns, i.e., ai,j ≤ ai+1,j for i = 1, . . . , n − 1, j = 1, . . . , n. Then, the multivariate multi-affine
polynomial f(z1, . . . , zn) = per(B) with bi,j = ai,j + zj is stable.

In fact, the authors conjecture a stronger version of the above conjecture.

Multivariate k-permanent MCP conjecture LetA be an n×mmatrix with real entries weakly increas-
ing down columns, i.e., ai,j ≤ ai+1,j for i = 1, . . . , n − 1, j = 1, . . . ,m. Let B be the n ×m matrix
with entries bi,j = ai,j + zj . Let I, J be index sets of size k ≤ min(n,m) and denote by [B]I,J the
k × k submatrix of B containing the rows I = {i1, . . . , ik} and columns J = {j1, . . . , jk}. Then, the
multivariate multi-affine polynomial f(z1, . . . , zm) =

∑
I,J per([B]I,J) is stable. The sum goes over all

possible I and J , k-subsets of {1, . . . , n} and {1, . . . ,m}, respectively.

1.2 Brändén’s criterion
In our discussion we will deal with a restricted class of multivariate polynomials:

Multi-affine polynomial A multivariate polynomial is multi-affine if it has degree at most one in each
variable.

Recently, in (Brä07) the following useful characterization of multi-affine stable polynomials was shown.
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Theorem 1.1 (Brändén) A multivariate multi-affine polynomial with real coefficients f ∈ R[z1, . . . , zn]
is stable, if and only if for all ξ ∈ Rn and 1 ≤ i < j ≤ n

∆i,jf :=
∂f

∂zi
(ξ) · ∂f

∂zj
(ξ)− ∂2f

∂zi∂zj
(ξ) · f(ξ) ≥ 0 (1)

This equivalent condition is often referred to as the strong Rayleigh property.

The k-permanent conjecture is trivial for k = 1. Consider the n = k = 2 case. Let A =
(
a c
b d

)
denote a monotone column matrix. Then for

f(z1, z2) = per
(
z1 + a z2 + c
z1 + b z2 + d

)
= (z1 + a)(z2 + d) + (z1 + b)(z2 + c)

using Brändén’s criterion we need to show that

∆1,2f = (2z1 + a+ b)(2z2 + c+ d)− 2 ((z1 + a)(z2 + d) + (z1 + b)(z2 + c)) =

= (a+ c)(b+ d)− 2(ad+ bc) = (a− b)(c− d) ≥ 0,

which is a consequence of the monotone column property of A.
Note that it is possible to apply this method straightforwardly to the n = k = 3 case and perhaps

larger matrices, however the computations become soon intractable. In the following section we present
observations that allow us to restrict ourselves to 0− 1 matrices.

2 Reducing the conjecture to 0-1 matrices
Lemma 2.1 If there is a counterexample to the k-permanent MCP conjecture, then there is a counterex-
ample A such that there are only two different entries in each column of A.

Proof: If there are no counterexamples to the conjecture the lemma is true. Otherwise, let k denote the
smallest number for which the k-permanent MCP conjecture is false. Clearly, k > 1. Let A be a minimal
size counterexample for this k with n rows and m columns, and assume that A has a column with at least
three different values in it. W.l.o.g., we can assume that this is the first column, i.e., α = ak−1,1 < ak,1 =
β = a`,1 < a`+1,1 = γ for some 1 < k ≤ l < n. We will show that by changing all occurrences of β to α
or γ we obtain a matrix which is also a counterexample. Clearly, the first column of the matrix will have
one less different values (and all other columns remain unchanged). Hence, by repeating this procedure
in each column we will arrive at a counterexample matrix that has only two different entries per column.

Using the notation of the conjecture, denote the matrix with entries bi,j = ai,j + zj by B and the
multivariate multi-affine polynomial obtained by summing over all k-permanental minors of B by f .
Since A is a counterexample there are complex numbers ξi, i = 1 . . . ,m with positive imaginary part
such that f(ξ1, . . . , ξm) = 0. On the other hand, by expanding the permanent along the first column we
get that

f(z1, ξ2, . . . , ξm) = z1p(ξ2, . . . , ξm) + βq(ξ2, . . . , ξm) + r(ξ2, . . . , ξm)

where the polynomials p(z2, . . . , zm), q(z2, . . . , zm) and r(z2, . . . , zm) do not depend on z1 nor on β.
Note that p is the polynomial obtained by summing over all k−1-permanental polynomial of a monotone
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matrix (obtained from A by deleting the first column). And since =(ξi) > 0 for i = 2 . . .m, by the
minimality of A and k we get that p(ξ2, . . . , ξm) 6= 0.

We need to show that if we change all occurrences of β to α (or all occurrences of β to γ) in the column
then the modified matrix is also a counterexample, i.e., z1p+αq+ r = 0 (or z1p+ γq+ r = 0) for some
z1 with positive imaginary part. Let w1 = −αq+rp and w2 = −γq+rp . Since z1 is a linear function of β in

z1p+ βq+ r = 0, and =(ξ1) > 0 where ξ1 = −βq+rp , it must be the case that =(w1) > 0 or =(w2) > 0.
2

Lemma 2.2 If there is a counterexample to the k-permanent MCP conjecture, then there is a counterex-
ample A with entries 0 and 1 only.

Proof: By the previous lemma we can assume that each column j in A has at most two different entries.
Consider the case when there are two different values in each column, namely cj < dj . Since multiply-
ing a complex number z by a positive real number and adding a real number to z does not change the
sign of its imaginary part, =(z), it is easy to see that f(z1, . . . , zm) = per(aij + zj) is stable if and
only if g(z1, . . . , zm) = f ((d1 − c1)z1 − c1, . . . , (dn − cn)zm − cm) is stable. To conclude, note that
g(z1, . . . , zm) = per(ãij + zj) where ãij ∈ {0, 1} for all i, j. For the case when ci = di for some i the
proof is similar. 2

3 Results for the MCP conjecture
Note that in Lemma 2.1 the same proof goes through if we only consider matrices A of size n ×m with
m ≤ n, and restrict ourselves to the k = m case. Then the p 6= 0 assumption for the coefficient of z1 still
holds, because p is in fact the sum of the (m− 1)-permanents of a matrix of size n× (m− 1).

3.1 A new proof for the 3× 3 case
By Lemmas 2.1 and 2.2, in the 3× 3 case we only need to verify the monotone column 0-1 matrices. Due
to symmetry considerations we can restrict ourselves to

(
6
3

)
= 20 matrices, the number of Ferrers boards

fitting in a 3× 3 square. Furthermore, 16 out of these matrices have an all 0 or all 1 column, which means
that we can factor zj or zj +1, respectively, from the permanent and reduce the question to a 3×2 matrix.
Let us check the conjecture for these matrices first.

In the 3 × 2 case if we have an all 0 (or all 1) column the problem is trivial since we can factor the
polynomial, hence it is stable. There are 3 matrices which do not have an all 0 or all 1 column: 0 0

0 0
1 1

 ,

 0 0
0 1
1 1

 , and

 0 0
1 1
1 1

 .

Denote by f(c1,...,cm) the polynomial obtained by taking the permanent of matrix B with bij = aij + zj ,
where the corresponding matrix A is an n×m Ferrers matrix with cj ones in column j for all j.

The permanents

f(1,1) = z1(2z2 + 1) + z1(2z2 + 1) + (z1 + 1)2z2 = 6z1z2 + 2z1 + 2z2,
f(1,2) = z1(2z2 + 2) + z1(2z2 + 1) + (z1 + 1)(2z2 + 1) = 6z1z2 + 4z1 + 2z2 + 1,
f(2,2) = z1(2z2 + 2) + (z1 + 1)(2z2 + 1) + (z1 + 1)(2z2 + 1) = 6z1z2 + 4z1 + 4z2 + 2
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all satisfy (1), i.e., they all have the strong Rayleigh property:

∆1,2f(1,1) = (6z2 + 2)(6z1 + 2)− 6(6z1z2 + 2z1 + 2z2) = 4 ≥ 0,
∆1,2f(1,2) = (6z2 + 4)(6z1 + 2)− 6(6z1z2 + 4z1 + 2z2 + 1) = 2 ≥ 0,
∆1,2f(2,2) = (6z2 + 4)(6z1 + 4)− 6(6z1z2 + 4z1 + 4z2 + 2) = 4 ≥ 0.

Now we only need to check the following 3× 3 matrices: 0 0 0
0 0 0
1 1 1

 ,

 0 0 0
0 0 1
1 1 1

 ,

 0 0 0
0 1 1
1 1 1

 ,

 0 0 0
1 1 1
1 1 1

 .

Following the notation from above, the permanents

f(1,1,1) = 6z1z2z3 + 2z1z2 + 2z1z3 + 2z2z3,
f(1,1,2) = 6z1z2z3 + 4z1z2 + 2z1z3 + 2z2z3 + z1 + z2,

f(1,2,2) = 6z1z2z3 + 4z1z2 + 4z1z3 + 2z2z3 + 2z1 + z2 + z3,

f(2,2,2) = 6z1z2z3 + 4z1z2 + 4z1z3 + 4z2z3 + 2z1 + 2z2 + 2z3

all have the strong Rayleigh property

∆1,2f(1,1,1) = 4z2
3 ≥ 0,

∆1,2f(1,1,2) = (2z3 + 1)2 ≥ 0,

∆1,3f(1,1,2) = 2z2
2 ≥ 0,

∆1,2f(1,2,2) = 2(z3 + 1)2 ≥ 0,

∆2,3f(1,2,2) = (2z1 + 1)2 ≥ 0,

∆1,2f(2,2,2) = 4(z3 + 1)2 ≥ 0.

Note we did not check ∆i,jf ≥ 0 for all possible i, j pairs, the remaining cases follow by symmetry.
As a consequence we obtain that the MCP conjecture holds for 3× 3 matrices.

3.2 A proof for the 4× 4 case
The above computation reveals one weakness of this method, namely that we have to check the strong
Rayleigh property for all pairs, i.e., we need to verify ∆i,jf ≥ 0 for all i < j. In (WW09) a new criterion
was introduced to reduce the computation required.

Theorem 3.1 (Wagner and Wei) Let f(z1, . . . , zn) be a multi-affine polynomial with positive coeffi-
cients. Then f has the strong Rayleigh property if and only if

∂f

∂z`
and f|z`=0 = f(z1, . . . , z`−1, 0, z`+1, . . . , zn)

have the strong Rayleigh property for all `, and (1) holds for some pair i < j.
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This theorem is helpful because it is sufficient to check now ∆i,jf ≥ 0 for only one index pair. We
were checking the stability of ∂f/∂z` already. Since, ifA is an n×nmatrix then ∂f/∂z` is the permanent
corresponding to the n× (n− 1) matrix obtained by removing column ` from A (we were checking this,
in case column ` had only zeros or only ones). Checking the stability of f|z`=0 is an extra overhead but
overall saves more time than if we had to check ∆i,jf ≥ 0 for all index pairs.

Let us verify the conjecture for 4× 4 matrices. Again, to verify the conjecture for matrices with an all
0 or all 1 columns we reduce the problem to 4 × 3 and 4 × 2 matrices consequently. The permanents of
4× 1 matrices are trivially stable. Here are the 6 matrices of size 4× 2 with no all 0 or all 1 columns:

0 0
0 0
0 0
1 1

 ,


0 0
0 0
0 1
1 1

 ,


0 0
0 1
0 1
1 1

 ,


0 0
0 0
1 1
1 1

 ,


0 0
0 1
1 1
1 1

 ,


0 0
1 1
1 1
1 1

 .

We need to verify the strong Rayleigh property for the corresponding polynomials:

f(1,1) = 12z1z2 + 3z1 + 3z2
f(1,2) = 12z1z2 + 6z1 + 3z2 + 1
f(1,3) = 12z1z2 + 9z1 + 3z2 + 2
f(2,2) = 12z1z2 + 6z1 + 6z2 + 2
f(2,3) = 12z1z2 + 9z1 + 6z2 + 4
f(3,3) = 12z1z2 + 9z1 + 9z2 + 6

They are all stable since,

∆1,2f(1,1) = (12z1 + 3)(12z2 + 3)− 12(12z1z2 + 3z1 + 3z2) = 9 ≥ 0
∆1,2f(1,2) = (12z1 + 3)(12z2 + 6)− 12(12z1z2 + 6z1 + 3z2 + 1) = 6 ≥ 0
∆1,2f(1,3) = (12z1 + 3)(12z2 + 9)− 12(12z1z2 + 9z1 + 3z2 + 2) = 3 ≥ 0
∆1,2f(2,2) = (12z1 + 6)(12z2 + 6)− 12(12z1z2 + 6z1 + 6z2 + 2) = 12 ≥ 0
∆1,2f(2,3) = (12z1 + 6)(12z2 + 9)− 12(12z1z2 + 9z1 + 6z2 + 4) = 6 ≥ 0
∆1,2f(3,3) = (12z1 + 9)(12z2 + 9)− 12(12z1z2 + 9z1 + 9z2 + 6) = 9 ≥ 0.

Now, we need to verify the stability of the 4× 3 matrices (with no all 0 or all 1 columns):
0 0 0
0 0 0
0 0 0
1 1 1

 ,


0 0 0
0 0 0
0 0 1
1 1 1

 ,


0 0 0
0 0 1
0 0 1
1 1 1

 ,


0 0 0
0 0 0
0 1 1
1 1 1

 ,


0 0 0
0 0 1
0 1 1
1 1 1

 ,


0 0 0
0 1 1
0 1 1
1 1 1

 ,


0 0 0
0 0 0
1 1 1
1 1 1

 ,


0 0 0
0 0 1
1 1 1
1 1 1

 ,


0 0 0
0 1 1
1 1 1
1 1 1

 ,


0 0 0
1 1 1
1 1 1
1 1 1

 .
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The polynomials and their Rayleigh differences are:

f(1,1,1) = 24z1z2z3 + 6z1z2 + 6z1z3 + 6z2z3
f(1,1,2) = 24z1z2z3 + 12z1z2 + 6z1z3 + 6z2z3 + 2z1 + 2z2
f(1,1,3) = 24z1z2z3 + 18z1z2 + 6z1z3 + 6z2z3 + 4z1 + 4z2
f(1,2,2) = 24z1z2z3 + 12z1z3 + 12z1z2 + 6z2z3 + 4z1 + 2z2 + 2z3
f(1,2,3) = 24z1z2z3 + 18z1z2 + 12z1z3 + 6z2z3 + 8z1 + 4z2 + 2z3 + 1
f(1,3,3) = 24z1z2z3 + 18z1z2 + 18z1z3 + 6z2z3 + 12z1 + 4z2 + 4z3 + 2
f(2,2,2) = 24z1z2z3 + 12z1z2 + 12z1z3 + 12z2z3 + 4z1 + 4z2 + 4z3
f(2,2,3) = 24z1z2z3 + 18z1z2 + 12z1z3 + 12z2z3 + 8z1 + 8z2 + 4z3 + 2
f(2,3,3) = 24z1z2z3 + 18z1z2 + 18z1z3 + 12z2z3 + 12z1 + 8z2 + 8z3 + 4
f(3,3,3) = 24z1z2z3 + 18z1z2 + 18z1z3 + 18z2z3 + 12z1 + 12z2 + 12z3 + 6

∆1,2f(1,1,1) = 36z2
3

∆1,2f(1,1,2) = 4(3z3 + 1)2

∆1,3f(1,1,2) = 24z2
2

∆1,2f(1,1,3) = 4(3z3 + 2)2

∆1,3f(1,1,3) = 12z2
2

∆1,2f(1,2,2) = 8(3z2
3 + 3z3 + 1)

∆2,3f(1,2,2) = 4(12z2
1 + 6z1 + 1)

∆1,2f(1,2,3) = 2(12z2
3 + 18z3 + 7)

∆1,3f(1,2,3) = 4(3z2
2 + 3z2 + 1)

∆2,3f(1,2,3) = 2(12z2
1 + 6z1 + 1)

∆1,2f(1,3,3) = 12(z3 + 1)2

∆2,3f(1,3,3) = 4(3z1 + 1)2

∆1,2f(2,2,2) = 16(3z2
3 + 3z3 + 1)

∆1,2f(2,2,3) = 4(12z2
3 + 18z3 + 7)

∆1,3f(2,2,3) = 8(3z2
2 + 3z2 + 1)

∆1,2f(2,3,3) = 24(z3 + 1)2

∆2,3f(2,3,3) = 4(3z1 + 2)2

∆1,2f(3,3,3) = 36(z3 + 1)2

Finally, we have to show the stability of 4× 4 matrices. Instead of computing the Rayleigh differences
potentially

(
4
2

)
= 6 times for each matrix, we employ Theorem 3.1 and compute only one Rayleigh

difference per matrix. We already have that the partial derivatives are stable, since these are exactly the
polynomials which are the permanents of 4 × 3 matrices. Now we need to show the stability of f|z`=0.
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These polynomials have one of the three following forms. They can be a permanent of a 3 × 3 matrix
obtained by removing the last row of the 4 × 3 matrix, or the sum of two permanents (one obtained by
removing the third row and another obtained by removing the last row of the original matrix), or three
permanents of 3×3 matrices (obtained by the respective submatrices of the given 4×3 matrix by removing
the second, third and last row).

The 3 × 3 case we have already solved in Section 3.1, the sum of two permanents can be reduced to a
single 3× 3 permanent case, by expanding the permanent along the last row:

per


z1 + a1 z2 + a2 z3 + a3 0
z1 + b1 z2 + b2 z3 + b3 0
z1 + c1 z2 + c2 z3 + c3 1
z1 + d1 z2 + d2 z3 + d3 1

 = per

 z1 + a1 z2 + a2 z3 + a3

z1 + b1 z2 + b2 z3 + b3
z1 + c1 z2 + c2 z3 + c3

+

per

 z1 + a1 z2 + a2 z3 + a3

z1 + b1 z2 + b2 z3 + b3
z1 + d1 z2 + d2 z3 + d3


= 2per

 z1 + a1 z2 + a2 z3 + a3

z1 + b1 z2 + b2 z3 + b3
z1 + c1+d1

2 z2 + c2+d2
2 z3 + c3+d3

2


Note that in this case the other rows are identical, and since the entries in the last rows are the largest ones
their average also preserves the monotone column property.

For the sum of three permanents we can also argue similarly. Note that if there are two columns with
the same number of ones, then two of the summands are identical and we can sum the permanents by
expanding along the row in which they differ. Here factoring out 3 and placing the average in the row will
preserve the monotone column property. The only case when all columns have different number of ones
is when

A =


0 0 0
0 0 1
0 1 1
1 1 1

 .

The corresponding polynomial f = 18z1z2z3 + 12z1z2 + 8z1z3 + 4z2z3 + 4z1 + 2z2 + z3 is stable,
because the

∆1,2f = 2(7z2
3 + 10z3 + 4)

∆1,3f = 4(3z2
2 + 3z2 + 1)

∆2,3f = 2(12z2
1 + 6z1 + 1)

differences are always positive.
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We check the strong Rayleigh property for all the 15 matrices of size 4×4 with no all 0 or all 1 columns:

∆1,2f(1,1,1,1) = 36z2
3z

2
4

∆1,2f(1,1,1,2) = 4z2
3(3z4 + 1)2

∆1,2f(1,1,1,3) = 4z2
3(3z4 + 2)2

∆1,2f(1,1,2,2) = 4(3z3z4 + z3 + z4)2

∆1,2f(1,1,2,3) = (6z3z4 + 4z3 + 3z4 + 1)2

∆1,2f(1,1,3,3) = 4(3z3z4 + 2z3 + 2z4 + 1)2

∆1,2f(1,2,2,2) = 8z3z4 + 24z2
3z

2
4 + 8z2

3 + 8z2
4 + 24z2

3z4 + 24z3z2
4

∆1,2f(1,2,2,3) = 2 + 8z2
4 + 8z3 + 8z4 + 36z2

3z4 + 24z3z2
4 + 14z2

3 + 24z2
3z

2
4 + 28z3z4

∆1,2f(1,2,3,3) = 8 + 14z2
4 + 20z3 + 20z4 + 36z2

3z4 + 36z3z2
4 + 14z2

3 + 24z2
3z

2
4 + 52z3z4

∆1,2f(1,3,3,3) = 12(z3 + 1)2(z4 + 1)2

∆1,2f(2,2,2,2) = 16z2
4 + 48z2

3z4 + 48z3z2
4 + 16z2

3 + 48z2
3z

2
4 + 16z3z4

∆1,2f(2,2,2,3) = 4 + 16z2
4 + 16z3 + 16z4 + 72z2

3z4 + 48z3z2
4 + 28z2

3 + 48z2
3z

2
4 + 56z3z4

∆1,2f(2,2,3,3) = 16 + 28z2
4 + 40z3 + 40z4 + 72z2

3z4 + 72z3z2
4 + 28z2

3 + 48z2
3z

2
4 + 104z3z4

∆1,2f(2,3,3,3) = 24(z3 + 1)2(z4 + 1)2

∆1,2f(3,3,3,3) = 36(z4 + 1)2(z3 + 1)2

The 6 differences which are not complete squares are also non-negative, since they have the following
non-positive discriminants (when they are considered as a polynomial in z3):

−192(z4+1)2z2
4 ,−48(z4+1)2(2z4+1)2,−48(z4+1)4,−768(z4+1)2z2

4 ,−192(z4+1)2(2z4+1)2,−192(z4+1)4

and positive leading coefficients:

8(3z2
4+3z4+1), 2(12z2

4+18z4+7), 2(12z2
4+18z4+7), 16(3z2

4+3z4+1), 4(12z2
4+18z4+7), 4(12z2

4+18z4+7).

3.3 Proof for a 5× 5 matrix and the Eulerian polynomials
There is an interesting connection between the Eulerian polynomial and the multivariate MCP conjecture.
Let A be the n × n matrix with all zeros above and on the diagonal and all ones below. Denote the
permanent of B where bij = aij + zj by f(z1, . . . , zn). The univariate polynomial obtained by setting
zi = z for all i is the Eulerian polynomial modified by a rational change of variables:

f(z, . . . , z) = (z + 1)nAn

(
z

1 + z

)
=

n∑
k=1

A(n, k)zk(1 + z)n−k, (2)

where An(z) is the generating polynomial of the Eulerian numbers, A(n, k), e.g., the number of per-
mutations of n letters with k weak excedances. (A number i is a weak excedance in permutation π =
π1π2 · · ·πn if πi ≥ i.) To show (2) we can identify permutations of n letters with placements of n rooks
on an n × n board, with a rook on (i, j) interpreted as πi = j in the permutation π = π1π2 · · ·πn. The
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zk(1 + z)n−k terms in the expansion of the permanent f(z, . . . , z) correspond to rook placements with k
rooks on or above the diagonal (each rook contributes a a factor of z to the term). Hence the coefficient
of zk(1 + z)n−k is exactly A(n, k).

Therefore, this multivariate generalization of the Eulerian polynomials is a natural candidate to be
proven stable, which would imply the well-known fact that Eulerian polynomials have only real zeros.

We already proved that for n ≤ 4 these polynomials are stable. Now we show that for n = 5 this
special case of the multivariate MCP conjecture also holds.

Let

A =


0 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 1 1 1
0 1 1 1 1

 .

Let f = f(0,1,2,3,4). We check the strong Rayleigh property for all 1 ≤ i < j ≤ 5. Since we can factor
out z1 from f note that ∆1,2f = ∆1,3f = ∆1,4f = ∆1,5f = 0.

∆2,3f = 2z2
1(216z2

4z
2
5 + 336z2

4z5 + 240z4z2
5 + 354z4z5 + 132z2

4 + 132z4 + 72z2
5 + 102z5 + 37)

∆2,4f = 4z2
1(75z3z5 + 120z2

3z5 + 48z3z2
5 + 72z2

3z
2
5 + 12z2

5 + 18z5 + 7 + 51z2
3 + 30z3)

∆2,5f = 4z2
1(27z3z4 + 48z2

3z4 + 24z3z2
4 + 36z2

3z
2
4 + 6z2

4 + 6z4 + 2 + 18z2
3 + 9z3)

∆3,4f = 2z2
1(150z2z5 + 96z2

5z2 + 288z2
2z

2
5 + 480z2

2z5 + 12z2
5 + 18z5 + 7 + 60z2 + 204z2

2)
∆3,5f = 4z2

1(27z2z4 + 72z2
2z

2
4 + 24z2

4z2 + 3z2
4 + 3z4 + 1 + 96z2

2z4 + 9z2 + 36z2
2)

∆4,5f = 2z2
1(216z2

2z
2
3 + 66z2z3 + 96z2

3z2 + 1 + 192z2
2z3 + 12z2 + 12z2

3 + 6z3 + 48z2
2)

We verified by a computer that these are always non-negative by the following procedure. For example,
consider g(z2, z3) = ∆4,5f/2z2

1 . The coefficient of z2
3 in g(z2, z3) is 12(18z2 + 8z2 + 1) > 0 and the

discriminant of g(z2, z3) viewed as a polynomial in z3 is −12(384z4
2 + 288z3

2 + 93z2
2 + 14z2 + 1) < 0,

since this quartic polynomial has negative leading coefficient and has no real roots.
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[BB08] Julius Borcea and Petter Brändén. Applications of stable polynomials to mixed determinants:

Johnson’s conjectures, unimodality, and symmetrized Fischer products. Duke Mathematical
Journal, 143(2):205–223, 2008.
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