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in

the Theory of Macdonald Polynomials

by
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Abstract.
The bigraded Frobenius characteristic of the Garsia-Haiman module Mμ is known [7] [10] to be

given by the modified Macdonald polynomial H̃μ[X; q, t]. It follows from this that, for μ � n the symmet-
ric polynomial ∂p1H̃μ[X; q, t] is the bigraded Frobenius characteristic of the restriction of Mμ from Sn to
Sn−1. The theory of Macdonald polynomials gives explicit formulas for the coefficients cμν occurring in the
expansion ∂p1H̃μ[X; q, t] =

∑
ν→μ cμνH̃ν [X; q, t]. In particular it follows from this formula that the bigraded

Hilbert series Fμ(q, t) of Mμ may be calculated from the recursion Fμ(q, t) =
∑

ν→μ cμνFν(q, t). One of the
frustrating problems of the theory of Macdonald polynomials has been to derive from this recursion that
Fμ(q, t) ∈ N[q, t]. This difficulty arises form the fact that the cμν have rather intricate expressions as rational
functions in q, t. We give here a new recursion, from which a new combinatorial formula for Fμ(q, t) can be
derived when μ is a two column partition. The proof suggests a method for deriving an analogous formula
in the general case. The method was successfully carried out for the hook case by M. Yoo in [15].

I. Introduction
Let us recall that the Garsia-Haiman module Mμ for μ � n is defined in [7] as the linear span of the

derivatives of the polynomial Δμ(x, y) = det‖xpj

i y
qj

i ‖n
i,j=1 where (p1, q1), (p1, q1), . . . , (pn, qn) are the cooordi-

nates of the south-west corners of the cells of μ. It was conjectured in [7] and proved in [10] that the bigraded
Frobenius characteristic of Mμ under the diagonal action of Sn on the coordinates x1, x2, . . . , xn; y1, y2, . . . , yn

is the modified Macdonald polynomial H̃μ[X; q, t]. Denoting by Fμ(q, t) the bigraded Hilbert series of Mμ,
it follows that we must have have

Fμ(q, t) = ∂n
p1

H̃μ[X; q, t]. I.1

Now it is shown in [6] that the Macdonald Pieri rules [11] yield

∂p1H̃μ[X; q, t] =
∑
ν→μ

cμν(q, t)H̃ν [X; q, t] I.2

with

cμν(q, t) =
∏

s∈Rμ/ν

tlμ(s) − qaμ(s)+1

tlμ(s) − qaμ(s)

∏
s∈Cμ/ν

qaμ(s) − tlμ(s)+1

qaμ(s) − tlμ(s)
. I.3

where Rμ/ν (resp. Cμ/ν) denotes the set of lattice squares of ν that are in the same row (resp. same column)
as the cell we must remove from μ to obtain ν and for any cell s ∈ μ, the parameter lμ(s) gives the number
of cells of μ that are strictly north of s and aμ(s) gives the number of cells that are strictly east.

In particular, upon differentiation of both sides of I.2 by ∂n−1
p1

, we derive that Fμ(q, t) may be
computed from the recursion

Fμ[X; q, t] =
∑
ν→μ

cμν(q, t)Fν [X; q, t] I.4
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and initial condition F(1)(q, t) = 1. Although in [7] the nature of the coefficients cμν(q, t) was given a
representation theoretical interpretation, their complexity, prevented obtaining any kind of explicit formula
for Fμ(q, t) from I.4.

Being Hilbert series of finite dimensional modules the Fμ(q, t) are necessarily polynomials with posi-
tive integer coefficients. Thus a problem emerged form the onset of the Theory of Macdonald polynomials to
obtain, a recursive construction of the Fμ(q, t) from which the combinatorics of these remarkable polynomials
would emerge in a natural way, directly from the representation theoretical model.

Although both H̃μ[X; q, t] and (consequently) also Fμ(q, t) have recently been given purely combi-
natorial constructions [9], the latter were derived from an entirely manipulatorial path based on identities
in the original Macdonald work [12], and their relation to the modules Mμ is yet to be found.

In this paper we show that, at least in the two column case, a recursion may be given that stems
right out of the representation theory of Mμ. This recursion may be stated as follows

F2b,1a−b(q, t) = [b]t(1 + q)F2b−1,1a−b+1(q, t) + [a − b]ttbF2b,1a−b−1(q/t, t) I.5

It is quite straight forward to show that, I.5 is equivalent to the combinatorial formula

Fμ(q, t) =
∑

T∈ST (μ)

∏
i∈T

[di(T )]t ×
∏

i∈C2(T )

(q + tbi(T )) I.6

where the sum is over all standard tableaux of shape μ = 2b−1, 1a−b+1, di(T ) is the number of rows of length
equal to the length of the row of i in the tableau obtained by removing from T all the entries j > i, the
second product is over the entries in the second column of T and bi(T ) denotes the number of entries j > i

in the first column of T .
Remarkably, it turns out that I.5 is only the tip of an iceberg. Indeed, the underlying representation

theoretical identity is none other than the Frobenius characteristic recursion

∂p1H̃2b,1a−b(q, t) = [b]t(1 + q)H̃2b−1,1a−b+1(q, t) + [a − b]ttbH̃2b,1a−b−1(q/t, t) I.7

from which I.6 immediately follows upon differentiation of both sides by ∂a+b−1
p1

.
The main result in this paper is a proof of I.7. In final analysis, our argument again only uses

identities of the theory of Macdonald polynomials and could be presented in this manner without much
further ado. However, this type of treatement would leave the reader puzzled as to how we could come up
with the various manipulations we carry out to achieve the final result. For this reason and for the benefit
future research aimed at finding an analogous formula in the general case, we will carefully go over the
representation theoretical reasoning that guided every step of our argument. At the end we will also explore
in detail the case of μ = (3, 2, 1) as evidence suggesting that the same representation theoretical reasoning
can be carried out in full generality. We should mention that the hook case was carried out in the PhD
thesis of M. Yoo [15].

Our developments here rely heavily on the contents of [1] and [5]. In particular, we will show that
I.7 can be beautifully imbedded into the “Science Fiction” heuristics introduced in [1]. In fact, we will see
that I.7 adds a new twist into the “Science Fiction ” of the modules Mμ. This given, the reader is urged
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to have at hand at least [1], since for brevity, we will have to assume some familiarity with the results and
notation introduced there.

1. The case a = 3 and b = 2.
It will be good to represent Macdonald polynomials by Ferrers diagrams. This given 1.2 becomes

∂p1 (q, t) = (1 + t)(1 + q) (q, t) + (q/t, t) t2 1.1

Let us see then how we can interpret this identity using the Science Fiction model. Our point of departure
is the determinant

Δ = det

⎡
⎢⎢⎢⎣

1 1 1 1 1
y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

x1y1 x2y2 x3y3 x4y4 x5y5

x2
1 x2

2 x2
3 x2

4 x2
5

⎤
⎥⎥⎥⎦ 1.2

with expansion
Δ = Δ + y5Δ + x5Δ + x5y5Δ + x2

5Δ 1.3

This gives
∂y5Δ = Δ + x5Δ 1.4

∂x5Δ = Δ + y5Δ + 2x5Δ 1.5

∂x5∂y5Δ = Δ 1.6

∂2
x5

Δ = 2Δ 1.7

To construct a basis for the linear span of derivatives of Δ , we will seek for 5 collections of monomials in

the alphabet x1, x2, . . . , x4; y1, y2, . . . , y4

B00, B01, B10, B11, B20,

such that the collections{
b00(∂)Δ

}
b00∈B00

,
{

b01(∂)∂y5Δ
}

b01∈B01

,
{

b10(∂)∂x5Δ
}

b10∈B10

,

{
b11(∂)∂x5∂y5Δ

}
b11∈B11

,
{

b20(∂)∂2
x5

Δ
}

b20∈B20

, (∗)

form a basis for the module M32. The collections Bij must be determined so that the cardinality of their
union is 5! and for any choices of bij ∈ Bij the identity

b00(∂)Δ + b01(∂)∂y5Δ + b10(∂)∂x5Δ + b11(∂)∂x5∂y5Δ + b20(∂)∂2
x5

Δ = 0 1.8
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forces
b00 = b01 = b10 = b11 = b20 = 0

Now using the identities in 1.3-1.7 the equality in 1.8 converts to

b00(∂)
(
Δ + y5Δ + x5Δ + x5y5Δ + x2

5Δ
)

+

b01(∂)
(
Δ + x5Δ

)
+

b10(∂)
(
Δ + y5Δ + 2x5Δ

)
+

b11(∂)Δ +

2b20(∂)Δ = 0

equating to zero the terms independent of x5, y5 and equating the coefficients of y5, x5, x5y5 and x2
5 yields

the system

b00(∂)Δ + b01(∂)Δ + b10(∂)Δ + b11(∂)Δ + 2b20(∂)Δ = 0

b00(∂)Δ + b10(∂)Δ = 0

b00(∂)Δ + b01(∂)Δ + 2b10(∂)Δ = 0

b00(∂)Δ + = 0

b00(∂)Δ = 0

1.9

Note that the last two equations say that b00(∂) kills both Δ and Δ this given these two equations will

force b00 to vanish identically if B00 is chosen to be a basis for the subspace M ∨M of M . We shall

represent this by writing

B00 = ∨ 1.10

with this choice of B00 1.9 reduces to

b01(∂)Δ + b10(∂)Δ + b11(∂)Δ + b20(∂)Δ = 0

b10(∂)Δ = 0

b01(∂)Δ + 2b10(∂)Δ = 0

1.11

Now the second equation will force b10 = 0 if we set (using the notation in 1.10)

B10 = 1.12
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with this choice of B10 3.11 reduces to

b01(∂)Δ + b11(∂)Δ + b20(∂)Δ = 0

b01(∂)Δ = 0 1.13

and the second equation here will force the vanishing of b10 if we set

B10 = 1.14

with this choice of B10 1.13 reduces to

b11(∂)Δ + b20(∂)Δ = 0 1.15

At this point we will choose

B11 = 1.16

To guarantee that 1.15 will force the vanishing of b10 we need only assure that the term “b20(∂)Δ ” will

not produce an element of M . Now Science Fiction states that if

B20 = ∧ 1.17

then b20(∂)Δ will fall in the space M
∧

⊥ ∧ M and in particular not in M . With these choices

let us now compute the cardinalities of the resulting collections. In fact, in order to derive the implications
of 1.1 it will be informative to compute the Frobenius characterists of the spaces spanned by the chosen
collections. From Science Fiction again we know that in this case every Frobenius Characteristic can be
expressed in term of the Frobenius Characteristic of the S4 module M ∧ M . Denoting by “F” the

Frobenius map, Science Fiction gives

F ∧ =

qH̃ − tH̃

q − t
= s4 + ts31 + s22t

2 + q(s31 + s211t) 1.18

Denoting this symmetric function by φ32(q, t;x) we derive that (again using Science Fiction)

H̃ = φ32 + T ↓ φ32 , H̃ = φ32 + T ↓ φ32 , 1.19

where for a symmetric polynomial P with coefficients in Q(q, t) we set

↓ P = ωP
∣∣∣
t→ 1

t ,q→ 1
q
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Since T = t3q and T = t2q2 our choices then give

FB00 = F + F − F ∧ = φ32 + t3q ↓ φ32 + t2q2 ↓ φ32

(
3
2 × 4! dimensions

)
FB01 = H̃ = φ32 + t3q ↓ φ32

(
4! dimensions

)

FB10 = H̃ = φ32 + t3q ↓ φ32

(
4! dimensions

)

FB11 = H̃ = φ32 + t3q ↓ φ32

(
4! dimensions

)

FB20 = F ∧ = φ32

(
1
2 × 4! dimensions

)
The Frobenius characteristic of the modules spanned by the collections in (*) is thus

T ↓
(
(1 + t)(1 + q)H̃ + t2q2 ↓ φ32 + t2φ32

)

or
t4q2

(
(1 + 1/t)(1 + 1/q) ↓ H̃ + 1/t2q2φ32 + 1/t2 ↓ φ32

)
1.20

since t3q ↓ H̃ = H̃ 1.20 becomes

(1 + t)(1 + q)H̃ + t2φ32 + t2q2 ↓ φ32

In conclusion Science Fiction gives

∂p1H̃ = (1 + t)(1 + q)H̃ + t2φ32 + t2q2 ↓ φ32

Now recall that the recursion in I.7 for a = 3 and b = 2 is

∂p1 (q, t) = (1 + t)(1 + q) (q, t) + t2 (q/t, t)

we see that to understand this identity we need only explain why

t2φ32 + t2q2 ↓ φ32 = t2 H̃ (q/t, t). 1.21

Now recall that we have the direct sum decomposition

M = M ∧ M ⊕
(
M ∧ M

)⊥
∧ M 1.22
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which combined with Science Fiction yields that

F M ∧ M = φ32 and F
(
M ∧ M

)⊥
∧ M = t2q2 ↓ φ32 1.23

causing the identity

H̃ = φ32 + t2q2 ↓ φ32

In summary we must understand why the replacement φ32 → t2φ32 in this identity can be achieved by the
substitution q→q/t in H̃ followed by multiplication by t2. Note that classically we used to write

φ32 =

qH̃ − tH̃

q − t
t2q2 ↓ φ32 = H̃ −

qH̃ − tH̃

q − t
=

q

q − t

(
H̃ − H̃

)

which gave that

t2φ32 + t2q2 ↓ φ32 = t2

qH̃ − tH̃

q − t
+

q

q − t

(
H̃ − H̃

)
=

(q − t3)
q − t

H̃ +
q(t2 − 1)

q − t
H̃

and this was responsible for the rationality of the recursion we had before (in terms of the dual Pieri “cμν
′s).

Now we see that 1.21 is an incredibly simple way of avoiding the rationalities that have pestered us for so
many years!.

The explanation of 1.21 comes from a totally unexpected source: “k-schurs”! Indeed it follows from
the Morse-Lapointe-Lascoux theory [11] that all our ingredients in 1.21 are in the linear span of the 2-schur
“atoms”

A2,2 = s4 + ts3,1 + t2s2,2 , A2,1,1 = s31 + ts2,1,1 , A1,1,1,1 = s2,2 + ts2,1,1 + t2s1,1,1,1

For instance we have

H̃ = A2,2 + qA2,1,1 + qtA2,1,1 + q2A1,1,1,1 1.24



A. Garsia and J. Haglund A new recursion in the Theory of Macdonald Polynomials September 3, 2009 8

or in matrix representation (†)
H̃ =

[
0 A211 0

A22 A211 A1111

]
and

φ32 = A2,2 + qA2,1,1 , t2q2 ↓ φ32 = qtA2,1,1 + q2A1111

thus

t2φ32 =

⎡
⎣A22 A211

0 0
0 0

⎤
⎦ , t2q2 ↓ φ32 =

[
0 A211 0
0 0 A1111

]

so

t2φ32 + t2q2 ↓ φ32 =

⎡
⎣A22 A211 0

0 A211 0
0 0 A1111

⎤
⎦

Now from 1.24 we derive that

t2H̃ (q/t, t) = t2A2,2 + tq(A2,1,1 + tA2,1,1) + q2A1,1,1,1

what has happened is that the two atoms A2,2, A2,1,1 which where in the bottom row of H̃ have been lifted

differently (the first to the 3rd row and the second to the end row). Moreover the atom A1,1,1,1 remained
unlifted. This permits a recombination of atoms causing the left hand side of 1.21 to be equal to the right
hand side. This recombination is also clearly visible from the manipulations below

t2φ32 + t2q2 ↓ φ32 = t2
(
A2,2 + qA2,1,1

)
+

(
qtA2,1,1 + q2A1111

)
= t2A2,2 +

(
t2qA2,1,1 + qtA2,1,1

)
+ q2A1111

= t2A2,2 + tq
(
A2,1,1 + tA2,1,1

)
+ q2A1111

= t2H̃ (q/t, t)

In the next section we will use another heuristic that will substantially short cut the derivation of the general
form of the latter identity.

2. The general 2-column case, with kicking identities

The point of departure here are the two kicking identities [6], (see also [4]).

∂p1H̃2b1a−b = [a − b]t + ta−b[b]t + q[b]t 2.1

∂p1H̃2b1a−b = tb[a − b]t + q[b]t + [b]t 2.2

(†) We use the matrix ‖cij‖ 0≤i≤h
0≤j≤k

to represent the polynomial P (q, t) =
h∑

i=0

k∑
j=0

cijt
iqj
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where for convenience we have used the notation

H̃2b1a−b−1 = , H̃2b−11a−b+1 =

and the symbol “ ” represents a Frobenius characteristic to be determined from 2.1 and 2.2 In fact sub-
tracting 2.2 from 2.1 we get

[a − b]t + ta−b[b]t + q[b]t −

⎛
⎜⎜⎝tb[a − b]t + q[b]t + [b]t

⎞
⎟⎟⎠ = 0

(
ta−b[b]t − q[b]t

)
= (tb − 1)[a − b]t + [b]t(1 − q)

using [b]t = (1 − tb)/(1 − t) and [a − b]t = (1 − ta−b)/(1 − t) and cancelling [b]t this becomes

(
ta−b − q

)
= (ta−b − 1) + (1 − q)

yielding

=
(ta−b − 1) + (1 − q)

ta−b − q
2.3

Now Science Fiction gives

= φab + t(
a−1
2 )+(b

2)qb ↓ φab , = φab + t(
a
2)+(b−1

2 )qb−1 ↓ φab 2.4

where

φab = F ∧ 2.5

Using 2.4 in 2.3 gives

=
(ta−b − 1)

(
φab + t(

a−1
2 )+(b

2)qb ↓ φab

)
+ (1 − q)

(
φab + t(

a
2)+(b−1

2 )qb−1 ↓ φab

)
ta−b − q

= φab +
(ta−b − 1)t(

a−1
2 )+(b

2)qb + (1 − q)t(
a
2)+(b−1

2 )qb−1

ta−b − q
↓ φab
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= φab + t(
a−1
2 )+(b−1

2 )qb−1 (ta−b − 1)tb−1q + (1 − q)ta−1

ta−b − q
↓ φab

= φab + t(
a−1
2 )+(b−1

2 )qb−1 ta−1q − tb−1q + ta−1 − qta−1

ta−b − q
↓ φab

= φab + t(
a−1
2 )+(b−1

2 )qb−1−tb−1q + ta−1

ta−b − q
↓ φab

= φab + t(
a−1
2 )+(b−1

2 )qb−1tb−1 ↓ φab

In summary

= φab + t(
a−1
2 )+(b

2)qb−1 ↓ φab 2.6

We now use 2.4 and 2.6 in 2.2 and obtain

∂p1H̃2b1a−b = tb[a − b]t
(
φab + t(

a−1
2 )+(b

2)qb ↓ φab

)
+ q[b]t

(
φab + t(

a−1
2 )+(b

2)qb−1 ↓ φab

)
+ [b]t

(
φab + t(

a
2)+(b−1

2 )qb−1 ↓ φab

)
=

(
tb[a − b]t + q[b]t + [b]t

)
φab

+ t(
a−1
2 )+(b−1

2 )qb−1
(
tb[a − b]ttb−1q + q[b]ttb−1 + [b]tta−1

)
↓ φab

=
(
tb[a − b]t + q[b]t + [b]t

)
φab

+ t(
a−1
2 )+(b−1

2 )qb−1tb−1
(
tb[a − b]tq + q[b]t + [b]tta−b

)
↓ φab

We thus obtain

∂p1H̃2b1a−b = ([a]t + q[b]t)φab + t(
a−1
2 )+(b−1

2 )qb−1tb−1
(
[a]tq + [b]tta−b

)
↓ φab 2.7

As a check note that for a = 3 and b = 2 we get

∂p1H̃221 = ([3]t + q(1 + t))φ3,2 + q1t2
(
[3]tq + (1 + t)t1

)
↓ φ3,2

= ([3]t + q(1 + t))φ3,2 +
(
[3]tt2q2 + (1 + t)t3q

)
↓ φ3,2

= t2φ3,2 + (1 + q)(1 + t)φ3,2 +
(
t2q2 + t3q2 + t4q2 + (1 + t)t3q

)
↓ φ3,2

= (1 + q)(1 + t)φ3,2 +
(
q + tq + (1 + t)

)
t3q ↓ φ3,2 + t2φ3,2 + t2q2 ↓ φ3,2

= (1 + q)(1 + t)φ3,2 + (1 + q)(1 + t)t3q ↓ φ3,2 + t2φ3,2 + t2q2 ↓ φ3,2

= (1 + q)(1 + t)H̃211 + t2φ3,2 + t2q2 ↓ φ3,2 2.7(∗)

This is what we previously had using only Science Fiction and we saw that a comparison with 1.1 yielded
the identity

t2φ3,2 + T ↓ φ3,2 = t2
(
q/t, t)

It turns out that an entirely analogous result holds true in full generality. More precisely we will show that
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Theorem 2.1
For all a > b the recursion in 1.1 is equivalent to the identity

tbφa,b + T ↓ φa,b = tb
(
q/t, t) 2.8

Proof
Our point of deparure is the identity in 2.7 which combined with 1.2 implies that

([a]t + q[b]t)φab + t(
a−1
2 )+(b−1

2 )qb−1tb−1
(
[a]tq + [b]tta−b

)
↓ φab =

= [b]t(1 + q)H̃2b−1,1a−b+1(q, t) + [a − b]ttbH̃2b,1a−b−1(q/t, t)

or better, using 2.4 and making the substitutions [a]t→[b]t + tb[a − b]t and a−1+(a−1
2 )→(a

2), b−1+(b−1
2 )→(b

2)

([b]t + tb[a − b]t + q[b]t)φab +
(
[a]tt(

a−1
2 )+(b

2)qb + [b]tt(
a
2)+(b−1

2 )qb−1
)
↓ φab =

= [b]t(1 + q)
(
φab + t(

a
2)+(b−1

2 )qb−1 ↓ φab

)
+ [a − b]ttbH̃2b,1a−b−1(q/t, t)

We will now proceed to eliminate equal terms from both sides until we are left with 2.8. This gives

tb[a − b]tφab + [a]tt(
a−1
2 )+(b

2)qb ↓ φab + [b]tt(
a
2)+(b−1

2 )qb−1 ↓ φab =

= [b]tt(
a
2)+(b−1

2 )qb−1 ↓ φab + [b]tt(
a
2)+(b−1

2 )qb ↓ φab + [a − b]ttbH̃2b,1a−b−1(q/t, t)

and using [a]t = [a − b]t + ta−b[b]t

tb[a − b]tφab + [a − b]tt(
a−1
2 )+(b

2)qb ↓ φab + ta−b[b]tt(
a−1
2 )+(b

2)qb ↓ φab =

= [b]tt(
a
2)+(b−1

2 )qb ↓ φab + [a − b]ttbH̃2b,1a−b−1(q/t, t)

and using a − b +
(
a−1
2

)
+

(
b
2

)
=

(
a
2

)
+

(
b−1
2

)
tb[a − b]tφab + [a − b]tt(

a−1
2 )+(b

2)qb ↓ φab + [b]tt(
a
2)+(b−1

2 )qb ↓ φab =

= [b]tt(
a
2)+(b−1

2 )qb ↓ φab + [a − b]ttbH̃2b,1a−b−1(q/t, t)

and we are left with

tb[a − b]tφab + [a − b]tt(
a−1
2 )+(b

2)qb ↓ φab = [a − b]ttbH̃2b,1a−b−1(q/t, t)

and this is 2.8 after cancelling the common factor [a − b]t.
It is interesting to see how 2.8 for a = 4 and b = 2 follows by means of the Morse-Lapointe 2-atoms.

In this case 2.8 reduces to
t2φ4,2 + t4q2 ↓ φ4,2 = t2H̃221(q/t, t)
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Now the 2-atom expansions of φ4,2 and H̃221(q, t) are

a) φ4,2 = A2111 + qA221, b) H̃221(q, t) = A221 + (q + tq)A2111 + q2A11111b) 2.9

and the identity H̃221(q, t) = φ4,2 + t4q2 ↓ φ4,2 gives

t4q2 ↓ φ4,2 = tqA2111 + q2A11111 2.10

In matrix notation 2.9 b) becomes

H̃221(q, t) =
[

0 A2111 0
A221 A2111 A11111

]
2.11

where we can distinctly see both φ42 and t4q2 ↓ φ4,2. Now raising φ42 up two levels upon multiplication by
t2 yields the matrix ⎡

⎣A221 A2111 0
0 A2111 0
0 0 A11111

⎤
⎦ = t2H̃221(q/t, t) 2.12

which is exactly the same as raising the first column in 2.11 up two steps, the second column up one step and
the third column up zero steps, which is precisely what the substitution q→q/t followed by multiplication
by t2 does on the matrix of H̃[2,2,1]. We can thus clearly see that 2.8 is a new phenomenon to be added to
Science Fiction! More precisely we see that certain “irreducible” submodules occurring in the Science Fiction
decomposition of the modules Mμ may be recombined into new submodules whose Frobenius characteristics
are suitable combinatorial deformations of the Macdonald polynomials H̃μ(x; q, t). It just happens that when
μ is a two column partition, this deformation takes the simple form tkH̃μ(X; q/t, t). Later examples strongly
suggest that this recombination of irreducibles is a general phenomenon.

The challenge is to see in which manner the Frobenius recursion in I.2 can be replaced by a recursion
in which the terms cμνH̃ν(X; q, t) are replaced by terms where cμν is replaced by a polynomial in N[q, t] and
H̃ν(X; q, t) is replaced by a deformed version.

3. The Science Fiction-less derivation of the equivalent symmetric function identity .
Since, to this moment, most of Science Fiction is still conjectural, we will avoid in the next two

sections to make any direct use of it. Nevertheless we must acknowledge that this proof I.7 would not have
been possible without the guidance provided by Science Fiction heuristics.

The proof will consist of two separed parts. In the first part we will manipulatorially transform the
equality in I.7 into an equivalent simpler identity by eliminating terms that are common to both sides. In the
second part we give a proof of the simpler identity. We should mention that Science fiction plays a role only
in the first part. The second part is based on the fact (first noticed by Stembridge [14]) that the q, t-Kostka
polynomials Kλμ(q, t) for μ a two-column partition may be given a completely explicit expression for all λ.

Our point of departure here is the classical identity

∂p1H̃μ(x; q, t) =
∑
ν→μ

cμν(q, t)H̃ν(x; q, t) 3.1
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In a form given in the “Lattice diagram” paper [3]. To this end we need to recall some of the notation and
definitions used there. For a partition μ with m corners, denote by

ν(1) , ν(2) , . . . , ν(m)

the partitions obtained by removing one of the corners of μ in succession from left to right. Let us call these
corners A1, A2, . . . , Am. That is

A1 = μ/ν(1) , A2 = μ/ν(2) , . . . , Am = μ/ν(d)

The weights of these corners are respectively denoted

x1 , x2 , . . . , xd .

More precisely, if the ith corner, has coleg l′i and coarm a′
i in μ, we set

xi = xi = tl
′
iqa′

i 3.2

Moreover, we call Bi the cell of μ that lies below Ai at the intersection of the column of Ai with the row of
Ai+1, and call ui its weight. We referred to the B′

is the “inner corners” of μ. Clearly we must have

ui = tl
′
i+1qa′

i ( for i = 1, 2, . . . , m − 1 ) 3.3

The picture is completed by adding three more cells A0 and B0, Bm with weights

u0 = tl
′
1/q , um = qa′

m/t and x0 = 1/tq . 3.4

To appreciate the geometric significance of these weights, in the figure below we illustrate a 4-corner Ferrers
diagram with corner cells A0, A1, A2, A3, A4 and inner corner cells B0, B1, B2, B3, B4.

B4

A4

B3

A0

A3

B2

A2

B1

A1

B0

It was shown in [1] that the original dual Pieri coefficients cμν(q, t) undergo massive cancellations
which reduce them to relatively simpler expressions in terms of the corner weights. This results in the
formula

cμν(i)(q, t) =
1

(1 − 1/t)(1 − 1/q)
1
xi

∏m
j=0 (xi − uj)∏m

j=1 ; j �=i(xi − xj)
3.5
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In the two column case μ = 2b1a−b the diagram degenerates to

B2A0

A2

B1

A1

B0

with A0 = (−1,−1), A1 = (1, a), A2 = (2, b) and B0 = (−1, a), B1 = (1, b), B2 = (2,−1). To use 3.1 with
the cμν(q, t) given by 3.5, it will be convenient to set

H̃2b1a−b(x; t) = H̃a,b , H̃2b1a−b−1(x; t) = H̃a−1,b , H̃2b−11a−b+1(x; t) = H̃a,b−1 ,

and rewrite 3.1 as
∂p1H̃a,b = ca(q, t)H̃a−1,b + cb(q, t)H̃a,b−1. 3.6

with 3.5 giving

ca(q, t) =
1

(1 − 1/t)(1 − 1/q)
1
x1

(x1 − u0)(x1 − u1)(x1 − u2)
(x1 − x2)

3.7

and

cb(q, t) =
1

(1 − 1/t)(1 − 1/q)
1
x2

(x2 − u0)(x2 − u1)(x2 − u2)
(x2 − x1)

3.8

Since in this case we have
x0 = 1/tq , x1 = ta−1 , x2 = tb−1q

and
u0 = ta−1/q , u1 = tb−1 , u2 = q/t ,

formulas 3.7 and 3.8 give

ca(q, t) =
1

(1 − 1/t)(1 − 1/q)
1

ta−1

(ta−1 − ta−1/q)(ta−1 − tb−1)(ta−1 − q/t)
(ta−1 − tb−1q)

and

cb(q, t) =
1

(1 − 1/t)(1 − 1/q)
1

tb−1q

(tb−1q − ta−1/q)(tb−1q − tb−1)(tb−1q − q/t)
(tb−1q − ta−1)

Canceling repeated factors finally yields

ca(q, t) =
(ta−b − 1)(ta − q)
(t − 1)(ta−b − q)

and

cb(q, t) =
(tb − 1)(ta−b − q2)
(t − 1)(ta−b − q)
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and 3.6 becomes

∂p1H̃a,b =
(ta−b − 1)(ta − q)
(t − 1)(ta−b − q)

H̃a−1,b +
(tb − 1)(ta−b − q2)
(t − 1)(ta−b − q)

H̃a,b−1. 3.10

Now Science Fiction suggests that the rational functions appearing in the right hand side can be
unraveled by means of the substitutions

H̃a−1,b = φa,b + Ta−1,b ψa,b , H̃a,b−1 = φa,b + Ta,b−1 ψa,b 3.11

with
Ta−1,b = t(

a−1
2 )+(b

2)qb , Ta,b−1 = t(
a
2)+(b−1

2 )qb. 3.12

In fact, using 3.11 in 3.10 gives

Proposition 3.1

∂p1H̃a,b = (1 + q)[b]tH̃a,b−1 + [a − b]t
(
tb φa,b + Ta−1,b ψa,b

)
(∗) 3.13

Proof
To begin note that from 3.11 we derive

φa,b =
Ta,b−1H̃a−1,b − Ta−1,bH̃a,b−1

Ta,b−1 − Ta−1,b
, ψa,b =

H̃a,b−1 − H̃a−1,b

Ta,b−1 − Ta−1,b
3.14

Now from the definitions in 3.12 it follows that

Ta,b−1/Ta−1,b = ta−b/q 3.15

and using this in 3.14 gives

a) φa,b =
ta−bH̃a−1,b − q H̃a,b−1

ta−b − q
, b) Ta−1,b ψa,b = q

H̃a,b−1 − H̃a−1,b

ta−b − q
3.16

Using these expresions in 3.13 yields

∂p1H̃a,b = (1 + q)[b]tH̃a,b−1 + [a − b]t
( taH̃a−1,b − tbq H̃a,b−1

ta−b − q
+

qH̃a,b−1 − qH̃a−1,b

ta−b − q

)

=
(1 + q)(1 − tb)(ta−b − q)H̃a,b−1 + (1 − ta−b)

(
(ta − q)H̃a−1,b + q(1 − tb)H̃a,b−1

)
(1 − t)(ta−b − q)

=
(1 − tb)

(
(1 + q)(ta−b − q) + q(1 − ta−b)

)
H̃a,b−1

(1 − t)(ta−b − q)
+

(1 − ta−b)(ta − q)H̃a−1,b

(1 − t)(ta−b − q)

and we see that 3.13 is simply another way of writing 3.10, since

(1 + q)(ta−b − q) + q(1 − ta−b) = ta−b − q + qta−b − q2 + q − qta−b = ta−b − q2

(*) Here as customary [x]t = (1 − tx)/(1 − t)
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This proposition has the following immediate corollary

Proposition 3.2
The recursion in I.7 is equivalent to the identity

tb φa,b + Ta−1,b ψa,b = tbH̃2b,1a−b−1(q/t, t) 3.17

Proof
Note that converting th first two members of I.7 to the present notation we get

∂p1H̃a,b = (1 + q)[b]tH̃a,b−1 + [a − b]ttbH̃2b,1a−b−1(q/t, t)

Comparing this with 3.13 we see that I.7 is equivalent to

[a − b]t
(
tb φa,b + Ta−1,b ψa,b

)
= [a − b]ttbH̃2b,1a−b−1(q/t, t)

and 3.17 is simply obtained by cancelling the common factor.

4. Enter Hall-Littlewood polynomials
Our point of departure is the Macdonald specialization

H̃μ[1 − x; q, t] =
l(μ)∏
i=1

μi∏
j=1

(1 − xti−1qj−1) 4.1

Now, for μ = 2b1a−b, 4.1 gives

H̃2b1a−b [1 − x; q, t] =
a∏

i=1

(1 − xti−1) ×
b∏

i=1

(1 − qxti−1) = (x; t)a(qx; t)b. 4.2

Recalling that we have set H̃a,b(X; q, t) = H̃2b1a−b(X; q, t) it will be convenient to also set

H̃a,b(X; t) = H̃2b1a−b(X; 0, t)

and 4.2 reduces to
H̃a,b(1 − x; t) = (x; t)a 4.3

Since the Macdonald polynomials are triangularly related to the Hall-Littlewood polynomials we will have
coefficients θa,b

s (q, t) such that

H̃a,b(X; q, t) =
b∑

s=0

H̃a+s,b−s(X; t)θa,b
s (q, t) 4.4

specialising to the alphabet X = 1 − x and using 4.2 and 4.3 this relation becomes

(x; t)a(qx; t)b =
b∑

s=0

(x; t)a+sθ
a,b
s (q, t) 4.5
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From which we derive that
θa,b

s (q, t) = (x; t)a(qx; t)b

∣∣∣
(x;t)a+s

4.6

and 4.4 becomes

H̃a,b(X; q, t) =
b∑

s=0

H̃a+s,b−s(X; t)(x; t)a(qx; t)b

∣∣∣
(x;t)a+s

4.7

To complete our proof of the recursion it will be more convenient to work with our parameters a, b

shifted to a + 1, b, and work with the symmetric functions in 3.16 replaced by

a) φa+1,b =
ta−b+1H̃a,b − q H̃a+1,b−1

ta−b+1 − q
, b) Ta,b ψa+1,b = −q

H̃a,b − H̃a+1,b−1

ta−b+1 − q
4.8

Our goal here will then be to prove the identity

tb φa+1,b + Ta,b ψa+1,b = tbH̃a,b(q/t, t) 4.9

With the same parameter changes the definitions in 3.10 give

H̃a,b(X; q, t) = φa+1,b + Ta,b ψa+1,b 4.10

Now making the replacements a→a + 1 and b→b − 1 in 4.7 gives

H̃a+1,b−1(X; q, t) =
b−1∑
s=0

H̃a+1+s,b−s−1(X; t)(x; t)a+1(qx; t)b−1

∣∣∣
(x;t)a+1+s

=
b∑

s=1

H̃a+s,b−s(X; t)(x; t)a+1(qx; t)b−1

∣∣∣
(x;t)a+s

.

4.11

Using this and 4.7 in 4.8 a) we get

(ta−b+1 − q)φa+1,b = ta−b+1H̃a,b(X; t)(x; t)a(qx; t)b

∣∣∣
(x;t)a

+
b∑

s=1

H̃a+s,b−s(X; t)
(
ta−b+1(x; t)a(qx; t)b − q (x; t)a+1(qx; t)b−1

)∣∣∣
(x;t)a+s

4.12

Now we have

ta−b+1(x; t)a(qx; t)b − q (x; t)a+1(qx; t)b−1 = (x; t)a(qx; t)b−1

(
ta−b+1(1 − xqtb−1) − q (1 − xta)

)
= (ta−b+1 − q)(x; t)a(qx; t)b−1

4.13

and 4.12 becomes

φa+1,b =
ta−b+1

ta−b+1 − q
H̃a,b(X; t)(x; t)a(qx; t)b

∣∣∣
(x;t)a

+
b∑

s=1

H̃a+s,b−s(X; t)(x; t)a(qx; t)b−1

∣∣∣
(x;t)a+s

4.14
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To get Ta,b ψa+1,b we note that

H̃a,b(X; q, t) − H̃a+1,b−1(X; q, t) =
b∑

s=0

H̃a+s,b−s(X; t)(x; t)a(qx; t)b

∣∣∣
(x;t)a+s

−
b∑

s=1

H̃a+s,b−s(X; t)(x; t)a+1(qx; t)b−1

∣∣∣
(x;t)a+s

= H̃a,b(X; t)(x; t)a(qx; t)b

∣∣∣
(x;t)a

+
b∑

s=1

H̃a+s,b−s(X; t)(x; t)a(qx; t)b−1

(
1 − qxtb−1 − 1 + xta

)

= H̃a,b(X; t)(x; t)a(qx; t)b

∣∣∣
(x;t)a

+ xtb−1
b∑

s=1

H̃a+s,b−s(X; t)(x; t)a(qx; t)b−1

(
− q + ta−b+1

)

and 4.8 b) becomes

Ta,b ψa+1,b =
−q

ta−b+1 − q
H̃a,b(X; t)(x; t)a(qx; t)b

∣∣∣
(x;t)a

−qxtb−1
b∑

s=1

H̃a+s,b−s(X; t)(x; t)a(qx; t)b−1

∣∣∣
(x;t)a+s

4.15

Next note that 4.7 gives

tbH̃a,b(X; q/t, t) = tb
b∑

s=0

H̃a+s,b−s(X; t)(x; t)a(qx/t; t)b

∣∣∣
(x;t)a+s

4.16

and since
tb(qx/t; t)b = tb(1 − qx/t)(1 − qx) · · · (1 − qxtb−2) = tb−1(t − qx)(qx; t)b−1

4.16 becomes

tbH̃a,b(X; q/t, t) = (tb − tb−1qx)
b∑

s=0

H̃a+s,b−s(X; t)(x; t)a(qx; t)b−1

∣∣∣
(x;t)a+s

4.17

Thus to prove 4.9 we need only show that the right hand side of 4.16 can also be obtained by adding the
right hand sides of the following two equalities.

tbφa,b =
ta+1

ta−b+1 − q
H̃a,b(X; t)(x; t)a(qx; t)b

∣∣∣
(x;t)a

+ tb
b∑

s=1

H̃a+s,b−s(X; t)(x; t)a(qx; t)b−1

∣∣∣
(x;t)a+s

ψa,b =
−q

ta−b+1 − q
H̃a,b(X; t)(x; t)a(qx; t)b

∣∣∣
(x;t)a

− qxtb−1
b∑

s=1

H̃a+s,b−s(X; t)(x; t)a(qx; t)b−1

∣∣∣
(x;t)a+s

In fact doing this gives this gives

tbφa,b + ψa,b =
ta+1 − q

ta−b+1 − q
H̃a,b(X; t)(x; t)a(qx; t)b

∣∣∣
(x;t)a

+ (tb − qxtb−1)
b∑

s=1

H̃a+s,b−s(X; t)(x; t)a(qx; t)b−1

∣∣∣
(x;t)a+s

4.18
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Comparing with the right hand side of 4.17 reduces us to proving the equality

ta+1 − q

ta−b+1 − q
(x; t)a(qx; t)b

∣∣∣
(x;t)a

= (tb − qxtb−1)(x; t)a(qx; t)b−1

∣∣∣
(x;t)a

0r, equivalently show that

(ta+1 − q)(x; t)a(qx; t)b − (ta−b+1 − q)(tb − qxtb−1)(x; t)a(qx; t)b−1

∣∣∣
(x;t)a

= 0

Now this is best rewritten in the form(
(ta+1 − q)(1 − qxtb−1) − (ta−b+1 − q)(tb − qxtb−1)

)
(x; t)a(qx; t)b−1

∣∣∣
(x;t)a

= 0 4.19

But a simple calculation gives

(ta+1 − q)(1 − qxtb−1) − (ta−b+1 − q)(tb − qxtb−1) = q(tb − 1)(1 − xta)

and 4.19 becomes
q(tb − 1)(1 − xta)(x; t)a(qx; t)b−1

∣∣∣
(x;t)a

= 0

or better
q(tb − 1)(x; t)a+1(qx; t)b−1

∣∣∣
(x;t)a

= 0

which is patently obvious.
This completes the proof of 4.9 and thus by Proposition 3.2 the identity in I.7 as well as the recursion

in I.6 are thereby established.



111

010110
100

101 011

001

A. Garsia and J. Haglund A new recursion in the Theory of Macdonald Polynomials September 3, 2009 20

5. The [3,2,1] case.
For convenience we will set

α = [3, 2] = , β = [3, 1, 1] = , γ = [2, 2, 1] = .

and also use the same symbols to represent the corresponding modules as well as their Frobenius character-
istics. Science Fiction states that in the this case the Sn module

∨ ∨

decomposes into the direct sum of 7 modules precisely as the union of three sets decomposes into 7 disjoint
subsets. Thus this decomposition may be depicted by a 3-subset Venn Diagram as follows.

where “111” represents the module M111 = ∧ ∧ , “011” represents the module M011 =
⊥

∧ ∧ ,

“010” represents the module M010 =
⊥

∧ ∧
⊥

, etc. Moreover, denoting by flip , flip ,

flip respectively the maps

M −→ M : b→ b(∂x, ∂y)Δ (x, y)

M −→ M : b→ b(∂x, ∂y)Δ (x, y)

M −→ M : b→ b(∂x, ∂y)Δ (x, y)

Science Fiction asserts that

a) flip M111 = M100 , b) flip M110 = M101 , 5.1

a) flip M111 = M010 , b) flip M011 = M110 , 5.2

a) flip M111 = M001 , b) flip M101 = M011 , 5.3
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Denoting by φ111 , φ011 , φ101 , φ110 , φ100 , φ010 , φ001 , the corresponding Frobenius characteristics we see
that these equations respoectively yield the following identities

a) φ100 = Tα ↓ φ111 , b) φ101 = Tα ↓ φ110 , 5.1∗

a) φ010 = Tβ ↓ φ111 , b) φ110 = Tβ ↓ φ011 , 5.2∗

a) φ010 = Tγ ↓ φ111 , b) φ011 = Tγ ↓ φ101 , 5.3∗

Note then that from 5.1* b) and 5.2* b) we derive that

φ101 = Tα ↓ (Tβ ↓ φ011) =
Tα

Tβ
φ011

or better
Tα φ011 = Tβ φ101

similarly we derive that
Tβ φ101 = Tγ φ110

Denoting by φ3 the common value we get that

a) φ011 =
φ2

Tα
b) φ101 =

φ2

Tβ
c) φ110 =

φ2

Tγ
5.4

In a similar manner from 5.1* a), 5.2* a), 5.3* a), we derive that setting

φ1 = TαTβTγ ↓ φ111 5.5

we get

a) φ100 =
φ2

TβTγ
b) φ010 =

φ2

TαTγ
c) φ001 =

φ2

TαTβ
5.6

In particular combining these identities with the direct sum decompositions expressed by the Venn diagram
at the end of the paper, and setting φ3 = φ111 we derive that

H̃ = φ111 + φ101 + φ110 + φ100 = φ3 +
φ2

Tβ
+

φ2

Tγ
+

φ1

TβTγ
5.7

H̃ = φ111 + φ011 + φ110 + φ010 = φ3 +
φ2

Tα
+

φ2

Tγ
+

φ1

TαTγ
5.8

H̃ = φ111 + φ011 + φ101 + φ001 = φ3 +
φ2

Tα
+

φ2

Tβ
+

φ1

TαTβ
5.9

Our goal in this section is to show how the restriction to S5 of the Garsia-Haiman module M321 may be
decomposed as a direct sum of submodules isomorphic to the submodules appearing in our Venn diagram.
From this decomposition it will ultimately follow that

∂p1H̃321 =
(
(1+t)(1+q)+t2 +q2

)
φ3 + (1+t)(1+q)(t2 +tq+q2 )

φ2

t4q4
+

(
tq(1+t)(1+q)+t2 +q2

) φ1

t7q7
5.10
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Our final task will be to reassemble the resulting terms into what we might believe is a 321-analogue of the
two decompositions in 5.6 and 5.7, namely

∂p1 = t[a − 1]t + taφa,b + T ↓ φa,b + [b + 1]q . 5.11

and

∂p1 = tb[a − b]tφa,b + [a − b]tT ↓ φa,b + (1 + q)[b]t . 5.12

Note that setting

Tα = T = t2q4 , Tβ = T = t3q3 , Tγ = T = t4q2,

the relations in 5.7, 5.8 and 5.9 become

H̃ = φ111 + φ101 + φ110 + φ100 = φ3 +
φ2

t3q3
+

φ2

t4q2
+

φ1

t7q5
5.7∗

H̃ = φ111 + φ011 + φ110 + φ010 = φ3 +
φ2

t2q4
+

φ2

t4q2
+

φ1

t6q6
5.8∗

H̃ = φ111 + φ011 + φ101 + φ001 = φ3 +
φ2

t2q4
+

φ2

t3q3
+

φ1

t5q7
5.9∗

This given a possible 321-analogue of 5.11 and 5.12 could be

∂p1H̃321 = (1 + t)(1 + q)H̃ + (q2 + t2)φ111 + (1 + t)(1 + q)φ101 + φ100 + φ001 5.13

since this is one of the ways to use the identities in 5.7*-5.9* to re-express 5.10 making maximal use of one
of the H̃μ for μ ∈ {[3, 2], [3, 1, 1], [2, 2, 1]}. We can easily check that no more than three copies of H̃32 or H̃221

can be sutracted from ∂p1H̃321 and still yielding a positive remainder. More precisely ∂p1H̃321−(1+t+t2)H̃32

and ∂p1H̃321 − (1 + q + q2)H̃221 are both Schur positive, but any more subtractions produces negatives.

Our next task is to derive the identity in 5.10. We will proceed first by the “kicking” method
combined with a minimal use of Science Fiction as we did for the two-column case. This done we will
illustrate a general algorithm for obtaining such an identity for any partiton by applying the algorithm to
the 321-case.

Our point of departure are the two kicking identities

∂p1H̃321 = H̃ + tH̃ + t2H̃ + qH̃ + tqH̃ + q2H̃ 5.14



≅ ≅ ≅ ≅
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∂p1H̃321 = t2H̃ + tqH̃ + q2H̃ + tH̃ + qH̃ + H̃ 5.15

Using the equivalences

,

The identities in 1.14 and 5.15 become

∂p1H̃321 = H̃ + tH̃ + t2H̃ + qH̃ + tqH̃ + q2H̃ 5.16

∂p1H̃321 = t2H̃ + tqH̃ + q2H̃ + tH̃ + qH̃ + H̃ 5.17

and by subtraction we derive that

(t2 − q2)H̃ = (t2 − 1)H̃ + t(q − 1)H̃ + (t − q)H̃ + q(1 − t)H̃ + (1 − q2)H̃ . 5.18

But we cannot derive anything from this until we construct H̃ and H̃ . To do that we carry out

another kicking scheme as decribed by the following display

and derive the two identities

∂p1H̃ = (1 + t)H̃ + t2H̃11 × H̃21 + qH̃ + q2H̃211 × H̃1 + tH̃ 5.19

∂p1H̃ = (t2 + t)H̃ + q2H̃11 × H̃21 + qH̃ + tH̃211 × H̃1 + H̃ 5.20

and by subtraction we derive (note H̃ cancels!)

(t2 − 1)H̃ = (t2 − q2)H̃11 × H̃21 + q2H̃211 × H̃1 + tH̃ 5.21

Using the Pieri rules

H̃11 × H̃21 =
(q − 1)(q2 − t)

(q − t2)(q2 − t3)
H̃2111 +

(1 − t2)(q − 1)(q2 − t)
(q − t)2(q + t)(q − t2)

H̃221
(1 − t2)(q − 1)(q − t2)

(q − t)2(q2 − t3)
H̃311 +

(1 + t)(t − 1)2

(q + t)(q − t)2
H̃32
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H̃211 × H̃1 =
(q − 1)(q2 − t)

(q − t2)(q2 − t3)
H̃2111 +

(t2 − 1)(1 − q)
(q − t)(q − t2)

H̃221 +
(1 − t)(q − t3)
(q − t)(q2 − t3)

H̃311

The equality in 5.21 yields

H̃ =
q − 1
q − t

H̃ +
1 − t

q − t
H̃ 5.22

and by conjugation we obtain

H̃ =
t − 1
t − q

H̃ +
1 − q

t − q
H̃ 5.23

Using 5.22 and 5.23 in 5.18 gives, after simplifications

H̃ =
(q − 1)(q2 − t)
(q + t)(q − t)2

H̃221 +
(1 − t)(q − 1)

(q − t)2
H̃311 +

(1 − t)(q − t2)
(q + t)(q − t)2

H̃32 5.24

Notwithstanding the rationality of these expressions, substituting in 5.22, 5.23 and 5.24 the relations in 5.7*,
5.9* and 5.9*, gives

H̃ = f3 +
φ2

t4q2
+

φ2

t3q4
+

φ1

t7q6

H̃ = f3 +
φ2

t2q4
+

φ2

t4q3
+

φ1

t6q7

H̃ = f3 +
φ2

t4q3
+

φ2

t3q4
+

φ1

t7q7

We are now finally in a position to prove 5.10. To do this we use these last relations and 5.7*, 5.9*
and 5.9* in 5.17 and obtain

∂p1H̃321 = t2
(

φ3 +
φ2

t3q3
+

φ2

t4q2
+

φ1

t7q5

)
+ tq

(
f3 +

φ2

t4q2
+

φ2

t3q4
+

φ1

t7q6

)
+ q2(

(
f3 +

φ2

t4q3
+

φ2

t3q4
+

φ1

t7q7

)

t

(
φ3 +

φ2

t2q4
+

φ2

t4q2
+

φ1

t6q6

)
+ q

(
f3 +

φ2

t2q4
+

φ2

t4q3
+

φ1

t6q7

)
+

(
φ3 +

φ2

t2q4
+

φ2

t3q3
+

φ1

t5q7

)
=

(
(1 + t)(1 + q) + t2 + q2

)
φ3 +

+
(
t3q + t2q2 + tq3 + t2q + q3 + q2t + t3 + tq2 + qt2 + q2 + t2 + tq

) φ2

t4q4
+

+
(
t2q2 + tq2 + q2 + t2q + tq + t2

) φ1

t7q7

=
(
(1 + t)(1 + q) + t2 + q2

)
φ3 +

(
q2(1 + t + q + tq) + t2(1 + t + q + tq) + qt(1 + t + q + tq)

) φ2

t4q4
+

+
(
tq(tq + q + t + 1) + t2 + q2

) φ1

t7q7(
(1 + t)(1 + q) + t2 + q2

)
φ3 + (1 + t)(1 + q)(t2 + tq + q2 )

φ2

t4q4
+

(
tq(1 + t)(1 + q) + t2 + q2

) φ1

t7q7

This completes our proof of 5.10.
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It turns out that 5.10 is but a particular case of the following result which may derived from
Proposition 1.2 of the “Lattice Diagrams” paper [3].

Theorem 5.1
For a partition μ = (μ1, μ2, . . . , μk) with m corners we have

∂p1H̃μ =
k∑

i=1

μi∑
j=1

ti−1qj−1

(
1∑

ε1=0

1∑
ε2=0

· · ·
1∑

εm=0

φε1,ε2,...,εm
χ(j ≤ ε1w1 + ε2w2 + · · · εri

wri
)

)
5.25

where w1, w2, . . . , wm are the lengths of the successive landings in the Ferrers diagram of λ (see figure) and ri is

the number of corners of μ that are weakly above row i.

Note that we may view the summand in 5.25 as an assignment of modules Mε1,ε2,...,εm
to the cells

of the diagram of μ. Now this assigment in the case of [3, 2, 1] reduces to
Cell 00 →∑1

ε1=0

∑1
ε2=0

∑1
ε3=0 φε1,ε2,εm

χ(1 ≤ ε1 + ε2 + ε3) = φ001 +φ010 +φ011 +φ100 +φ101 +φ110 +φ111

Cell 01 →∑1
ε1=0

∑1
ε2=0

∑1
ε3=0 φε1,ε2,εm

χ(2 ≤ ε1 + ε2 + ε3) = φ011 + φ101 + φ110 + φ111

Cell 02 →∑1
ε1=0

∑1
ε2=0

∑1
ε3=0 φε1,ε2,εm

χ(3 ≤ ε1 + ε2 + ε3) = φ111

Cell 10 →∑1
ε1=0

∑1
ε2=0

∑1
ε3=0 φε1,ε2,εm

χ(1 ≤ ε1 + ε2) = φ010 + φ011 + φ100 + φ101 + φ110 + φ111

Cell 11 →∑1
ε1=0

∑1
ε2=0

∑1
ε3=0 φε1,ε2,εm

χ(2 ≤ ε1 + ε2) = φ110 + φ111

Cell 20 →∑1
ε1=0

∑1
ε2=0

∑1
ε3=0 φε1,ε2,εmχ(1 ≤ ε1) = φ100 + φ101 + φ110 + φ111

This assignment can be visualized as follows
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