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Abstract

Based on his study of the Hilbert scheme from algebraic geometry, Haiman [Invent.
Math. 149 (2002), pp. 371–407] obtained a formula for the character of the space of diag-
onal harmonics under the diagonal action of the symmetric group, as a sum of Macdonald
polynomials with rational coefficients. In this paper we show how Haiman’s formula, com-
bined with identities involving plethystic symmetric function operators, yields a new formula
for this character. Our formula doesn’t involve any mention of Macdonald polynomials, and
the coefficients are visibly polynomials (not rational functions), although they are not man-
ifestly positive. Our formula can be expressed as either a sum of weighted Tesler matrices,
or as the constant term in a multivariate Laurent series.

1 Introduction

Let Xn = {x1, . . . , xn}, Yn = {y1, . . . , yn} be two sets of variables and let

DHn = {f ∈ C[Xn, Yn] :
∑

i

∂h
xi

∂k
yi

f = 0, ∀h, k ≥ 0, h + k > 0} (1)

be the space of diagonal harmonics. There is a natural bigrading of DHn, by decomposing it into subspaces
of homogeneous bi-degree in the X and Y variables. Let ∇ be the linear operator defined on the modified
Macdonald polynomial basis {H̃µ(Xn; q, t)}, where µ ⊢ n (i.e. µ is a partition of n), by

∇H̃µ(Xn; q, t) = TµH̃µ(Xn; q, t), (2)

where Tµ = tn(µ)qn(µ′) and n(µ) =
∑

i(i−1)µi, with µ′ the conjugate partition. The symmetric group acts
“diagonally” on a polynomial f(x1, . . . , xn, y1, . . . , yn) ∈ DHn by σf = f(xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n))
and this action respects the bigrading. The Frobenius characteristic is a symmetric function whose
coefficients are polynomials in q, t which reflect the bigrading, and where the Schur function sλ(X)
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corresponds to the irreducible Sn-character χλ. Haiman [Hai02] proved an earlier conjecture of the first
author and Haiman [GH96] that the Frobenius characteristic is given by ∇en(X), where en is the nth
elementary symmetric function in a set of variables.

In [Hag11] the second author showed how Haiman’s formula for the Frobenius characteristic, combined
with summation formulas of the first author and Zabrocki for generalized Pieri coefficients, can be used
to obtain a new formula for the bigraded Hilbert series of DHn. The formula is a polynomial expression
in the two parameters q, t, and is expressed in terms of special types of n × n matrices called “Tesler
matrices”. It has an equivalent formulation as the constant term in a multivariate Laurent series. In this
article we derive a related result for the character of DHn, by a slightly different method; we combine
Haiman’s formula with identities involving the Dn operators from [BGHT99]. Our formula for ∇en does
not imply, nor is it implied, by the Hilbert series formula from [Hag11], although it is similar in that it can
also be expressed in terms of Tesler matrices, and is visibly a polynomial in q, t. Like the Hilbert series
formula, it remains an open question how to start with the Tesler matrix sum and cancel the negative
terms to obtain a positive combinatorial formula, along the lines of the conjectured formula for ∇en

in [HHL+05]. We should mention that part of our motivation for studying the Dn operators and their
connection to ∇en was an attempt on our part to obtain a combinatorial proof using these operators of an
interesting formula for the q, t-Catalan sequence in terms of Tesler matrices recently obtained by Gorsky
and Negut [GN13]. (The q, t-Catalan sequence Cn(q, t) was originally defined in [GH96] as 〈∇en, s1n〉, i.e.
the coefficient of the sign character for DHn). Their proof involves a residue calculation and geometric
ingredients connected to the Hilbert scheme. In the end we were unable to prove their result using our
methods (if one takes the coefficient of s1n in our formula for ∇en one gets a formula for Cn(q, t) in terms
of Tesler matrices which is different from theirs).

2 A Constant Term Expression For ∇en

Let pk(X) =
∑

i xk
i be the kth power sum. If E(t1, . . . , tn) is any expression involving indeterminates

t1, . . . , tn, we let pk[E] = E(tk1 , . . . , tkn) denote the plethystic substitution of E into pk. For example,

pk [X(1 − t)] = pk(X)(1 − tk),

and pk[z1 + . . .+ zr] = pk({z1, . . . , zr}). More generally, if F is any symmetric function, then by F [E] we
mean the result of first expressing F as a polynomial in the power sums pk, then replacing each pk by
pk[E]. Readers unfamiliar with plethysm can consult [Hag08, pp. 19-22] for a more detailed discussion.

Let Dk, k ≥ 0, be the linear operator on symmetric functions defined as

DkF [X ] = F

[

X +
M

z

]

Ω [−zX ]

∣

∣

∣

∣

∣

zk

, (3)

where M = (1 − q)(1 − t) throughout, and |zk means “take the coefficient of zk in”. Here

Ω(X) =
∞
∑

n=0

hn(X) =
∞
∏

i=1

1

(1 − xi)
, (4)

where hn = sn is the complete homogeneous symmetric function. The operators Dk were studied exten-
sively in [BGHT99]; we will make use of the following results from that paper.

Theorem 1 [BGHT99]

D0H̃µ = (1 − MBµ(q, t))H̃µ (5)

Dke1 − e1Dk = MDk+1 (6)

∇e1∇
−1 = −D1 (7)

Here Bµ(q, t) =
∑ℓ(µ)

i=1 ti−1 qµi−1
q−1 , with ℓ(µ) the number of parts of µ.
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We now proceed to develop our new polynomial expression for ∇en. As a first step we express Dn in
terms of D0.

Lemma 1

Dn =
1

Mn

n
∑

k=0

(

n

k

)

(−1)n−ken−k
1 D0e

k
1 . (8)

Proof. By induction on n, the case n = 0 being trivial. From (6),

MDn+1 = Dne1 − e1Dn (9)

=

(

1

Mn

n
∑

k=0

(

n

k

)

(−1)n−ken−k
1 D0e

k
1

)

e1 − e1

(

1

Mn

n
∑

k=0

(

n

k

)

(−1)n−ken−k
1 D0e

k
1

)

=
1

Mn

n+1
∑

k=0

en+1−k
1 D0e

k
1

((

n

k − 1

)

(−1)n+1−k −

(

n

k

)

(−1)n−k

)

=
1

Mn

n+1
∑

k=0

en+1−k
1 D0e

k
1

(

n + 1

k

)

(−1)n+1−k.

2

Corollary 1

∇en =
1

(−M)n

n
∑

k=0

(

n

k

)

(−1)kDn−k
1 D0D

k
1 1, (10)

where the operators on the right-hand-side of (10) are applied to the constant function 1.

Proof. Note that

Dn1 = Ω[−zX ]

∣

∣

∣

∣

∣

zn

= (−1)nen (11)

since hn = ωen, and if f is of homogeneous degree n, (−1)nf [−X ] = ωf . Thus by (8),

∇en = (−1)n∇Dn∇
−11 (12)

=
1

(−M)n

n
∑

k=0

(

n

k

)

(−1)n−k∇en−k
1 D0e

k
1∇

−11

=
1

(−M)n

n
∑

k=0

(

n

k

)

(−1)n−k(∇e1∇
−1)n−k(∇D0∇

−1)(∇e1∇
−1)k1 (13)

=
1

(−M)n

n
∑

k=0

(

n

k

)

(−1)kDn−k
1 D0D

k
11, (14)

where in the last step we have used (7), and also the fact that by (5), D0 commutes with ∇. 2
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Definition 1 Let

[k]q,t = (tk − qk)/(t − q) = tk−1 + tk−2q + . . . + tqk−2 + qk−1 k ∈ N (15)

g(z) =
(1 − z)(1 − qtz)

(1 − qz)(1 − tz)
= Ω [−Mz] (16)

Zn = {z0, z1, . . . , zn}

Z ′
n = {z1, . . . , zn}

G(Zn) =
∏

0≤i<j≤n

g(zi/zj) (17)

G(Z ′
n) =

∏

1≤i<j≤n

g(zi/zj). (18)

Note the identity (in the ring of formal power series)

g(z) = 1 − M(z + [2]q,tz
2 + [3]q,tz

3 + [4]q,tz
4 + . . .), (19)

which implies

G(Zn) = Ω[−M
∑

0≤i<j≤n

zi/zj] (20)

=
∏

0≤i<j≤n

1 − M((zi/zj) + [2]q,t(zi/zj)
2 + [3]q,t(zi/zj)

3 + [4]q,t(zi/zj)
4 + . . .). (21)

We will refer to −M([k]q,t(zi/zj)
k, k ≥ 1, from the expansion of g(zi/zj) in powers of zi/zj, as a “(zi/zj)-

domino”. Let LHS and RHS be abbreviations for “left-hand-side” and “right-hand-side”; a given term
in the RHS above will be a product of various dominoes. To such a product P we associate a graph
R(P ) with vertex set {z0, . . . , zn} by including an edge from zi to zj in R(p) if and only if there is a
(zi/zj) domino in P . We say R(p) is connected if there is a path in R(p) from any given vertex to any

other vertex. Let G̃(Zn) denote the sum of all terms P in the expansion in the RHS of (21) whose graph
R(P ) is connected. Note that all terms in G̃(Zn) must involve at least n dominoes; the first domino
creates an edge connecting two vertices, and each successive domino which connects to the graph already
constructed adds at most one new vertex.

We now state our main result.

Theorem 2

∇en(X) =
en[XZn]

(−M)n

(

n
∑

k=0

(

n

k

)

(−1)n−kzk

)

G(Zn)

∣

∣

∣

∣

z0z1···zn

. (22)

Furthermore,

∇en(X) =
en[XZ ′

n]

(−M)n

(

n
∑

k=1

(

n

k

)

(−1)n−kzk

)

G̃(Zn)

∣

∣

∣

∣

z0z1···zn

. (23)

Corollary 2 For any partition λ of a positive integer n,

〈∇en, sλ〉 ∈ Z[q, t], (24)

where 〈, 〉 is the Hall scalar product, with respect to which the Schur functions are orthonormal.

Proof. The well-known Cauchy identity (dual form) says

en[XZ ′
n] =

∑

λ⊢n

sλ(X)sλ′(Z ′
n). (25)
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As noted above, each term in G̃(Zn) involves at least n dominoes, and each domino has a coefficient
divisible by −M . Thus these terms are all divisible by the factor (−M)n occurring in the denominator
of the RHS of (23), and everything else is visibly a polynomial in q, t. 2

In [BGHT99] there is a proof, using manipulations of the Dk operators, that ∇ applied to any Schur
function has polynomial coefficients. That proof is rather indirect though, and doesn’t yield any specific
formulas like (23) for those coefficients.

We now prove Theorem 2.

Proof. From the definition of Di it follows that

D0D
k
11 = D0Ω [−Z ′

kX ]G(Z ′
k)

∣

∣

∣

∣

z1···zk

(26)

= Ω [−Z ′
k(X + M/z)− Xz)]

∣

∣

∣

∣

z0

G(Z ′
k)

∣

∣

∣

∣

z1···zk

. (27)

Thus

Dn−k
1 D0D

k
11 = Dn−k

1 Ω [−Z ′
k(X + M/z)− Xz)]

∣

∣

∣

∣

z0

G(Z ′
k)

∣

∣

∣

∣

z1···zk

(28)

= Ω

[

−Z ′
k(X +

n
∑

i=k+1

M/zi) − Z ′
kM/z − z(X +

n
∑

i=k+1

M/zi)

]

∣

∣

∣

∣

z0

G(Z ′
k)

∣

∣

∣

∣

z1···zk

×

Ω [−(Z ′
n − Z ′

k)X ]G(Z ′
n − Z ′

k)

∣

∣

∣

∣

zk+1···zn

= Ω [−Z ′
nX ] Ω

[

−Z ′
kM/z − Xz −

n
∑

i=k+1

Mz/zi

]

G(Z ′
n)

∣

∣

∣

∣

z1···zn

∣

∣

∣

∣

z0

= Ω [−Z ′
nX ] Ω

[

−Z ′
kM/z −

n
∑

i=k+1

Mz/zi

]

Ω [−Xz]G(Z ′
n)

∣

∣

∣

∣

z1···zn

∣

∣

∣

∣

z0

. (29)

We now re-index the variables in (29), first replacing zi by zi−1 for 1 ≤ i ≤ k, and then replacing z by
zk, resulting in

zkDn−k
1 D0D

k
11 = Ω [−ZnX ]G(Zn)

∣

∣

∣

∣

z0···zn

. (30)

Combining (30) with (10) we get

∇en(X) =
1

(−M)n

n
∑

k=0

(−1)k

(

n

k

)

zkDn−k
1 D0D

k
11 (31)

= Ω [−ZnX ]
1

(−M)n

n
∑

k=0

(−1)k

(

n

k

)

zkG(Zn)

∣

∣

∣

∣

z0···zn

. (32)

Now all the terms in G(Zn) are of total degree zero in the zi, and since we are taking the coefficient of
z0 · · · zn, only terms of homgeneous degree n in the zi occurring in Ω [−ZnX ] contribute, i.e. hn [−ZnX ] =
(−1)nen [ZnX ]. Equation (22) now follows.

The following lemma will allow us to obtain (23) from (22).

Lemma 2 Let λ be a partition of n, and mλ the corresponding monomial symmetric function. Then

mλ(Zn)

(

n
∑

k=0

(

n

k

)

(−1)n−kzk

)

G(Zn)

∣

∣

∣

∣

z0···zn

= mλ(Z ′
n)

(

n
∑

k=1

(

n

k

)

(−1)n−kzk

)

G̃(Zn)

∣

∣

∣

∣

z0···zn

. (33)
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Proof. Say we choose the factor
(

n
k

)

(−1)n−kzk from the middle term on the LHS above, and a product
of dominoes P from G(Zn). Assume none of the dominoes in P involve zk. Then in the LHS above we
cannot use any terms in mλ(Zn) that involve zk, since we are looking for the coefficient of z0 · · · zk · · · zn.
Let Zn,k be the alphabet Zn with zk removed. Clearly

mλ(Zn,k)G(Zn,k)

∣

∣

∣

∣

z0···ẑk···zn

(34)

is independent of k, and so the portion of the LHS of (33) where no dominoes involve zk equals

n
∑

k=0

mλ(Zn,k)

(

n

k

)

(−1)n−kzkG(Zn,k)

∣

∣

∣

∣

z0···zk···zn

= mλ(Zn,k)G(Zn,k)

∣

∣

∣

∣

z0···ẑk···zn

n
∑

k=0

(

n

k

)

(−1)n−k (35)

= 0.

Next assume at least one of the dominoes in P involves zk, and also that R(P ) is not connected. Let
Rk be the connected component of R(P ) containing vertex k, and Pk the portion of P corresponding
to Rk. Say there are α vertices in Rk less than k, and β vertices greater than k, where α, β are fixed
nonnegative integers satisfying 0 ≤ α, β, α+β < n. To get a nonzero contribution to the LHS of (33), we
need to find a term ζ in mλ(Zn) with the following property: for each zi-variable in zkPk, the zi power in
ζ, when added to the zi-power in zkPk, equals 1. After doing this the portion of ζ involving variables not
in zkPz will be a term ζ′ in a monomial symmetric function for some partition π where π ⊂ λ. Letting
W be the set of variables obtained by starting with Zn and removing all variables occurring in zkPk, we
need to multiply our contribution from the Rk term above by

mπ(W )G(W )

∣

∣

∣

∣

Q

zi∈W
zi

. (36)

Note the value of (36) depends only on π and α + β, not on k or what the actual α vertices less than k
or the β vertices larger than k are.

There are
(

k
α

)

ways to choose α numbers from the set {0, 1, . . . , k − 1}, and
(

n−k
β

)

ways to choose β

numbers from the set {k + 1, . . . , n}. It follows that the contribution to the LHS of (33) from all terms
with k occurring in a component with α vertices less than k and β vertices larger than k is divisible by
a factor of

n
∑

k=0

(

n

k

)

(−1)n−k

(

k

α

)(

n − k

β

)

. (37)

Now for fixed n,
(

k
α

)(

n−k
β

)

can be viewed as a polynomial in k, of total degree α + β. It is well-known
that

n
∑

k=0

(

n

k

)

(−1)n−kkm = 0 0 ≤ m < n, (38)

which shows (37) equals zero (since R(P ) is not connected, α + β < n). Thus we can replace G(Zn) in
the LHS of (33) by G̃(Zn). Furthermore, in any connected term P the power of z0 must be greater than
zero, so to contribute to the LHS of (33), P must use exactly one domino involving z0, and the terms
mλ(Zn) and

(

n
k

)

(−1)n−kzk cannot use z0 at all. 2

Since any Schur function is an integral sum of the mλ, (23) follows from (33). 2

Example 1 It is well-known that 〈∇en, sn〉 = 1, but to deduce that directly from the definition of ∇
requires knowledge of Macdonald polynomial theory. In this example we show how to deduce this directly
from (23).
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Note the coefficient of Sn(X) in en [XZ ′
n] equals s1n(Z ′

n) = z1z2 · · · zn. In any term in G̃(Zn), the
variable zn must occur in at least one domino, and there to a negative power. Thus we must choose k = n
in the middle factor in the RHS of (23), and

〈∇en, sn〉 =
1

(−M)n
G̃(Zn)

∣

∣

∣

∣

z0z
−1
n

. (39)

If P is a term in G̃(Zn) which contributes to the RHS of (39), then zn−1 must occur in at least one
domino, and to a total power of 0. It can only be the upper parameter of a domino whose lower parameter
is zn, and there is only one of these. Thus (zn−1/zn) is one domino in P , and zn−1 occurs in one
other domino, as a lower parameter. Iterating this argument shows P is the product of the n dominoes
(z0/z1)(z1/z2) · · · (zn−1/zn), which has a total coefficient of (−M)n.

3 Tesler Matrices

As described in [Hag11], a Tesler matrix C of size n is an n × n upper-triangular matrix of nonnegative
integers which satisfies

−

j−1
∑

i=1

cij +

n
∑

i=j

cji = 1, for each j, 1 ≤ j ≤ n. (40)

Let Qn denote the set of all n × n Tesler matrices. For example,

Q1 = {
[

1
]

} (41)

Q2 = {

[

1 0
0 1

]

,

[

0 1
0 2

]

} (42)

Q3 = {





1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 0 1
0 0 2



 ,





0 1 0
0 2 0
0 0 1



 ,





0 0 1
0 1 0
0 0 2



 ,





0 1 0
0 1 1
0 0 2



 ,





0 1 0
0 0 2
0 0 3



 ,





0 0 1
0 0 1
0 0 3



}. (43)

Geometrically, the condition (40) says that for all j, if we add all the entries of C in the jth row together,
and then subtract all the entries in the jth column above the diagonal, we get 1. Let pos′(C) denote
the number of positive, off-diagonal entries of C. For each Tesler matrix C, associate a graph B(C) on
the vertex set {1, 2, . . . , n} by including an edge from i to j in B(C) if and only if cij > 0. We say C
is prime if and only if B(C) is connected. Let Q′

n denote the set of prime, n × n Tesler matrices. We
remark that prime Tesler matrices first occur in [AGH+12], while Tesler matrices were first explicitly
defined by Glenn Tesler in unpublished work of Tesler’s from the late 1990’s on plethystic expressions
for Macdonald’s Dn,r operators. Tesler then entered them into Sloane’s online encyclopedia of integer
sequences, as sequence A008608.

Our main result has the following equivalent expression in terms of prime Tesler matrices.

Theorem 3 For any positive integer n,

∇en(X) =
∑

C∈Q′

n+1

∏

i:cii>0

(

ecii
(X) + w

(

n

i − 1

)

(−1)n−i+1ecii−1(X)

)

(−M)pos
′(C)−n

∏

i<j
cij>0

[cij ]q,t

∣

∣

∣

∣

w

. (44)

Proof. View a given term B in the RHS of (23) as the product of three parts; a contribution P coming
from G̃(Zn), a middle factor

(

n
k

)

(−1)n−kzk, and a monomial Q coming from en [XZ ′
n]. To construct the

corresponding term from the RHS of (44), first re-index the Z variables, replacing zi by zi+1 in B, so the
new alphabet is Z ′

n+1. For each domino −M [p]q,t(zi/zj)
p in B, set cij = p in our corresponding Tesler

matrix. The diagonal elements cii are now uniquely defined by (40), and the value of cii is exactly the

7



coefficient of zi in Q if i 6= k + 1, and is one more than the value of zi in Q if i = k + 1 (since after
re-indexing the middle term is now

(

n
k

)

(−1)n−kzk+1, where 0 ≤ k ≤ n). Let λ be the partition obtained
by rearranging the set {c11, c22, . . . , ck+1,k+1 − 1, . . . cn+1,n+1} into partition order. Then the coefficient
of mλ(Z ′

n+1) in en

[

XZ ′
n+1

]

is
∏

i eλi
(X) (by the dual Cauchy identity) and the equivalence of (23) and

(44) follows. 2

Example 2 The last three matrices on the RHS of (43) form the set Q′
3. The weights associated to these

elements from the n = 2 case of (44), in the same left-to-right order as in (43), are

(

e1(X) − w

(

2

1

))(

e2(X) + w

(

2

2

)

e1(X)

)

(−M)0[1]2q,t

∣

∣

∣

∣

w

= −2e2 + e1e1 (45)

(

e3(X) + w

(

2

2

)

e2(X)

)

(−M)0[1]q,t[2]q,t

∣

∣

∣

∣

w

= (q + t)e2

(

e3(X) + w

(

2

2

)

e2(X)

)

(−M)0[1]2q,t

∣

∣

∣

∣

w

= e2.

Adding these weights together gives

∇e2(X) = −2e2 + e1e1 + (q + t)e2 + e2

= s2 + s12(−2 + 1 + q + t + 1)

= s2 + s12(q + t).

By setting ek = 1 for all 0 ≤ k ≤ n in (44) you get a formula for the q, t-Catalan 〈∇en, s1n〉. It is
interesting to compare this to the following formula of Gorsky-Negut mentioned in the introduction (set
u = 0, m = n + 1 in equation (62) from [GN13]):

〈∇en, s1n〉 =
∑

C∈Qn

∏

i
ci,i+1>0

([ci,i+1 + 1]q,t − [ci,i+1]q,t)
∏

j>i+1

ci,j>0

(−M)[ci,j ]q,t. (46)

Gorsky and Negut also [GN13, equation (60)] have a generalization of (46), where in addition to the
other weights they weight each diagonal entry by eci,i

. The resulting expression equals ∇en. In fact,
their formula applies to the generalized Frobenius characteristics corresponding to any coprime pair of
integers (m, n), occurring in recent work of Armstrong, Gorsky and Mazin, Hikita, and others [ALW14],
[Arm12], [GM13], [GM14], [Hik14]. In the case m = n+1 these reduce to ∇en. Although in the m = n+1
case their formula expresses ∇en as a sum over Q(n), while ours is over the somewhat more complicated
set Q′

n+1, one advantage our formula may have is that in ours the total power of −M is the number of
positive off-diagonal entries minus n, while in theirs they essentially get a factor of −M for each positive
off-diagonal entry. Hence terms in our formula will in general have fewer factors of −M , and could be
viewed as being “closer” to a positive formula.
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