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Abstract. Fan Chung and Ron Graham (J. Combin. Theory Ser. B 65 (1995),

273-290) introduced the cover polynomial for a directed graph and showed that it
was connected with classical rook theory. M. Dworkin (J. Combin. Theory Ser. B

71 (1997), 17-53) showed that the cover polynomial naturally factors for directed

graphs associated with Ferrers boards. The authors (Adv. Appl. Math. 27 (2001),
438-481) developed a rook theory for shifted Ferrers boards where the analogue of

a rook placement is replaced by a partial perfect matching of K2n, the complete
graph on 2n vertices. In this paper, we show that an analogue of Dworkin’s result

holds for shifted Ferrers boards in this setting. We also show how cycle-counting

matching numbers are connected to cycle-counting “hit numbers” (which involve
perfect matchings of K2n).

Introduction

Let B2n be the board pictured in Fig. 1.
Let (i, j) denote the square in the i-th row and j-th column of B2n, so B2n =

{(i, j) : 1 ≤ i < j ≤ 2n}. Let K2n denote the complete graph on vertices
{1, 2, . . . , 2n}. A perfect matching of K2n is a set of n edges of K2n where no two
edges have a vertex in common. Given a perfect matching m of K2n, we let pm =
{(i, j) : i < j and {i, j} ∈ m}. For example, if m = {{1, 4}, {2, 7}, {3, 5}, {6, 8}} is
a perfect matching of K8, then pm is pictured in Fig. 2.

For a given board B ⊆ B2n, we say that a subset p ⊆ B is a rook place-
ment of B if there is a perfect matching m of K2n such that p ⊆ pm. We
let Mk(B) denote the set of all k element perfect matchings of B and we call
mk(B) = |Mk(B)| the k-th rook number of B. We let Fk,2n(B) = {pm : |pm ∩B| =
k and m is a perfect matching of K2n}. We call fk,2n(B) = |Fk,2n(B)| the k-th hit
number of B. Haglund and Remmel [HR] proved the following relationship between
the hit numbers and the rook numbers of a board B ⊆ B2n.
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Theorem 1.
n∑

k=0

mk(B)(n − k)!!(z − 1)k =
n∑

k=0

fk,2n(B)zk (1)

where k!! =
∏k

i=1(2i − 1).

For any sequence a1, . . . , a2n−1 such that ai ≤ 2n−i for all i, we let B(a1, . . . , a2n−1) =
{(i, i + j) : 1 ≤ j ≤ ai}. We say that B(a1, . . . , a2n−1) is a Ferrers board if
2n − 1 ≥ a1 ≥ a2 ≥ · · · ≥ a2n−1 ≥ 0 and the nonzero entries of a1, . . . a2n−1 are
strictly decreasing. For example, B(5, 3, 2, 1, 0, 0, 0) ⊆ B8 is pictured in Fig. 3.

Now Reiner and White [RW] proved that if F = B(a1, . . . , a2n−1) is a Ferrers
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= B(5, 3, 2, 1, 0, 0, 0)

Figure 3

board contained in B2n, then

n∑
k=0

mk(F )(x) �2n−1−k=
2n−1∏
i=1

(x + a2n−i − 2i + 2) (2)

where (x) �k= x(x− 2)(x− 4) · · · (x− 2k + 2). Haglund and Remmel [HR] defined
a q-analogue of the rook numbers mk(B, q) for any board B ⊆ B2n and showed
that if F = B(a1, . . . , a2n−1) ⊆ B2n is a Ferrers board, then

n∑
k=0

mk(F, q)[x] �2n−1−k=
2n−1∏
i=1

[x + a2n−i − 2i + 2] (3)

where [n] = 1+q+. . .+qn−1 = (1−qn)/(1−q) and [x] �k= [x][x−2] · · · [x−2k+2].
In fact, Haglund and Remmel proved that (2) holds if F is a nearly Ferrers board
with ai squares in row i. Here a board N is nearly Ferrers if whenever (i, j) ∈ N ,
then {(s, i), (s, j) : s < i} are also contained in N .

In this paper, we prove another extension of Reiner and White’s formula. Given
a board B ⊆ B2n and a placement p ∈ Mk(B), we form a graph G2n(p) =
(V2n(p), E2n(p)) where the vertex set V2n(p) = {1, . . . , 2n} and the edge set E2n(p) =
{{2i − 1, 2i} : i = 1, . . . , n} ∪ {{i, j} : (i, j) ∈ p}. We note that G2n(p) may have
multiple edges. That is, if for some i, (2i− 1, 2i) ∈ p, then we shall think of G2n(p)
as having two edges from 2i−1 and 2i and we shall think of these edges as forming
a cycle. For example if p is the placement pictured in Fig. 4, G2n(p) has two cycles,
namely (3, 5, 6, 7, 8, 4) and (1, 2).

Note, however, that since no two edges of {{i, j} : (i, j) ∈ p} share a common
vertex, it follows that each vertex i of G2n(p) is contained in at most two edges
and hence i can be a vertex of at most one closed path (cycle) of G2n(p). We let
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cy(p) denote the number of cycles of G2n(p). Note that if B ⊆ B2n, then B is also
contained in B2n+2. However the only difference between G2n(p) and G2n+2(p) is
that G2n+2(p) has an extra edge {2n + 1, 2n + 2} which is disjoint from G2n(p).
Thus the number of cycles of G2n(p) equals the number of cycles of G2n+2(p). Thus
cy(p) depends only on p and not on n. We then let

cmk(B, α) =
∑

p∈Mk(B)

αcy(p) (4)

and we call cmk(B, α) the k-th cycle-rook number of B. For example, if F =
B(4, 2, 0, 0, 0), then cm2(F, α) = 2 + 2α as can be seen from Fig. 5 where we have
pictured p and G6(p) for the four elements of M2(F ).

Let σ ∈ Sn be a permutation and let m(σ) denote the perfect matching of K2n

consisting of edges {2i−1, 2σi}, 1 ≤ i ≤ n. One easily verifies that cy(m(σ)) equals
the number of cycles of σ, so the function cy can be viewed as a generalization of
the number of cycles of a permutation.

The major result of this paper is to prove the following factorization theorem.
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Theorem 2. Let B = B(a1, . . . , a2n−1) ⊆ B2n be a Ferrers board. Then

n∑
k=0

cmk(B, α)(x) �2n−1−k=
2n−1∏
i=1

(x + d2n−i(B, α) − 2i + 2) (5)

where

d2n−1(B, α) =
{

0 if a2n−1 = 0
α if a2n−1 = 1

and for j = 1, . . . , n − 1,

(i) d2j−1(B, α) = d2j(B, α) = 0 if a2j−1 = a2j = 0,

(ii) d2j−1(B, α) = a2j−1 + α − 1 and d2j(B, α) = a2j if a2j−1 > 0
and it is not the case that both a2j−1 is even and a2j−1 = a2j + 1,
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and

(iii) d2j−1(B, α) = a2j−1 + α and

d2j(B, α) = a2j − 1 if a2j−1 > 0, a2j−1 is even, and a2j−1 = a2j + 1.

We note that when we set α = 1 in (5), cmk(B, 1) = mk(B) and dk(B, 1) = ak

unless k ∈ {2j−1, 2j} for some j where a2j−1 > 0, a2j−1 is even, and a2j−1 = a2j+1.
However, in the latter case,

(x + a2j − 2(2(n − j)) + 2)(x + a2j−1 − 2(2(n − j) + 1) + 2) =

(x + a2j − 4(n − j) + 2)(x + a2j−1 − 4(n − j)) =

(x + (a2j−1 + 1) − 4(n − j))(x + (a2j − 1) − 4(n − j) + 2) =

(x + d2j−1(B, 1)− 4(n − j))(x + d2j(B, 1) − 4(n − j) + 2).

Thus (5) reduces to (2) when we set α = 1.
In Section 2 we show (Theorem 3) that for certain special boards cmk(B, α) has

a compact expression as a product of linear factors in α. In Section 3 (Theorem 4)
we derive a version of Theorem 1 involving the cmk and cycle-counting versions of
the fk.

In [CG], Chung and Graham introduced the cover polynomial of a directed graph,
which has interesting connections to rook theory. Let G be a bipartite graph on
the sets of vertices {1, 2, . . . , n} and {1′, 2′, . . . n′}. We can associate a directed
graph D(G) on n vertices to G by including an edge from u to v in D(G) if and
only if there is an edge between u and v′ in G. To each k-edge matching p in G we
associate the corresponding set e(p) of k directed edges in D(G), which will consist
of a disjoint union of cycles and paths. With this in mind, the cover polynomial of
D(G) can be expressed as

n∑
k=0

x(x − 1)(x − 2) · · · (x − k + 1)rn−k(G, y),

where rj(G, y) is the sum, over all j-edge matchings p of G, of ycy(e(p)), where
cy(e(p)) is the number of cycles of e(p).

Theorem 2 can be thought of as a “type Bn” analogue of a result of Dworkin [D].
He showed that the cover polynomial factors as a product of linear factors when the
directed graph corresponds to a Ferrers board of classical shape. (He also showed
that the cover polynomial sometimes factors when you permute the columns of a
Ferrers board, an issue we will not address in our setting).

1. Proof of Theorem 2

We proceed with the proof of Theorem 2. Let B2n,x denote the board B2n with x
columns of height 2n − 1 added to the right of B2n, as in Fig. 6.
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We shall follow [HR] and consider the set of all placements of 2n−1 nonattacking
rooks in B2n,x. That is, if a rook r is on square (i, j) ∈ B2n, then r attacks all
cells in row i and column j other than (i, j) plus all cells in a2n

(i,j) = {(s, t) ∈
B2n : |{s, t} ∩ {i, j}| = 1}. However, if r is on cell (i, j) ∈ B2n,x − B2n, then
the cells that r attacks relative to a rook placement p depends on the other rooks
in p ∩ (B2n,x − B2n). That is, if (i, j) is the position of the lowest rook r1 in
p ∩ (B2n,x − B2n), then r1 attacks all cells in row i and column j other than (i, j)
plus all cells in column j − 1 if 2n+1 < j. If j = 2n+ 1, then r1 attacks all cells in
row i and column j plus all cells in column 2n+x. In general, if (i, j) is the position
of the k-th lowest rook rk in p∩ (B2n,x−B2n), then rk attacks all cells in row i and
column j other than (i, j) plus all cells in the first column occurring in the following
list of columns j − 1, j − 2, . . . , 2n + 1, 2n + x, 2n + x− 1, . . . , j + 1 that contains a
square which is not attacked by any of the k − 1 lower rooks in B2n,x − B2n. Note
that this means that each rook r in p ∩ (B2n,x − B2n) will attack all cells in two
columns of B2n,x −B2n. That is, if r is in cell (i, j), r attacks all cells in column j
other than (i, j). It then looks for the first column s > 2n to the left of column j
which has a cell that is not attacked by a lower rook in p∩(B2n,x−B2n). If there is
no such column, then r starts at column 2n+x and looks for the rightmost column
s which has a square which is not attacked by any lower rook in p∩ (B2n,x −B2n).
Note we are guaranteed that such a column exists if x > 4n− 2. Then r attacks all
cells in column s as well. Our definition of a Ferrers board also ensures that each
rook r ∈ p that lies in B also attacks the squares in two columns of B which lie
above r, namely, the squares in column i and column j. For example, consider the
placement p pictured in Fig. 7 consisting of 3 rooks, r1 ∈ (7, 10), r2 ∈ (5, 11), and
r3 ∈ (3, 7). We have indicated all cells attacked by ri by placing an i in such cells.

Now let B be a board contained in B2n and assume that x ≥ 4n − 2. We let
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N2n,x(B) denote the set of all placements p of 2n − 1 rooks in B2n,x such that no
cell which contains a rook in p is attacked by another rook in p and any rook r in
B2n ∩ p is an element of B. We claim that (5) arises from two different ways of
counting ∑

p∈N2n,x(B)

αcy(p∩B). (6)

Note that our definition ensures that if p ∈ N2n,x(B), then p ∩ B ∈ Mk(B) where
k = |p ∩ B| so that cy(p ∩ B) is defined.

First suppose that we fix a rook placement p̃ ∈ Mk(B). We claim that the
number of ways to extend p̃ to a rook placement p ∈ N2n,x(B) such that p∩B = p̃
is (x) �2n−1−k. That is, there are 2n − 1 − k rows in B2n,x − B2n that have
no squares that are cancelled by a rook in p̃. Say the rows are 1 ≤ R1 < · · · <
R2n−1−k ≤ 2n − 1. We then have x choices of where to put a rook r2n−1−k

in row R2n−1−k ∩ (B2n,x − B2n). Then r2n−1−k will attack two squares in row
R2n−k ∩ (B2n,x − B2n) so that once we have placed r2n−1−k, we will have x − 2
choices of where to place a rook r2n−k in row R2n−k ∩(B2n,x−B2n). Then r2n−1−k

and r2n−k will attack a total of 4 squares in R2n−k+1 ∩ (B2n,x −B2n) so that once
we have placed r2n−1−k and r2n−k, we will have (x − 4) choices of where to place
a rook r2n−k+1 in R2n−k+1 ∩ (B2n,x − B2n). Continuing on in this way, it is easy
to see that the number of such p is (x) �2n−1−k. Thus

∑
p∈N2n,x(B)

αcy(p∩B) =
n∑

k=0

∑
p̃∈Mk(B)

αcy(p̃)(x) �2n−1−k

=
n∑

k=0

cmk(B)(x) �2n−1−k . (7)

Next consider the number of ways to place a rook r2n−1 in row 2n − 1. Clearly
there are x choices to place a rook in B2n,x − B2n that lie in row 2n − 1. If
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a2n−1 = 1, then there is one additional choice namely placing the rook r2n−1 in
square (2n− 1, 2n), then the edge {2n− 1, 2n} will complete a cycle in G2n(p∩B)
for any placement p ∈ N2n,x(B) that has r2n−1 on cell (2n − 1, 2n). Thus the row
2n− 1 contributes a factor of x to (6) if a2n−1 = 0 and a factor of (α + x) to (6) if
a2n−1 = 1.

Next for any j ∈ {1, . . . , n−1}, we want to consider the contribution of possible
placements of the rooks in rows 2j − 1 and 2j to (6). That is, suppose that we fix
a placement p′ of nonattacking rooks r2j+1, r2j+2, . . . , r2n−1 in rows 2j + 1, 2j +
2, . . . , 2n − 1 respectively. Note that

2n−1∏
i=1

(x + d2n−i(B, α)− 2i + 2) =
2n−1∏
j=1

(x + dj(B, α) − 2(2n − 1 − j))

so that we must show that the contribution to (6) from the possible placements of
the rooks in rows 2j − 1 and 2j is

(x + d2j(B, α) − (2n − 1 − 2j))(x + d2j−1(B, α) − (2n − 2j)).

Note that each of these rooks will attack two cells in B ∪ (B2n,x − B2n) that lie in
row 2j and two cells in B ∪ (B2n,x − B2n) that lie in row 2j − 1. There are three
cases.
Case 1 a2j−1 = a2j = 0

Note that if a2j−1 = 0, then ai = 0 for all 2j−1 ≤ i ≤ 2n−1. This means that all
the rooks r2j+1, . . . , r2n−1 must lie in B2n,x−B2n. Thus for i ∈ {2j+1, . . . , 2n−1},
ri attacks two cells in B2n,x−B2n in row 2j and two cells in B2n,x−B2n in row 2j−1.
Thus there are a total of x−2(2n−1−2j) cells in row 2j which are not attacked by
a rook in p̂ so that we have x−2(2n−1−2j) = (x+d2j(B, α)−2(2n−1−2j)) places
to put rook r2j. Once we have placed rook r2j , it will attack two additional cells in
B2n,x −B2n which lie in row 2j − 1 so that we will have (x− 2(2n− 1− 2j)− 2) =
(x+d2j−1(B, α)−2(2n−2j)) ways to place a rook in B2n,x−B2n which lies in row
2j − 1. Thus the contribution to (6) from the placements of rooks r2j−1 and r2j in
rows 2j − 1 and 2j is (x+d2j−1(B, α)− 2(2n− 2j))(x+d2j(B, α)− 2(2n− 1− 2j))
in this case.
Case 2 a2j−1 > 0 and it is not the case that both a2j−1 is even and a2j−1 = a2j +1.

In this case, there are a total of x+a2j −2(2n−1−2j) cells of B∪(B2n,x−B2n)
which lie in row 2j and are not attacked by any rook in p′. Thus there are (x+a2j−
2(2n−1−2j)) = (x+d2j(B, α)−2(2n−1−2j)) ways to place the rook r2j. Note that
if r2j is placed in B, say on cell (2j, s), then cy(p′∩B) = cy((p′∩B)∪{(2j, s)}). That
is, the only difference between the graphs G2n(p′ ∩B) and G2n((p′ ∩B)∪{(2j, s)})
is that G2n((p′ ∩ B) ∪ {(2j, s)}) has an extra edge from 2j to s. However, by
construction, there is no edge e in G2n((p′ ∩ B) ∪ {(2j, s)}) which involves vertex
2j − 1 other that the edge {2j − 1, 2j}. That is, the only edges in G2n(p′ ∩ B)
that are not of the form {2i − 1, 2i} must connect vertices from {2j + 1, . . . , 2n}.
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Thus adding the edge {2j, s} to G2n(p′∩B) cannot complete a cycle. Once we have
placed r2j, it will cancel 2 additional cells of B∪(B2n,x−B2n) that lie in row 2j−1.
Thus there will be a total of (x+a2j−1−2(2n−2j)) cells of B∪(B2n,x−B2n) which
lie in row 2j − 1 which are not attacked by any of the rooks r2j, r2j+1, . . . , r2n−1.
We claim there is exactly one way to place the rook r2j−1 to result in a placement
p′′ of the rooks r2j−1, r2j, r2j+1, . . . , r2n−1 such that cy(p′′ ∩ B) = 1 + cy(p′ ∩ B).
That is, let p∗ be the placement consisting of our rooks r2j , r2j+1, . . . , r2n−1 and
consider the edges of G2n(p∗ ∩ B) that involve vertex 2j. There is of course the
edge {2j−1, 2j}. If there is another such edge, it must be of the form {2j, s1} with
s1 > 2j. Then s1 is connected to s2 by an edge in G2n(p∗ ∩ B) where s2 = s1 − 1
if s1 is even or s2 = s1 + 1 if s1 is odd. If there is another edge out of s2, it
must be of the form {s2, s3} where s3 > 2j and s3 will be connected to s4 where
s4 = s3−1 if s3 is even and s4 = s3 +1 if s3 is odd. We can continue on in this way
producing a sequence of edges {2j, s1}, {s1, s2}, . . . , {s2t−1, s2t} in G2n(p∗∩B) such
that for all 1 ≤ i ≤ t, {s2i−1, s2i} is an edge of the form {2l− 1, 2l} and there is no
edge other than {s2t−1, s2t} which has s2t as a vertex. Now let q be the maximum
element of s1, . . . , s2t. Clearly q must be even since whenever 2i−1 ∈ {s1, . . . , s2t},
2i ∈ {s1, . . . , s2t}. Thus either there is an edge {i, q} or {i, q − 1} in G2n(p∗ ∩ B)
where 2j ≤ i ≤ q−2. Since B is a Ferrers board, this means that (2j, q) or (2j, q−1)
is in B. We claim that (2j−1, s2t) ∈ B. That is, if q > s2t, then (2j−1, q−1) ∈ B
since B is a Ferrers board and hence (2j − 1, s2t) ∈ B. If q = s2t, then we know
that (2j−1, q−1) ∈ B since (2j, q−1) ∈ B. Now if (2j−1, q) /∈ B, then it must be
that B ends at column q − 1 in rows 2j − 1 and 2j. But then a2j = q − 1 − 2j and
a2j−1 = q − 1− (2j − 1) = q − 2j. Thus if (2j − 1, q) /∈ B, then a2j−1 is even since
q is even and a2j−1 = a2j + 1 which we have explicitly ruled out. Hence in either
case, we can conclude that (2j − 1, s2t) ∈ B. Note (2j − 1, s2t) is not attacked by
any of the rooks r2j , r2j+1, . . . , r2n−1 since there is only one edge with vertex s2t in
G2n(p∗ ∩B). Thus if we place the rook r2j−1 in (2j− 1, s2t), then we will complete
a cycle (2j, s1, . . . , s2t, 2j −1) so that cy(p′′ ∩B) = 1+cy(p∗ ∩B) = 1+cy(p′ ∩B).
If we place r2j−1 in any other nonattacked square, we won’t create a new cycle so
that cy(p′′ ∩ B) = cy(p∗ ∩ B) = cy(p′ ∩ B). Thus in this case, the placement of
the rook r2j−1 contributes a factor of (x + a2j−1 − 1 + α − 2(2n − 1 − 2j) − 2) =
(x + d2j−1(B, α) − 2(2n − 2j)) to (6). Of course, there may be no other edge in
G2n(p∗ ∩ B) with vertex 2j other than {2j − 1, 2j}. In this case, the only way to
create a cycle is to place the rook r2j−1 in (2j − 1, 2j). Note that (2j − 1, 2j) ∈ B
since a2j−1 ≥ 1. Thus once again, the placement of the rook r2j−1 contributes a
factor of (x + a2j−1 − 1 + α − 2(2n − 2j)) to (6).

It follows that in case 2, the possible placements of the rooks r2j and r2j−1

contribute a factor of (x+d2j(B, α)−2(2n−1−2j))(x+d2j−1(B, α)−2(2n−2j))
to (6) as desired.
Case 3 a2j−1 > 0, a2j−1 is even, and a2j−1 = a2j + 1.

Note that in this case both rows 2j−1 and 2j must end at column 2j−1+a2j−1

which is odd since a2j−1 is even. Thus let 2j − 1 + a2j−1 = 2r − 1.
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The difference between case 2 and case 3 is that, in case 2, no matter how we
placed the rook r2j in row 2j, there was one and only one way to place the rook
r2j−1 in row 2j − 1 to complete a cycle. In case 3, there is one exception to this
fact. That is and fix a placement p̄ of nonattacking rooks r2j+1, . . . , r2n−1 in rows
2j +1, . . . , 2n−1 respectively. Then consider the graph G2n(p̄∩B), and the vertex
2r − 1. There is of course one edge which has 2r as a vertex, namely {2r − 1, 2r}.
If there is another edge which has 2r − 1 as a vertex, then it must be of the form
(2r−1, t1) where t1 ∈ {2j+1, . . . , 2r−2}. That is, since (2j−1, 2r) /∈ B and B is a
Ferrers board, (i, 2r) /∈ B for any i > 2j − 1 and hence (i, s) /∈ B for any i ≥ 2j − 1
and s ≥ 2r. Thus in G2n(p̄ ∩ B), the only edges involving the vertices 2r, . . . , 2n
are {2u − 1, 2u} for u = r, . . . , n. Then t1 is connected to t2 where t2 = t1 − 1
if t1 is even and t2 = t1 + 1 if t1is odd. Now if there is another edge out of t2
other than {t1, t2}, it must be of the form {t2, t3} where t3 ∈ {2j + 1, . . . , 2r − 2}.
Then there will be an edge out of t3, namely {t3, t4} where t4 = t3 − 1 if t3 is
even and t4 = t3 + 1 if t3 is odd. We can continue on in this way to construct a
sequence of edges {2r, 2r − 1}, {2r − 1, t1}, {t1, t2}, . . . , {t2q−1, t2q} of G2n(p̄ ∩ B)
where for i = 1, . . . , q, {t2i−1, t2i} is an edge of the form {2u − 1, 2u}. Note that
2r, 2r− 1, t1, . . . , t2q is not a cycle since the only edge involving 2r in G2n(p̄∩B) is
{2r−1, 2r}. Moreover it must be the case that t1, . . . , t2q ⊆ {2j+1, . . . , 2r−2} and
that there is no edge out of t2q other than {t2q−1, t2q}. It follows that (2j, t2q) is not
attacked by any rook in p̄ and (2j, t2q) ∈ B since t2q ≤ 2r−2. Now if we place r2j in
cell (2j, t2q) and construct the sequence of edges {2j, s1}, {s1, s2}, . . . , {s2t−1, s2t}
as described in case 2, then it is easy to see that s2t−1 = 2r − 1 and s2t = 2r. In
this case, the only way to complete a cycle by the placement of r2j−1 in row 2j − 1
is to place r2j−1 in (2j − 1, 2r). But (2j − 1, 2r) /∈ B! Thus there is no way to
complete a cycle by the placement of r2j−1 in B ∪ (B2n,x −B2n). Similarly if there
is no edge out of 2r−1 other than {2r−1, 2r} in G2n(p̄∩B), then by placing r2j in
(2j, 2r − 1), the sequence of edges {2j, s1}, . . . , {s2t−1, s2t} constructed as in case
2 will simply be {2j, 2r − 1}, {2r − 1, 2r} and once again there will be no way to
place the rook r2j−1 in B ∪ (B2n,x − B2n) to complete a cycle. If we do not place
r2j on cell (2j, t2q), we can use the same argument that we used in case 2 to see
that there is one and only one way to place the rook r2j−1 in B ∪ (B2n,x −B2n) to
complete a cycle. Hence there are (x + a2j − 2(2n− 1− 2j)) ways to place rook r2j

in row 2j. For all but one of them the factor contributed to (6) by the placement
of the rook r2j−1 in row 2j − 1 is (x + a2j−1 − 2(2n − 2j) + α − 1). For the other
placement of r2j in row 2j, there is no way to place r2j−1 to complete a cycle so
the placement of r2j−1 contributes a factor of (x+a2j−1 −2(2n−2j)) to (6). Thus
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the total contribution to (6) caused by the placements of r2j and r2j−1 in case 3 is

(x + a2j − 1 − 2(2n − 1 − 2j))(x + a2j−1 + α − 1 − 2(2n − 2j))

+ (x + a2j−1 − 2(2n − 2j)) =

(x + a2j − 1 − 2(2n − 1 − 2j))(x + a2j−1 + α − 2(2n − 2j))

− (x + a2j − 1 − 2(2n − 1 − 2j)) + (x + a2j−1 − 2(2n − 2j)) =

(x + a2j − 1 − 2(2n − 1 − 2j))(x + a2j−1 + α − 2(2n − 2j))

− (x + a2j − 1 − 2(2n − 1 − 2j)) + (x + a2j + 1 − 2(2n − 2j)) =

(x + a2j − 1 − 2(2n − 1 − 2j))(x + a2j−1 + α − 2(2n − 2j)) =

(x + d2j(B, α) − 2(2n − 1 − 2j))(x + d2j−1(B, α) − 2(2n − 2j)).

It follows that

∑
p∈N2n,x(B)

αcy(p∩B) =
2n−1∏
i=1

(x + d2n−i(B, α)− 2i + 2) (8)

which combined with (7) proves Theorem 2. �

2. Special values of the cycle matching numbers

Let Dk = {(i, j) ∈ B2n : j ≤ k}. Thus Dk consists of the first k columns of B2n.
We can use Theorem 2 to prove the following.

Theorem 3. For any 2 ≤ r ≤ n,

(i) cmk(D2r, α) =
{ (

r
k

)
(α + 2r − 2) �k for 0 ≤ k ≤ r

0 otherwise
(9)

(ii) cmk(D2r−1, α) =
{ (

r−1
k

)
(α + 2r − 2) �k for 0 ≤ k ≤ r − 1

0 otherwise.
(10)

Proof: By our previous remarks preceding the definition of the k-th cycle-rook
number of a board B, it is enough to compute cmk(B, α) relative to the smallest
n such that B ⊆ B2n. Thus for fixed n, we need only prove our formulas for
D2n = B2n and D2n−1 which is the board that results from B2n by removing the
last column.

First we consider the case of B2n. It is easy to see that cmk(B2n, α) is a poly-
nomial in α of degree k. That is, if p ∈ Mk(B2n), then G2n(p) has k edges
in addition to the edges {{2i − 1, 2i} : i = 1, . . . , n} that are in the graph of
any placement. Thus we can form a maximum of k cycles with these extra k
edges. Indeed, the only way to have k cycles in such a G2n(p) is to add a subset
of k edges from {{2i − 1, 2i} : i = 1, . . . , n}. That is, p must be of the form
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{(2i1 − 1, 2i1), . . . , (2ik − 1, 2ik)} where 1 ≤ i1 < i2 < · · · < ik ≤ n. Since there are(
n
k

)
placements of this form, it follows that

cmk(B2n, α) =
(

n

k

)
αk +

k−1∑
j=0

aj,kαj

for some nonnegative integers a0,k, . . . , ak−1,k. Thus to prove that cmk(B2n, α) =(
n
k

)
(α + 2n− 2) �k, we need only show that (α + 2n − 2) �k divides cmk(B2n, α).
First observe that if B = B2n in Theorem 2, then d2n−1(B2n, α) = α and for

j = 1, . . . , n − 1, d2n−2j(B2n, α) = 2j and d2n−(2j+1)(B2n, α) = 2j + α. Thus for
j = 0, . . . , n − 1,

(x + d2n−(2j−1)(B2n, α) − 2(2j − 1) + 2) = (x + α − 2j)

and for j = 1, . . . , n − 1,

(x + d2n−2j(B2n, α) − 2(2j) + 2) = (x − 2j + 2).

Thus Theorem 2 gives that
n∑

k=0

cmk(B2n, α)(x) �2n−1−k= (x) �n−1 (x + α) �n . (11)

Dividing both sides of (11) by (x) �n−1 and then replacing x by x + 2n− 2 we get
n∑

k=0

cmk(B2n, α)(x) �n−k= (x + α + 2n − 2) �n . (12)

Here (x) �0= 1 by definition. We shall prove that (α + 2n − 2) �n−k divides
cmn−k(B2n, α) by induction on k. Setting x = 0 in (12) yields that

cmn(B2n, α) = (α + 2n − 2) �n (13)

which is the base step of our induction. Next assume that (α + 2n − 2) �n−j

divides cmn−j(B2n, α) for j = 0, . . . , k − 1. Then we know that cmn−j(B2n, α) =(
n

n−j

)
(α + 2n − 2) �n−j for j = 0, . . . , k − 1. If we set x = 2k in (12), we get

k∑
i=0

cmn−i(B2n, α)(2k) �i= (2k + α + 2n − 2) �n .

Solving for cmn−k(B2n, α) yields

cmn−k(B2n, α) =
1

(2k) �k

×
[
(2k + α + 2n − 2) �n −

k−1∑
i=0

(
n

i

)
(α + 2n − 2) �n−i (2k) �i

]
. (14)
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Clearly (2n − 2 + α) �n−k divides the right-hand side of (14) and hence we can
conclude that cmn−k(B2n, α) =

(
n

n−k

)
(α + 2n − 2) �n−k. Thus by induction,

cmj(B2n, α) =
(
n
j

)
(α + 2n − 2) �j for all j.

The proof of Theorem 3 for D2n−1 is almost the same. That is, cmn(Dn−1, α) = 0
since any placement p ∈ Mn(B2n) must have a rook in the last column of B2n. Next
we can argue as before that for 0 ≤ k ≤ n − 1,

cmk(D2n−1, α) =
(

n − 1
k

)
αk +

k∑
j=0

bj,kαj

for some nonnegative integers b0,k, . . . , bk−1,k. That is, if p ∈ Mk(D2n−1), the
maximum number of cycles that can occur in G2n(p) is k and the only way that
we can get k cycles in such a G2n(p) is if p = {(2i1 − 1, 2i1), . . . , (2ik − 1, 2ik)}
for some 1 ≤ i1 < · · · < ik ≤ n − 1. Thus to prove that cmk(D2n−1, α) =(
n−1

k

)
(α+2n−2) �k, we need only show that (α+2n−2) �k divides cmk(D2n−1, α).

It is easy to check that d2n−1(D2n−1, α) = 0 and for j = 1, . . . , n − 1,

d2n−(2j+1)(D2n−1, α) = α + 2j − 2 and d2n−2j(D2n−1, α) = 2j − 2.

Hence (x − d2n−1(D2n−1, α) − 2 + 2) = x and for j = 1, . . . , n − 1

(x + d2n−(2j+1)(D2n−1, α) − 2(2j + 1) + 2) = (x + α − 2j − 2)

and
(x + d2n−2j(D2n−1, α) − 2(2j) + 2) = (x − 2j).

Thus for D2n−1, Theorem 2 becomes

n−1∑
k=0

cmk(D2n−1, α)(x) �2n−1−k= (x) �n (x + α − 2) �n−1 . (15)

If we divide both sides of (15) by (x) �n and replace x by x + 2n, we get

n−1∑
k=0

cmn−1−k(D2n−1, α)(x) �k= (α + 2n − 2) �n−1 . (16)

We can then use (16) to prove that (α+2n−2) �n−1−k divides cmn−1−k(D2n−1, α)
by induction on k exactly as before. �.

3. A cycle version of Theorem 1

For a board B ⊆ B2n, set

cfk,2n(B, α) =
∑

pm∈Fk,2n(B,α)

αcy(pm).

Note that if α = 1, the cfk,2n(B, α) reduce to the fk,2n(B) from (1). We will prove
the following.
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Theorem 4. Let B be a board contained in B2n. Then
n∑

k=0

cmk(B, α)α(α + 2) · · · (α + 2(n − k) − 2)(z − 1)k =
n∑

k=0

cfk,2n(B, α)zk. (17)

Note that by replacing z by z + 1 in (17) and taking the coefficient of zk on both
sides, Theorem 4 is equivalent to the fact that for any k ∈ {0, . . . , n},

cmk(B, α)α(α + 2) · · · (α + 2(n − k) − 2) =
n∑

i=k

cfi,2n(B, α)
(

i

k

)
. (18)

Proof of Theorem 4: First we shall prove by induction on k that if p ∈ Mn−k(B2n),
then ∑

q∈Mn(B2n)
p⊆q

αcy(q) = αcy(p)α(α + 2) · · · (α + 2k − 2). (19)

Now if k = 0, (19) is immediate. Thus assume (19) is true for j = 0, . . . , k−1. Then
fix p ∈ Mn−k(B2n). There are 2k elements of {1, . . . , 2n}, 1 ≤ i1 < · · · < i2k ≤ 2n,
which are not coordinates of any square in p. There are 2k−1 ways to extend p to a
rook placement by adding a square with i1 as a coordinate, namely, qj = p∪{(i1, ij)}
for j = 2, . . . , 2k. We claim that there is a t ∈ {2, . . . , 2k} such that

cy(qj) =
{

cy(p) if j ∈ {2, . . . , 2k} − {t}
cy(p) + 1 if j = t.

(20)

We use an argument similar, but not identical to, that of case 2 of Theorem 2 to
construct a sequence of distinct vertices s1, . . . , s2r+1. That is, consider the vertex
i1 in the graph G2n(p). Then let s1 equal i1 − 1 if i1 is even and equal i1 +1 if i1 is
odd. Hence {i1, s1} will be an edge of the form {2a − 1, 2a} in G2n(p). If there is
another edge in G2n(p) out of s1, then it will be of the form {s1, s2} where either
(s1, s2) or (s2, s1) is in p. Then let s3 be s2 − 1 if s2 is even and be s2 + 1 if s2 is
odd. Thus {s2, s3} will be another edge of the form {2b − 1, 2b} in G2n(p) which
is distinct from {i1, s1} and {s1, s2}. If there is another edge out of s3, then it will
be of the form {s3, s4} where either (s3, s4) or (s4, s3) is in p. We then let s5 be
s4 − 1 if s4 is even and s4 + 1 if s4 is odd. Again {s4, s5} will be an edge of the
form {2c − 1, 2c} in G2n(p). Continuing in this way we get a sequence of distinct
vertices, s1, . . . , s2r+1 such that for all i ≤ r, {s2i, s2i+1} is an edge of the form
{2d− 1, 2d} and either (s2j−1, s2j) or (s2j, s2j−1) is in p and there is only one edge
of G2n(p) that contains s2r+1. Thus s2r+1 is not a coordinate of any square in p
and hence s2r+1 = it for some 2 ≤ t ≤ 2k.

It is then easy to see that the edge {i1, it} will create a new cycle in G2n(qt) and
that an edge {i1, ij} will not create a new cycle in G2n(qj) for j = {2, . . . , 2k}−{t}.
This establishes (20). But then by induction,∑

q∈Mn(B2n)
qi⊆q

αcy(q) = αcy(qi)α(α + 2) · · · (α + 2k − 4) (21)
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for i = 2, . . . , 2k. Thus

∑
q∈Mn(B2n)

p⊆q

αcy(q) =
2k∑
i=2

∑
q∈Mn(B2n)

qi⊆q

αcy(q)

=
2k∑
i=2

αcy(qi)α(α + 2) · · · (α + 2k − 4)

= α(α + 2) · · · (α + 2k − 4)
2k∑
i=2

αcy(qi)

= α(α + 2) · · · (α + 2k − 4)(α + 2k − 2)αcy(p).

Thus by induction, (19) holds.
It follows that for B ⊆ B2n,

cmk(B, α)α(α + 2) · · · (α + 2(n − k) + 2) =
∑

p∈Mk(B)

∑
q∈Mn(B2n)

p⊆q

αcy(q)

=
n∑

i=k

∑
q∈Fi,2n(B)

αcy(q)
∑

p∈Mk(B)
p⊆q

1

=
n∑

i=k

(
i

k

)
fi,2n(B, α).

Thus (18) holds. Moreover,

n∑
k=0

cmk(B, α)α(α + 2) · · · (α + 2(n − k) + 2)zk =
n∑

k=0

zk
n∑

i=k

(
i

k

)
fi,2n(B, α)

=
n∑

i=0

fi,2n(B, α)
i∑

k=0

(
i

k

)
zk

=
n∑

i=0

fi,2n(B, α)(z + 1)k. (22)

Thus if we replace z by z − 1 in (22), we get (17). �
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