CYCLES AND PERFECT MATCHINGS

J. Haglund and J. B. Remmel

Jan. 3, 2003

Abstract

Fan Chung and Ron Graham (J. Combin. Theory Ser. B 65 (1995), 273-290) introduced the cover polynomial for a directed graph and showed that it was connected with classical rook theory. M. Dworkin (J. Combin. Theory Ser. B 71 (1997), 17-53) showed that the cover polynomial naturally factors for directed graphs associated with Ferrers boards. The authors (Adv. Appl. Math. 27 (2001), 438-481) developed a rook theory for shifted Ferrers boards where the analogue of a rook placement is replaced by a partial perfect matching of $K_{2 n}$, the complete graph on $2 n$ vertices. In this paper, we show that an analogue of Dworkin's result holds for shifted Ferrers boards in this setting. We also show how cycle-counting matching numbers are connected to cycle-counting "hit numbers" (which involve perfect matchings of $K_{2 n}$).

Introduction

Let $B_{2 n}$ be the board pictured in Fig. 1.
Let (i, j) denote the square in the i-th row and j-th column of $B_{2 n}$, so $B_{2 n}=$ $\{(i, j): 1 \leq i<j \leq 2 n\}$. Let $K_{2 n}$ denote the complete graph on vertices $\{1,2, \ldots, 2 n\}$. A perfect matching of $K_{2 n}$ is a set of n edges of $K_{2 n}$ where no two edges have a vertex in common. Given a perfect matching m of $K_{2 n}$, we let $p_{m}=$ $\{(i, j): i<j$ and $\{i, j\} \in m\}$. For example, if $m=\{\{1,4\},\{2,7\},\{3,5\},\{6,8\}\}$ is a perfect matching of K_{8}, then p_{m} is pictured in Fig. 2.

For a given board $B \subseteq B_{2 n}$, we say that a subset $p \subseteq B$ is a rook placement of B if there is a perfect matching m of $K_{2 n}$ such that $p \subseteq p_{m}$. We let $M_{k}(B)$ denote the set of all k element perfect matchings of B and we call $m_{k}(B)=\left|M_{k}(B)\right|$ the k-th rook number of B. We let $F_{k, 2 n}(B)=\left\{p_{m}:\left|p_{m} \cap B\right|=\right.$ k and m is a perfect matching of $\left.K_{2 n}\right\}$. We call $f_{k, 2 n}(B)=\left|F_{k, 2 n}(B)\right|$ the k-th hit number of B. Haglund and Remmel [HR] proved the following relationship between the hit numbers and the rook numbers of a board $B \subseteq B_{2 n}$.

[^0]Key words and phrases. Rook theory, perfect matching, cycles of permutations, cover polynomial.

Figure 1

Figure 2

Theorem 1.

$$
\begin{equation*}
\sum_{k=0}^{n} m_{k}(B)(n-k)!!(z-1)^{k}=\sum_{k=0}^{n} f_{k, 2 n}(B) z^{k} \tag{1}
\end{equation*}
$$

where $k!!=\prod_{i=1}^{k}(2 i-1)$.
For any sequence $a_{1}, \ldots, a_{2 n-1}$ such that $a_{i} \leq 2 n-i$ for all i, we let $B\left(a_{1}, \ldots, a_{2 n-1}\right)=$ $\left\{(i, i+j): 1 \leq j \leq a_{i}\right\}$. We say that $B\left(a_{1}, \ldots, a_{2 n-1}\right)$ is a Ferrers board if $2 n-1 \geq a_{1} \geq a_{2} \geq \cdots \geq a_{2 n-1} \geq 0$ and the nonzero entries of $a_{1}, \ldots a_{2 n-1}$ are strictly decreasing. For example, $B(5,3,2,1,0,0,0) \subseteq B_{8}$ is pictured in Fig. 3.

Now Reiner and White [RW] proved that if $F=B\left(a_{1}, \ldots, a_{2 n-1}\right)$ is a Ferrers

Figure 3

board contained in $B_{2 n}$, then

$$
\begin{equation*}
\sum_{k=0}^{n} m_{k}(F)(x) \downarrow_{2 n-1-k}=\prod_{i=1}^{2 n-1}\left(x+a_{2 n-i}-2 i+2\right) \tag{2}
\end{equation*}
$$

where $(x) \downarrow_{k}=x(x-2)(x-4) \cdots(x-2 k+2)$. Haglund and Remmel [HR] defined a q-analogue of the rook numbers $m_{k}(B, q)$ for any board $B \subseteq B_{2 n}$ and showed that if $F=B\left(a_{1}, \ldots, a_{2 n-1}\right) \subseteq B_{2 n}$ is a Ferrers board, then

$$
\begin{equation*}
\sum_{k=0}^{n} m_{k}(F, q)[x] 山_{2 n-1-k}=\prod_{i=1}^{2 n-1}\left[x+a_{2 n-i}-2 i+2\right] \tag{3}
\end{equation*}
$$

where $[n]=1+q+\ldots+q^{n-1}=\left(1-q^{n}\right) /(1-q)$ and $[x] \downarrow_{k}=[x][x-2] \cdots[x-2 k+2]$. In fact, Haglund and Remmel proved that (2) holds if F is a nearly Ferrers board with a_{i} squares in row i. Here a board N is nearly Ferrers if whenever $(i, j) \in N$, then $\{(s, i),(s, j): s<i\}$ are also contained in N.

In this paper, we prove another extension of Reiner and White's formula. Given a board $B \subseteq B_{2 n}$ and a placement $p \in M_{k}(B)$, we form a graph $G_{2 n}(p)=$ $\left(V_{2 n}(p), E_{2 n}(p)\right)$ where the vertex set $V_{2 n}(p)=\{1, \ldots, 2 n\}$ and the edge set $E_{2 n}(p)=$ $\{\{2 i-1,2 i\}: i=1, \ldots, n\} \cup\{\{i, j\}:(i, j) \in p\}$. We note that $G_{2 n}(p)$ may have multiple edges. That is, if for some $i,(2 i-1,2 i) \in p$, then we shall think of $G_{2 n}(p)$ as having two edges from $2 i-1$ and $2 i$ and we shall think of these edges as forming a cycle. For example if p is the placement pictured in Fig. $4, G_{2 n}(p)$ has two cycles, namely $(3,5,6,7,8,4)$ and $(1,2)$.

Note, however, that since no two edges of $\{\{i, j\}:(i, j) \in p\}$ share a common vertex, it follows that each vertex i of $G_{2 n}(p)$ is contained in at most two edges and hence i can be a vertex of at most one closed path (cycle) of $G_{2 n}(p)$. We let

Figure 4
$\operatorname{cy}(p)$ denote the number of cycles of $G_{2 n}(p)$. Note that if $B \subseteq B_{2 n}$, then B is also contained in $B_{2 n+2}$. However the only difference between $G_{2 n}(p)$ and $G_{2 n+2}(p)$ is that $G_{2 n+2}(p)$ has an extra edge $\{2 n+1,2 n+2\}$ which is disjoint from $G_{2 n}(p)$. Thus the number of cycles of $G_{2 n}(p)$ equals the number of cycles of $G_{2 n+2}(p)$. Thus $\operatorname{cy}(p)$ depends only on p and not on n. We then let

$$
\begin{equation*}
c m_{k}(B, \alpha)=\sum_{p \in M_{k}(B)} \alpha^{\mathrm{cy}(p)} \tag{4}
\end{equation*}
$$

and we call $c m_{k}(B, \alpha)$ the k-th cycle-rook number of B. For example, if $F=$ $B(4,2,0,0,0)$, then $c m_{2}(F, \alpha)=2+2 \alpha$ as can be seen from Fig. 5 where we have pictured p and $G_{6}(p)$ for the four elements of $M_{2}(F)$.

Let $\sigma \in S_{n}$ be a permutation and let $m(\sigma)$ denote the perfect matching of $K_{2 n}$ consisting of edges $\left\{2 i-1,2 \sigma_{i}\right\}, 1 \leq i \leq n$. One easily verifies that cy $(m(\sigma))$ equals the number of cycles of σ, so the function cy can be viewed as a generalization of the number of cycles of a permutation.

The major result of this paper is to prove the following factorization theorem.

Figure 5
Theorem 2. Let $B=B\left(a_{1}, \ldots, a_{2 n-1}\right) \subseteq B_{2 n}$ be a Ferrers board. Then

$$
\begin{equation*}
\sum_{k=0}^{n} c m_{k}(B, \alpha)(x) \downarrow_{2 n-1-k}=\prod_{i=1}^{2 n-1}\left(x+d_{2 n-i}(B, \alpha)-2 i+2\right) \tag{5}
\end{equation*}
$$

where

$$
d_{2 n-1}(B, \alpha)= \begin{cases}0 & \text { if } a_{2 n-1}=0 \\ \alpha & \text { if } a_{2 n-1}=1\end{cases}
$$

and for $j=1, \ldots, n-1$,

$$
\begin{equation*}
d_{2 j-1}(B, \alpha)=d_{2 j}(B, \alpha)=0 \text { if } a_{2 j-1}=a_{2 j}=0, \tag{i}
\end{equation*}
$$

(ii) $\quad d_{2 j-1}(B, \alpha)=a_{2 j-1}+\alpha-1$ and $d_{2 j}(B, \alpha)=a_{2 j}$ if $a_{2 j-1}>0$ and it is not the case that both $a_{2 j-1}$ is even and $a_{2 j-1}=a_{2 j}+1$,
and

$$
\begin{align*}
& d_{2 j-1}(B, \alpha)=a_{2 j-1}+\alpha \text { and } \tag{iii}\\
& \quad d_{2 j}(B, \alpha)=a_{2 j}-1 \text { if } a_{2 j-1}>0, a_{2 j-1} \text { is even, and } a_{2 j-1}=a_{2 j}+1
\end{align*}
$$

We note that when we set $\alpha=1$ in (5), $c m_{k}(B, 1)=m_{k}(B)$ and $d_{k}(B, 1)=a_{k}$ unless $k \in\{2 j-1,2 j\}$ for some j where $a_{2 j-1}>0, a_{2 j-1}$ is even, and $a_{2 j-1}=a_{2 j}+1$. However, in the latter case,

$$
\begin{aligned}
& \left(x+a_{2 j}-2(2(n-j))+2\right)\left(x+a_{2 j-1}-2(2(n-j)+1)+2\right)= \\
& \left(x+a_{2 j}-4(n-j)+2\right)\left(x+a_{2 j-1}-4(n-j)\right)= \\
& \left(x+\left(a_{2 j-1}+1\right)-4(n-j)\right)\left(x+\left(a_{2 j}-1\right)-4(n-j)+2\right)= \\
& \quad\left(x+d_{2 j-1}(B, 1)-4(n-j)\right)\left(x+d_{2 j}(B, 1)-4(n-j)+2\right) .
\end{aligned}
$$

Thus (5) reduces to (2) when we set $\alpha=1$.
In Section 2 we show (Theorem 3) that for certain special boards $c m_{k}(B, \alpha)$ has a compact expression as a product of linear factors in α. In Section 3 (Theorem 4) we derive a version of Theorem 1 involving the $c m_{k}$ and cycle-counting versions of the f_{k}.

In [CG], Chung and Graham introduced the cover polynomial of a directed graph, which has interesting connections to rook theory. Let G be a bipartite graph on the sets of vertices $\{1,2, \ldots, n\}$ and $\left\{1^{\prime}, 2^{\prime}, \ldots n^{\prime}\right\}$. We can associate a directed graph $D(G)$ on n vertices to G by including an edge from u to v in $D(G)$ if and only if there is an edge between u and v^{\prime} in G. To each k-edge matching p in G we associate the corresponding set $e(p)$ of k directed edges in $D(G)$, which will consist of a disjoint union of cycles and paths. With this in mind, the cover polynomial of $D(G)$ can be expressed as

$$
\sum_{k=0}^{n} x(x-1)(x-2) \cdots(x-k+1) r_{n-k}(G, y)
$$

where $r_{j}(G, y)$ is the sum, over all j-edge matchings p of G, of $y^{\operatorname{cy}(e(p))}$, where $\operatorname{cy}(e(p))$ is the number of cycles of $e(p)$.

Theorem 2 can be thought of as a "type B_{n} " analogue of a result of Dworkin [D]. He showed that the cover polynomial factors as a product of linear factors when the directed graph corresponds to a Ferrers board of classical shape. (He also showed that the cover polynomial sometimes factors when you permute the columns of a Ferrers board, an issue we will not address in our setting).

1. Proof of Theorem 2

We proceed with the proof of Theorem 2. Let $B_{2 n, x}$ denote the board $B_{2 n}$ with x columns of height $2 n-1$ added to the right of $B_{2 n}$, as in Fig. 6 .

Figure 6: The board $B_{2 n, x}$
We shall follow $[\mathrm{HR}]$ and consider the set of all placements of $2 n-1$ nonattacking rooks in $B_{2 n, x}$. That is, if a rook r is on square $(i, j) \in B_{2 n}$, then r attacks all cells in row i and column j other than (i, j) plus all cells in $a_{(i, j)}^{2 n}=\{(s, t) \in$ $\left.B_{2 n}:|\{s, t\} \cap\{i, j\}|=1\right\}$. However, if r is on cell $(i, j) \in B_{2 n, x}-B_{2 n}$, then the cells that r attacks relative to a rook placement p depends on the other rooks in $p \cap\left(B_{2 n, x}-B_{2 n}\right)$. That is, if (i, j) is the position of the lowest rook r_{1} in $p \cap\left(B_{2 n, x}-B_{2 n}\right)$, then r_{1} attacks all cells in row i and column j other than (i, j) plus all cells in column $j-1$ if $2 n+1<j$. If $j=2 n+1$, then r_{1} attacks all cells in row i and column j plus all cells in column $2 n+x$. In general, if (i, j) is the position of the k-th lowest rook r_{k} in $p \cap\left(B_{2 n, x}-B_{2 n}\right)$, then r_{k} attacks all cells in row i and column j other than (i, j) plus all cells in the first column occurring in the following list of columns $j-1, j-2, \ldots, 2 n+1,2 n+x, 2 n+x-1, \ldots, j+1$ that contains a square which is not attacked by any of the $k-1$ lower rooks in $B_{2 n, x}-B_{2 n}$. Note that this means that each rook r in $p \cap\left(B_{2 n, x}-B_{2 n}\right)$ will attack all cells in two columns of $B_{2 n, x}-B_{2 n}$. That is, if r is in cell $(i, j), r$ attacks all cells in column j other than (i, j). It then looks for the first column $s>2 n$ to the left of column j which has a cell that is not attacked by a lower rook in $p \cap\left(B_{2 n, x}-B_{2 n}\right)$. If there is no such column, then r starts at column $2 n+x$ and looks for the rightmost column s which has a square which is not attacked by any lower rook in $p \cap\left(B_{2 n, x}-B_{2 n}\right)$. Note we are guaranteed that such a column exists if $x>4 n-2$. Then r attacks all cells in column s as well. Our definition of a Ferrers board also ensures that each rook $r \in p$ that lies in B also attacks the squares in two columns of B which lie above r, namely, the squares in column i and column j. For example, consider the placement p pictured in Fig. 7 consisting of 3 rooks, $r_{1} \in(7,10), r_{2} \in(5,11)$, and $r_{3} \in(3,7)$. We have indicated all cells attacked by r_{i} by placing an i in such cells.

Now let B be a board contained in $B_{2 n}$ and assume that $x \geq 4 n-2$. We let

$$
\begin{array}{llllllllllllllll}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17
\end{array}
$$

1
2
3
4
5
6
7

3				3		1	1	2							2
3				3		1	1	2							2
	3	3	3	r_{3}	3	1,3	1,3	2,3	3		3	3	3	3	2,3
				3		1	1	2							2
			2	2,3	2	1,2	1,2	r_{2}	2		2	2	2	2	2
				3		1	1	2							2
					1,3	1	${ }^{\text {r }} 1$	1,2	1		1	1	1		1,2

Figure 7

$\mathcal{N}_{2 n, x}(B)$ denote the set of all placements p of $2 n-1$ rooks in $B_{2 n, x}$ such that no cell which contains a rook in p is attacked by another rook in p and any rook r in $B_{2 n} \cap p$ is an element of B. We claim that (5) arises from two different ways of counting

$$
\begin{equation*}
\sum_{p \in \mathcal{N}_{2 n, x}(B)} \alpha^{\operatorname{cy}(p \cap B)} \tag{6}
\end{equation*}
$$

Note that our definition ensures that if $p \in \mathcal{N}_{2 n, x}(B)$, then $p \cap B \in M_{k}(B)$ where $k=|p \cap B|$ so that cy $(p \cap B)$ is defined.

First suppose that we fix a rook placement $\tilde{p} \in M_{k}(B)$. We claim that the number of ways to extend \tilde{p} to a rook placement $p \in \mathcal{N}_{2 n, x}(B)$ such that $p \cap B=\tilde{p}$ is $(x) \downarrow_{2 n-1-k}$. That is, there are $2 n-1-k$ rows in $B_{2 n, x}-B_{2 n}$ that have no squares that are cancelled by a rook in \tilde{p}. Say the rows are $1 \leq R_{1}<\cdots<$ $R_{2 n-1-k} \leq 2 n-1$. We then have x choices of where to put a rook $r_{2 n-1-k}$ in row $R_{2 n-1-k} \cap\left(B_{2 n, x}-B_{2 n}\right)$. Then $r_{2 n-1-k}$ will attack two squares in row $R_{2 n-k} \cap\left(B_{2 n, x}-B_{2 n}\right)$ so that once we have placed $r_{2 n-1-k}$, we will have $x-2$ choices of where to place a rook $r_{2 n-k}$ in row $R_{2 n-k} \cap\left(B_{2 n, x}-B_{2 n}\right)$. Then $r_{2 n-1-k}$ and $r_{2 n-k}$ will attack a total of 4 squares in $R_{2 n-k+1} \cap\left(B_{2 n, x}-B_{2 n}\right)$ so that once we have placed $r_{2 n-1-k}$ and $r_{2 n-k}$, we will have $(x-4)$ choices of where to place a rook $r_{2 n-k+1}$ in $R_{2 n-k+1} \cap\left(B_{2 n, x}-B_{2 n}\right)$. Continuing on in this way, it is easy to see that the number of such p is $(x) \|_{2 n-1-k}$. Thus

$$
\begin{align*}
\sum_{p \in \mathcal{N}_{2 n, x}(B)} \alpha^{\operatorname{cy}(p \cap B)}=\sum_{k=0}^{n} \sum_{\tilde{p} \in M_{k}(B)} \alpha^{\operatorname{cy}(\tilde{p})}(x) 山_{2 n-1-k} & \\
& =\sum_{k=0}^{n} c m_{k}(B)(x) \Vdash_{2 n-1-k} \tag{7}
\end{align*}
$$

Next consider the number of ways to place a rook $r_{2 n-1}$ in row $2 n-1$. Clearly there are x choices to place a rook in $B_{2 n, x}-B_{2 n}$ that lie in row $2 n-1$. If
$a_{2 n-1}=1$, then there is one additional choice namely placing the rook $r_{2 n-1}$ in square $(2 n-1,2 n)$, then the edge $\{2 n-1,2 n\}$ will complete a cycle in $G_{2 n}(p \cap B)$ for any placement $p \in \mathcal{N}_{2 n, x}(B)$ that has $r_{2 n-1}$ on cell $(2 n-1,2 n)$. Thus the row $2 n-1$ contributes a factor of x to (6) if $a_{2 n-1}=0$ and a factor of $(\alpha+x)$ to (6) if $a_{2 n-1}=1$.

Next for any $j \in\{1, \ldots, n-1\}$, we want to consider the contribution of possible placements of the rooks in rows $2 j-1$ and $2 j$ to (6). That is, suppose that we fix a placement p^{\prime} of nonattacking rooks $r_{2 j+1}, r_{2 j+2}, \ldots, r_{2 n-1}$ in rows $2 j+1,2 j+$ $2, \ldots, 2 n-1$ respectively. Note that

$$
\prod_{i=1}^{2 n-1}\left(x+d_{2 n-i}(B, \alpha)-2 i+2\right)=\prod_{j=1}^{2 n-1}\left(x+d_{j}(B, \alpha)-2(2 n-1-j)\right)
$$

so that we must show that the contribution to (6) from the possible placements of the rooks in rows $2 j-1$ and $2 j$ is

$$
\left(x+d_{2 j}(B, \alpha)-(2 n-1-2 j)\right)\left(x+d_{2 j-1}(B, \alpha)-(2 n-2 j)\right)
$$

Note that each of these rooks will attack two cells in $B \cup\left(B_{2 n, x}-B_{2 n}\right)$ that lie in row $2 j$ and two cells in $B \cup\left(B_{2 n, x}-B_{2 n}\right)$ that lie in row $2 j-1$. There are three cases.
Case $1 a_{2 j-1}=a_{2 j}=0$
Note that if $a_{2 j-1}=0$, then $a_{i}=0$ for all $2 j-1 \leq i \leq 2 n-1$. This means that all the rooks $r_{2 j+1}, \ldots, r_{2 n-1}$ must lie in $B_{2 n, x}-B_{2 n}$. Thus for $i \in\{2 j+1, \ldots, 2 n-1\}$, r_{i} attacks two cells in $B_{2 n, x}-B_{2 n}$ in row $2 j$ and two cells in $B_{2 n, x}-B_{2 n}$ in row $2 j-1$. Thus there are a total of $x-2(2 n-1-2 j)$ cells in row $2 j$ which are not attacked by a rook in \hat{p} so that we have $x-2(2 n-1-2 j)=\left(x+d_{2 j}(B, \alpha)-2(2 n-1-2 j)\right)$ places to put rook $r_{2 j}$. Once we have placed rook $r_{2 j}$, it will attack two additional cells in $B_{2 n, x}-B_{2 n}$ which lie in row $2 j-1$ so that we will have $(x-2(2 n-1-2 j)-2)=$ $\left(x+d_{2 j-1}(B, \alpha)-2(2 n-2 j)\right)$ ways to place a rook in $B_{2 n, x}-B_{2 n}$ which lies in row $2 j-1$. Thus the contribution to (6) from the placements of rooks $r_{2 j-1}$ and $r_{2 j}$ in rows $2 j-1$ and $2 j$ is $\left(x+d_{2 j-1}(B, \alpha)-2(2 n-2 j)\right)\left(x+d_{2 j}(B, \alpha)-2(2 n-1-2 j)\right)$ in this case.
Case $2 a_{2 j-1}>0$ and it is not the case that both $a_{2 j-1}$ is even and $a_{2 j-1}=a_{2 j}+1$.
In this case, there are a total of $x+a_{2 j}-2(2 n-1-2 j)$ cells of $B \cup\left(B_{2 n, x}-B_{2 n}\right)$ which lie in row $2 j$ and are not attacked by any rook in p^{\prime}. Thus there are $\left(x+a_{2 j}-\right.$ $2(2 n-1-2 j))=\left(x+d_{2 j}(B, \alpha)-2(2 n-1-2 j)\right)$ ways to place the rook $r_{2 j}$. Note that if $r_{2 j}$ is placed in B, say on cell $(2 j, s)$, then $\operatorname{cy}\left(p^{\prime} \cap B\right)=\operatorname{cy}\left(\left(p^{\prime} \cap B\right) \cup\{(2 j, s)\}\right)$. That is, the only difference between the graphs $G_{2 n}\left(p^{\prime} \cap B\right)$ and $G_{2 n}\left(\left(p^{\prime} \cap B\right) \cup\{(2 j, s)\}\right)$ is that $G_{2 n}\left(\left(p^{\prime} \cap B\right) \cup\{(2 j, s)\}\right)$ has an extra edge from $2 j$ to s. However, by construction, there is no edge e in $G_{2 n}\left(\left(p^{\prime} \cap B\right) \cup\{(2 j, s)\}\right)$ which involves vertex $2 j-1$ other that the edge $\{2 j-1,2 j\}$. That is, the only edges in $G_{2 n}\left(p^{\prime} \cap B\right)$ that are not of the form $\{2 i-1,2 i\}$ must connect vertices from $\{2 j+1, \ldots, 2 n\}$.

Thus adding the edge $\{2 j, s\}$ to $G_{2 n}\left(p^{\prime} \cap B\right)$ cannot complete a cycle. Once we have placed $r_{2 j}$, it will cancel 2 additional cells of $B \cup\left(B_{2 n, x}-B_{2 n}\right)$ that lie in row $2 j-1$. Thus there will be a total of $\left(x+a_{2 j-1}-2(2 n-2 j)\right)$ cells of $B \cup\left(B_{2 n, x}-B_{2 n}\right)$ which lie in row $2 j-1$ which are not attacked by any of the rooks $r_{2 j}, r_{2 j+1}, \ldots, r_{2 n-1}$. We claim there is exactly one way to place the rook $r_{2 j-1}$ to result in a placement $p^{\prime \prime}$ of the rooks $r_{2 j-1}, r_{2 j}, r_{2 j+1}, \ldots, r_{2 n-1}$ such that $\operatorname{cy}\left(p^{\prime \prime} \cap B\right)=1+\operatorname{cy}\left(p^{\prime} \cap B\right)$. That is, let p^{*} be the placement consisting of our rooks $r_{2 j}, r_{2 j+1}, \ldots, r_{2 n-1}$ and consider the edges of $G_{2 n}\left(p^{*} \cap B\right)$ that involve vertex $2 j$. There is of course the edge $\{2 j-1,2 j\}$. If there is another such edge, it must be of the form $\left\{2 j, s_{1}\right\}$ with $s_{1}>2 j$. Then s_{1} is connected to s_{2} by an edge in $G_{2 n}\left(p^{*} \cap B\right)$ where $s_{2}=s_{1}-1$ if s_{1} is even or $s_{2}=s_{1}+1$ if s_{1} is odd. If there is another edge out of s_{2}, it must be of the form $\left\{s_{2}, s_{3}\right\}$ where $s_{3}>2 j$ and s_{3} will be connected to s_{4} where $s_{4}=s_{3}-1$ if s_{3} is even and $s_{4}=s_{3}+1$ if s_{3} is odd. We can continue on in this way producing a sequence of edges $\left\{2 j, s_{1}\right\},\left\{s_{1}, s_{2}\right\}, \ldots,\left\{s_{2 t-1}, s_{2 t}\right\}$ in $G_{2 n}\left(p^{*} \cap B\right)$ such that for all $1 \leq i \leq t,\left\{s_{2 i-1}, s_{2 i}\right\}$ is an edge of the form $\{2 l-1,2 l\}$ and there is no edge other than $\left\{s_{2 t-1}, s_{2 t}\right\}$ which has $s_{2 t}$ as a vertex. Now let q be the maximum element of $s_{1}, \ldots, s_{2 t}$. Clearly q must be even since whenever $2 i-1 \in\left\{s_{1}, \ldots, s_{2 t}\right\}$, $2 i \in\left\{s_{1}, \ldots, s_{2 t}\right\}$. Thus either there is an edge $\{i, q\}$ or $\{i, q-1\}$ in $G_{2 n}\left(p^{*} \cap B\right)$ where $2 j \leq i \leq q-2$. Since B is a Ferrers board, this means that $(2 j, q)$ or $(2 j, q-1)$ is in B. We claim that $\left(2 j-1, s_{2 t}\right) \in B$. That is, if $q>s_{2 t}$, then $(2 j-1, q-1) \in B$ since B is a Ferrers board and hence $\left(2 j-1, s_{2 t}\right) \in B$. If $q=s_{2 t}$, then we know that $(2 j-1, q-1) \in B$ since $(2 j, q-1) \in B$. Now if $(2 j-1, q) \notin B$, then it must be that B ends at column $q-1$ in rows $2 j-1$ and $2 j$. But then $a_{2 j}=q-1-2 j$ and $a_{2 j-1}=q-1-(2 j-1)=q-2 j$. Thus if $(2 j-1, q) \notin B$, then $a_{2 j-1}$ is even since q is even and $a_{2 j-1}=a_{2 j}+1$ which we have explicitly ruled out. Hence in either case, we can conclude that $\left(2 j-1, s_{2 t}\right) \in B$. Note $\left(2 j-1, s_{2 t}\right)$ is not attacked by any of the rooks $r_{2 j}, r_{2 j+1}, \ldots, r_{2 n-1}$ since there is only one edge with vertex $s_{2 t}$ in $G_{2 n}\left(p^{*} \cap B\right)$. Thus if we place the rook $r_{2 j-1}$ in $\left(2 j-1, s_{2 t}\right)$, then we will complete a cycle $\left(2 j, s_{1}, \ldots, s_{2 t}, 2 j-1\right)$ so that $\operatorname{cy}\left(p^{\prime \prime} \cap B\right)=1+\operatorname{cy}\left(p^{*} \cap B\right)=1+\operatorname{cy}\left(p^{\prime} \cap B\right)$. If we place $r_{2 j-1}$ in any other nonattacked square, we won't create a new cycle so that $\operatorname{cy}\left(p^{\prime \prime} \cap B\right)=\operatorname{cy}\left(p^{*} \cap B\right)=\operatorname{cy}\left(p^{\prime} \cap B\right)$. Thus in this case, the placement of the rook $r_{2 j-1}$ contributes a factor of $\left(x+a_{2 j-1}-1+\alpha-2(2 n-1-2 j)-2\right)=$ $\left(x+d_{2 j-1}(B, \alpha)-2(2 n-2 j)\right)$ to (6). Of course, there may be no other edge in $G_{2 n}\left(p^{*} \cap B\right)$ with vertex $2 j$ other than $\{2 j-1,2 j\}$. In this case, the only way to create a cycle is to place the rook $r_{2 j-1}$ in $(2 j-1,2 j)$. Note that $(2 j-1,2 j) \in B$ since $a_{2 j-1} \geq 1$. Thus once again, the placement of the rook $r_{2 j-1}$ contributes a factor of $\left(x+a_{2 j-1}-1+\alpha-2(2 n-2 j)\right)$ to (6).

It follows that in case 2 , the possible placements of the rooks $r_{2 j}$ and $r_{2 j-1}$ contribute a factor of $\left(x+d_{2 j}(B, \alpha)-2(2 n-1-2 j)\right)\left(x+d_{2 j-1}(B, \alpha)-2(2 n-2 j)\right)$ to (6) as desired.
Case $3 a_{2 j-1}>0, a_{2 j-1}$ is even, and $a_{2 j-1}=a_{2 j}+1$.
Note that in this case both rows $2 j-1$ and $2 j$ must end at column $2 j-1+a_{2 j-1}$ which is odd since $a_{2 j-1}$ is even. Thus let $2 j-1+a_{2 j-1}=2 r-1$.

The difference between case 2 and case 3 is that, in case 2 , no matter how we placed the rook $r_{2 j}$ in row $2 j$, there was one and only one way to place the rook $r_{2 j-1}$ in row $2 j-1$ to complete a cycle. In case 3 , there is one exception to this fact. That is and fix a placement \bar{p} of nonattacking rooks $r_{2 j+1}, \ldots, r_{2 n-1}$ in rows $2 j+1, \ldots, 2 n-1$ respectively. Then consider the graph $G_{2 n}(\bar{p} \cap B)$, and the vertex $2 r-1$. There is of course one edge which has $2 r$ as a vertex, namely $\{2 r-1,2 r\}$. If there is another edge which has $2 r-1$ as a vertex, then it must be of the form $\left(2 r-1, t_{1}\right)$ where $t_{1} \in\{2 j+1, \ldots, 2 r-2\}$. That is, since $(2 j-1,2 r) \notin B$ and B is a Ferrers board, $(i, 2 r) \notin B$ for any $i>2 j-1$ and hence $(i, s) \notin B$ for any $i \geq 2 j-1$ and $s \geq 2 r$. Thus in $G_{2 n}(\bar{p} \cap B)$, the only edges involving the vertices $2 r, \ldots, 2 n$ are $\{2 u-1,2 u\}$ for $u=r, \ldots, n$. Then t_{1} is connected to t_{2} where $t_{2}=t_{1}-1$ if t_{1} is even and $t_{2}=t_{1}+1$ if t_{1} is odd. Now if there is another edge out of t_{2} other than $\left\{t_{1}, t_{2}\right\}$, it must be of the form $\left\{t_{2}, t_{3}\right\}$ where $t_{3} \in\{2 j+1, \ldots, 2 r-2\}$. Then there will be an edge out of t_{3}, namely $\left\{t_{3}, t_{4}\right\}$ where $t_{4}=t_{3}-1$ if t_{3} is even and $t_{4}=t_{3}+1$ if t_{3} is odd. We can continue on in this way to construct a sequence of edges $\{2 r, 2 r-1\},\left\{2 r-1, t_{1}\right\},\left\{t_{1}, t_{2}\right\}, \ldots,\left\{t_{2 q-1}, t_{2 q}\right\}$ of $G_{2 n}(\bar{p} \cap B)$ where for $i=1, \ldots, q,\left\{t_{2 i-1}, t_{2 i}\right\}$ is an edge of the form $\{2 u-1,2 u\}$. Note that $2 r, 2 r-1, t_{1}, \ldots, t_{2 q}$ is not a cycle since the only edge involving $2 r$ in $G_{2 n}(\bar{p} \cap B)$ is $\{2 r-1,2 r\}$. Moreover it must be the case that $t_{1}, \ldots, t_{2 q} \subseteq\{2 j+1, \ldots, 2 r-2\}$ and that there is no edge out of $t_{2 q}$ other than $\left\{t_{2 q-1}, t_{2 q}\right\}$. It follows that $\left(2 j, t_{2 q}\right)$ is not attacked by any rook in \bar{p} and $\left(2 j, t_{2 q}\right) \in B$ since $t_{2 q} \leq 2 r-2$. Now if we place $r_{2 j}$ in cell $\left(2 j, t_{2 q}\right)$ and construct the sequence of edges $\left\{2 j, s_{1}\right\},\left\{s_{1}, s_{2}\right\}, \ldots,\left\{s_{2 t-1}, s_{2 t}\right\}$ as described in case 2 , then it is easy to see that $s_{2 t-1}=2 r-1$ and $s_{2 t}=2 r$. In this case, the only way to complete a cycle by the placement of $r_{2 j-1}$ in row $2 j-1$ is to place $r_{2 j-1}$ in $(2 j-1,2 r)$. But $(2 j-1,2 r) \notin B$! Thus there is no way to complete a cycle by the placement of $r_{2 j-1}$ in $B \cup\left(B_{2 n, x}-B_{2 n}\right)$. Similarly if there is no edge out of $2 r-1$ other than $\{2 r-1,2 r\}$ in $G_{2 n}(\bar{p} \cap B)$, then by placing $r_{2 j}$ in $(2 j, 2 r-1)$, the sequence of edges $\left\{2 j, s_{1}\right\}, \ldots,\left\{s_{2 t-1}, s_{2 t}\right\}$ constructed as in case 2 will simply be $\{2 j, 2 r-1\},\{2 r-1,2 r\}$ and once again there will be no way to place the rook $r_{2 j-1}$ in $B \cup\left(B_{2 n, x}-B_{2 n}\right)$ to complete a cycle. If we do not place $r_{2 j}$ on cell $\left(2 j, t_{2 q}\right)$, we can use the same argument that we used in case 2 to see that there is one and only one way to place the rook $r_{2 j-1}$ in $B \cup\left(B_{2 n, x}-B_{2 n}\right)$ to complete a cycle. Hence there are $\left(x+a_{2 j}-2(2 n-1-2 j)\right)$ ways to place rook $r_{2 j}$ in row $2 j$. For all but one of them the factor contributed to (6) by the placement of the rook $r_{2 j-1}$ in row $2 j-1$ is $\left(x+a_{2 j-1}-2(2 n-2 j)+\alpha-1\right)$. For the other placement of $r_{2 j}$ in row $2 j$, there is no way to place $r_{2 j-1}$ to complete a cycle so the placement of $r_{2 j-1}$ contributes a factor of $\left(x+a_{2 j-1}-2(2 n-2 j)\right)$ to (6). Thus
the total contribution to (6) caused by the placements of $r_{2 j}$ and $r_{2 j-1}$ in case 3 is

$$
\begin{gathered}
\left(x+a_{2 j}-1-2(2 n-1-2 j)\right)\left(x+a_{2 j-1}+\alpha-1-2(2 n-2 j)\right) \\
\quad+\left(x+a_{2 j-1}-2(2 n-2 j)\right)= \\
\left(x+a_{2 j}-1-2(2 n-1-2 j)\right)\left(x+a_{2 j-1}+\alpha-2(2 n-2 j)\right) \\
-\left(x+a_{2 j}-1-2(2 n-1-2 j)\right)+\left(x+a_{2 j-1}-2(2 n-2 j)\right)= \\
\left(x+a_{2 j}-1-2(2 n-1-2 j)\right)\left(x+a_{2 j-1}+\alpha-2(2 n-2 j)\right) \\
-\left(x+a_{2 j}-1-2(2 n-1-2 j)\right)+\left(x+a_{2 j}+1-2(2 n-2 j)\right)= \\
\left(x+a_{2 j}-1-2(2 n-1-2 j)\right)\left(x+a_{2 j-1}+\alpha-2(2 n-2 j)\right)= \\
\quad\left(x+d_{2 j}(B, \alpha)-2(2 n-1-2 j)\right)\left(x+d_{2 j-1}(B, \alpha)-2(2 n-2 j)\right) .
\end{gathered}
$$

It follows that

$$
\begin{equation*}
\sum_{p \in \mathcal{N}_{2 n, x}(B)} \alpha^{\operatorname{cy}(p \cap B)}=\prod_{i=1}^{2 n-1}\left(x+d_{2 n-i}(B, \alpha)-2 i+2\right) \tag{8}
\end{equation*}
$$

which combined with (7) proves Theorem 2.

2. Special values of the cycle matching numbers

Let $D_{k}=\left\{(i, j) \in B_{2 n}: j \leq k\right\}$. Thus D_{k} consists of the first k columns of $B_{2 n}$. We can use Theorem 2 to prove the following.

Theorem 3. For any $2 \leq r \leq n$,

$$
\begin{gather*}
c m_{k}\left(D_{2 r}, \alpha\right)= \begin{cases}\binom{r}{k}(\alpha+2 r-2) \downarrow_{k} & \text { for } 0 \leq k \leq r \\
0 & \text { otherwise }\end{cases} \tag{i}\\
c m_{k}\left(D_{2 r-1}, \alpha\right)= \begin{cases}\binom{r-1}{k}(\alpha+2 r-2) \downarrow_{k} & \text { for } 0 \leq k \leq r-1 \\
0 & \text { otherwise. }\end{cases}
\end{gather*}
$$

Proof: By our previous remarks preceding the definition of the k-th cycle-rook number of a board B, it is enough to compute $\mathrm{cm}_{k}(B, \alpha)$ relative to the smallest n such that $B \subseteq B_{2 n}$. Thus for fixed n, we need only prove our formulas for $D_{2 n}=B_{2 n}$ and $D_{2 n-1}$ which is the board that results from $B_{2 n}$ by removing the last column.

First we consider the case of $B_{2 n}$. It is easy to see that $c m_{k}\left(B_{2 n}, \alpha\right)$ is a polynomial in α of degree k. That is, if $p \in M_{k}\left(B_{2 n}\right)$, then $G_{2 n}(p)$ has k edges in addition to the edges $\{\{2 i-1,2 i\}: i=1, \ldots, n\}$ that are in the graph of any placement. Thus we can form a maximum of k cycles with these extra k edges. Indeed, the only way to have k cycles in such a $G_{2 n}(p)$ is to add a subset of k edges from $\{\{2 i-1,2 i\}: i=1, \ldots, n\}$. That is, p must be of the form
$\left\{\left(2 i_{1}-1,2 i_{1}\right), \ldots,\left(2 i_{k}-1,2 i_{k}\right)\right\}$ where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$. Since there are $\binom{n}{k}$ placements of this form, it follows that

$$
c m_{k}\left(B_{2 n}, \alpha\right)=\binom{n}{k} \alpha^{k}+\sum_{j=0}^{k-1} a_{j, k} \alpha^{j}
$$

for some nonnegative integers $a_{0, k}, \ldots, a_{k-1, k}$. Thus to prove that $c m_{k}\left(B_{2 n}, \alpha\right)=$ $\binom{n}{k}(\alpha+2 n-2) \downarrow_{k}$, we need only show that $(\alpha+2 n-2) \downarrow_{k}$ divides $c m_{k}\left(B_{2 n}, \alpha\right)$.

First observe that if $B=B_{2 n}$ in Theorem 2, then $d_{2 n-1}\left(B_{2 n}, \alpha\right)=\alpha$ and for $j=1, \ldots, n-1, d_{2 n-2 j}\left(B_{2 n}, \alpha\right)=2 j$ and $d_{2 n-(2 j+1)}\left(B_{2 n}, \alpha\right)=2 j+\alpha$. Thus for $j=0, \ldots, n-1$,

$$
\left(x+d_{2 n-(2 j-1)}\left(B_{2 n}, \alpha\right)-2(2 j-1)+2\right)=(x+\alpha-2 j)
$$

and for $j=1, \ldots, n-1$,

$$
\left(x+d_{2 n-2 j}\left(B_{2 n}, \alpha\right)-2(2 j)+2\right)=(x-2 j+2)
$$

Thus Theorem 2 gives that

$$
\begin{equation*}
\sum_{k=0}^{n} c m_{k}\left(B_{2 n}, \alpha\right)(x) \Downarrow_{2 n-1-k}=(x) \Downarrow_{n-1}(x+\alpha) \Downarrow_{n} \tag{11}
\end{equation*}
$$

Dividing both sides of (11) by $(x) \downarrow_{n-1}$ and then replacing x by $x+2 n-2$ we get

$$
\begin{equation*}
\sum_{k=0}^{n} c m_{k}\left(B_{2 n}, \alpha\right)(x) 山_{n-k}=(x+\alpha+2 n-2) 山_{n} \tag{12}
\end{equation*}
$$

Here $(x) \|_{0}=1$ by definition. We shall prove that $(\alpha+2 n-2) \|_{n-k}$ divides $c m_{n-k}\left(B_{2 n}, \alpha\right)$ by induction on k. Setting $x=0$ in (12) yields that

$$
\begin{equation*}
c m_{n}\left(B_{2 n}, \alpha\right)=(\alpha+2 n-2) \downarrow_{n} \tag{13}
\end{equation*}
$$

which is the base step of our induction. Next assume that $(\alpha+2 n-2) \downarrow_{n-j}$ divides $c m_{n-j}\left(B_{2 n}, \alpha\right)$ for $j=0, \ldots, k-1$. Then we know that $c m_{n-j}\left(B_{2 n}, \alpha\right)=$ $\binom{n}{n-j}(\alpha+2 n-2) \downarrow_{n-j}$ for $j=0, \ldots, k-1$. If we set $x=2 k$ in (12), we get

$$
\sum_{i=0}^{k} c m_{n-i}\left(B_{2 n}, \alpha\right)(2 k) \downarrow_{i}=(2 k+\alpha+2 n-2) \downarrow_{n} .
$$

Solving for $c m_{n-k}\left(B_{2 n}, \alpha\right)$ yields

$$
\begin{align*}
& c m_{n-k}(\left.B_{2 n}, \alpha\right)=\frac{1}{(2 k) \downarrow_{k}} \\
& \quad \times\left[(2 k+\alpha+2 n-2) \Downarrow_{n}-\sum_{i=0}^{k-1}\binom{n}{i}(\alpha+2 n-2) \Downarrow_{n-i}(2 k) \Downarrow_{i}\right] . \tag{14}
\end{align*}
$$

Clearly $(2 n-2+\alpha) \|_{n-k}$ divides the right－hand side of（14）and hence we can conclude that $c m_{n-k}\left(B_{2 n}, \alpha\right)=\binom{n}{n-k}(\alpha+2 n-2) \|_{n-k}$ ．Thus by induction， $c m_{j}\left(B_{2 n}, \alpha\right)=\binom{n}{j}(\alpha+2 n-2) \downarrow_{j}$ for all j ．

The proof of Theorem 3 for $D_{2 n-1}$ is almost the same．That is，$c m_{n}\left(D_{n-1}, \alpha\right)=0$ since any placement $p \in M_{n}\left(B_{2 n}\right)$ must have a rook in the last column of $B_{2 n}$ ．Next we can argue as before that for $0 \leq k \leq n-1$ ，

$$
c m_{k}\left(D_{2 n-1}, \alpha\right)=\binom{n-1}{k} \alpha^{k}+\sum_{j=0}^{k} b_{j, k} \alpha^{j}
$$

for some nonnegative integers $b_{0, k}, \ldots, b_{k-1, k}$ ．That is，if $p \in M_{k}\left(D_{2 n-1}\right)$ ，the maximum number of cycles that can occur in $G_{2 n}(p)$ is k and the only way that we can get k cycles in such a $G_{2 n}(p)$ is if $p=\left\{\left(2 i_{1}-1,2 i_{1}\right), \ldots,\left(2 i_{k}-1,2 i_{k}\right)\right\}$ for some $1 \leq i_{1}<\cdots<i_{k} \leq n-1$ ．Thus to prove that $\operatorname{cm}_{k}\left(D_{2 n-1}, \alpha\right)=$ $\binom{n-1}{k}(\alpha+2 n-2) \downarrow_{k}$ ，we need only show that $(\alpha+2 n-2) \downarrow_{k}$ divides $c m_{k}\left(D_{2 n-1}, \alpha\right)$ ．

It is easy to check that $d_{2 n-1}\left(D_{2 n-1}, \alpha\right)=0$ and for $j=1, \ldots, n-1$ ，

$$
d_{2 n-(2 j+1)}\left(D_{2 n-1}, \alpha\right)=\alpha+2 j-2 \text { and } d_{2 n-2 j}\left(D_{2 n-1}, \alpha\right)=2 j-2
$$

Hence $\left(x-d_{2 n-1}\left(D_{2 n-1}, \alpha\right)-2+2\right)=x$ and for $j=1, \ldots, n-1$

$$
\left(x+d_{2 n-(2 j+1)}\left(D_{2 n-1}, \alpha\right)-2(2 j+1)+2\right)=(x+\alpha-2 j-2)
$$

and

$$
\left(x+d_{2 n-2 j}\left(D_{2 n-1}, \alpha\right)-2(2 j)+2\right)=(x-2 j)
$$

Thus for $D_{2 n-1}$ ，Theorem 2 becomes

$$
\begin{equation*}
\sum_{k=0}^{n-1} c m_{k}\left(D_{2 n-1}, \alpha\right)(x) 山_{2 n-1-k}=(x) 山_{n}(x+\alpha-2) \Downarrow_{n-1} \tag{15}
\end{equation*}
$$

If we divide both sides of（15）by $(x) \downarrow_{n}$ and replace x by $x+2 n$ ，we get

$$
\begin{equation*}
\sum_{k=0}^{n-1} c m_{n-1-k}\left(D_{2 n-1}, \alpha\right)(x) 山_{k}=(\alpha+2 n-2) 山_{n-1} \tag{16}
\end{equation*}
$$

We can then use（16）to prove that $(\alpha+2 n-2) \downarrow_{n-1-k}$ divides $c m_{n-1-k}\left(D_{2 n-1}, \alpha\right)$ by induction on k exactly as before．

3．A cycle version of Theorem 1

For a board $B \subseteq B_{2 n}$ ，set

$$
c f_{k, 2 n}(B, \alpha)=\sum_{p_{m} \in F_{k, 2 n}(B, \alpha)} \alpha^{\operatorname{cy}\left(p_{m}\right)} .
$$

Note that if $\alpha=1$ ，the $c f_{k, 2 n}(B, \alpha)$ reduce to the $f_{k, 2 n}(B)$ from（1）．We will prove the following．

Theorem 4. Let B be a board contained in $B_{2 n}$. Then

$$
\begin{equation*}
\sum_{k=0}^{n} c m_{k}(B, \alpha) \alpha(\alpha+2) \cdots(\alpha+2(n-k)-2)(z-1)^{k}=\sum_{k=0}^{n} c f_{k, 2 n}(B, \alpha) z^{k} \tag{17}
\end{equation*}
$$

Note that by replacing z by $z+1$ in (17) and taking the coefficient of z^{k} on both sides, Theorem 4 is equivalent to the fact that for any $k \in\{0, \ldots, n\}$,

$$
\begin{equation*}
c m_{k}(B, \alpha) \alpha(\alpha+2) \cdots(\alpha+2(n-k)-2)=\sum_{i=k}^{n} c f_{i, 2 n}(B, \alpha)\binom{i}{k} \tag{18}
\end{equation*}
$$

Proof of Theorem 4: First we shall prove by induction on k that if $p \in M_{n-k}\left(B_{2 n}\right)$, then

$$
\begin{equation*}
\sum_{\substack{q \in M_{n}\left(B_{2 n}\right) \\ p \subseteq q}} \alpha^{\operatorname{cy}(q)}=\alpha^{\operatorname{cy}(p)} \alpha(\alpha+2) \cdots(\alpha+2 k-2) \tag{19}
\end{equation*}
$$

Now if $k=0$, (19) is immediate. Thus assume (19) is true for $j=0, \ldots, k-1$. Then fix $p \in M_{n-k}\left(B_{2 n}\right)$. There are $2 k$ elements of $\{1, \ldots, 2 n\}, 1 \leq i_{1}<\cdots<i_{2 k} \leq 2 n$, which are not coordinates of any square in p. There are $2 k-1$ ways to extend p to a rook placement by adding a square with i_{1} as a coordinate, namely, $q_{j}=p \cup\left\{\left(i_{1}, i_{j}\right)\right\}$ for $j=2, \ldots, 2 k$. We claim that there is a $t \in\{2, \ldots, 2 k\}$ such that

$$
\operatorname{cy}\left(q_{j}\right)= \begin{cases}\operatorname{cy}(p) & \text { if } j \in\{2, \ldots, 2 k\}-\{t\} \tag{20}\\ \operatorname{cy}(p)+1 & \text { if } j=t\end{cases}
$$

We use an argument similar, but not identical to, that of case 2 of Theorem 2 to construct a sequence of distinct vertices $s_{1}, \ldots, s_{2 r+1}$. That is, consider the vertex i_{1} in the graph $G_{2 n}(p)$. Then let s_{1} equal $i_{1}-1$ if i_{1} is even and equal $i_{1}+1$ if i_{1} is odd. Hence $\left\{i_{1}, s_{1}\right\}$ will be an edge of the form $\{2 a-1,2 a\}$ in $G_{2 n}(p)$. If there is another edge in $G_{2 n}(p)$ out of s_{1}, then it will be of the form $\left\{s_{1}, s_{2}\right\}$ where either $\left(s_{1}, s_{2}\right)$ or $\left(s_{2}, s_{1}\right)$ is in p. Then let s_{3} be $s_{2}-1$ if s_{2} is even and be $s_{2}+1$ if s_{2} is odd. Thus $\left\{s_{2}, s_{3}\right\}$ will be another edge of the form $\{2 b-1,2 b\}$ in $G_{2 n}(p)$ which is distinct from $\left\{i_{1}, s_{1}\right\}$ and $\left\{s_{1}, s_{2}\right\}$. If there is another edge out of s_{3}, then it will be of the form $\left\{s_{3}, s_{4}\right\}$ where either $\left(s_{3}, s_{4}\right)$ or $\left(s_{4}, s_{3}\right)$ is in p. We then let s_{5} be $s_{4}-1$ if s_{4} is even and $s_{4}+1$ if s_{4} is odd. Again $\left\{s_{4}, s_{5}\right\}$ will be an edge of the form $\{2 c-1,2 c\}$ in $G_{2 n}(p)$. Continuing in this way we get a sequence of distinct vertices, $s_{1}, \ldots, s_{2 r+1}$ such that for all $i \leq r,\left\{s_{2 i}, s_{2 i+1}\right\}$ is an edge of the form $\{2 d-1,2 d\}$ and either $\left(s_{2 j-1}, s_{2 j}\right)$ or $\left(s_{2 j}, s_{2 j-1}\right)$ is in p and there is only one edge of $G_{2 n}(p)$ that contains $s_{2 r+1}$. Thus $s_{2 r+1}$ is not a coordinate of any square in p and hence $s_{2 r+1}=i_{t}$ for some $2 \leq t \leq 2 k$.

It is then easy to see that the edge $\left\{i_{1}, i_{t}\right\}$ will create a new cycle in $G_{2 n}\left(q_{t}\right)$ and that an edge $\left\{i_{1}, i_{j}\right\}$ will not create a new cycle in $G_{2 n}\left(q_{j}\right)$ for $j=\{2, \ldots, 2 k\}-\{t\}$. This establishes (20). But then by induction,

$$
\begin{equation*}
\sum_{\substack{q \in M_{n}\left(B_{2 n}\right) \\ q_{i} \subseteq q}} \alpha^{\operatorname{cy}(q)}=\alpha^{\operatorname{cy}\left(q_{i}\right)} \alpha(\alpha+2) \cdots(\alpha+2 k-4) \tag{21}
\end{equation*}
$$

for $i=2, \ldots, 2 k$. Thus

$$
\begin{aligned}
& \sum_{\substack{q \in M_{n}\left(B_{2 n}\right) \\
p \subseteq q}} \alpha^{\mathrm{cy}(q)}=\sum_{i=2}^{2 k} \sum_{\substack{q \in M_{n}\left(B_{2 n}\right) \\
q_{i} \subseteq q}} \alpha^{\operatorname{cy}(q)} \\
&=\sum_{i=2}^{2 k} \alpha^{\operatorname{cy}\left(q_{i}\right)} \alpha(\alpha+2) \cdots(\alpha+2 k-4) \\
&=\alpha(\alpha+2) \cdots(\alpha+2 k-4) \sum_{i=2}^{2 k} \alpha^{\operatorname{cy}\left(q_{i}\right)} \\
&=\alpha(\alpha+2) \cdots(\alpha+2 k-4)(\alpha+2 k-2) \alpha^{\operatorname{cy}(p)}
\end{aligned}
$$

Thus by induction, (19) holds.
It follows that for $B \subseteq B_{2 n}$,

$$
\begin{aligned}
& c m_{k}(B, \alpha) \alpha(\alpha+2) \cdots(\alpha+2(n-k)+2)= \sum_{\substack{p \in M_{k}(B)}} \sum_{\substack{q \in M_{n}\left(B_{2 n}\right) \\
p \subseteq q}} \alpha^{\mathrm{cy}(q)} \\
&=\sum_{i=k}^{n} \sum_{q \in F_{i, 2 n}(B)} \alpha^{\operatorname{cy}(q)} \sum_{\substack{p \in M_{k}(B) \\
p \subseteq q}} 1 \\
&=\sum_{i=k}^{n}\binom{i}{k} f_{i, 2 n}(B, \alpha) .
\end{aligned}
$$

Thus (18) holds. Moreover,

$$
\begin{align*}
\sum_{k=0}^{n} c m_{k}(B, \alpha) \alpha(\alpha+2) \cdots & (\alpha+2(n-k)+2) z^{k}
\end{align*}=\sum_{k=0}^{n} z^{k} \sum_{i=k}^{n}\binom{i}{k} f_{i, 2 n}(B, \alpha), \sum_{i=0}^{n} f_{i, 2 n}(B, \alpha) \sum_{k=0}^{i}\binom{i}{k} z^{k} .
$$

Thus if we replace z by $z-1$ in (22), we get (17).

References

[CG] F. R. K. Chung and R. L. Graham, On the cover polynomial of a digraph, J. Combin. Theory Ser. B 65 (1995), 273-290.
[D] M. Dworkin, Factorization of the cover polynomial, J. Combin. Theory Ser. B 71 (1997), 17-53.
[HR] J. Haglund and J. B. Remmel, Rook theory for perfect matchings, Adv. Appl. Math. 27 (2001), 438-481.
[RW] V. Reiner and D. White, private communication.

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 191046395

E-mail address: jhaglund@math.upenn.edu

Department of Mathematics, University of California at San Diego, La Jolla, CA 92093-0112

E-mail address: jremmel@ucsd.edu

[^0]: 1991 Mathematics Subject Classification. 05A05.

