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Abstract

We introduce a generalization of the Robinson-Schensted-Knuth insertion algorithm for semi-standard
augmented fillings whose basement is an arbitrary permutation σ ∈ Sn. If σ is the identity, then our
insertion algorithm reduces to the insertion algorithm introduced by the second author [Sém. Lothar.
Combin. 57 (2006/08), Art. B57e, 24 pp.] for semi-standard augmented fillings and if σ is the reverse
of the identity, then our insertion algorithm reduces to the original Robinson-Schensted-Knuth row
insertion algorithm. We use our generalized insertion algorithm to obtain new decompositions of the
Schur functions into nonsymmetric elements called generalized Demazure atoms (which become Demazure
atoms when σ is the identity). Other applications include Pieri rules for multiplying a generalized
Demazure atom by a complete homogeneous symmetric function or an elementary symmetric function, a
generalization of Knuth’s correspondence between matrices of non-negative integers and pairs of tableaux,
and a version of evacuation for composition tableaux whose basement is an arbitrary permutation σ.

1 Introduction

Let N denote the set of natural numbers {0, 1, 2, . . .} and P denote the set of positive integers {1, 2, . . . , }. We
say that γ = (γ1, γ2, . . . , γn) is a weak composition of m into n parts if each γi ∈ N and

∑n
i=1 γi = m. Letting

|γ| =
∑

i γi, the (column) diagram of γ is the figure dg′(γ) consisting of |γ| cells arranged into columns so
that the ith column contains γi cells. For example, the diagram of γ = (2, 0, 1, 0, 3) is pictured in Figure 1.

The augmented diagram of γ, denoted by d̂g(γ), consists of the diagram of γ together with an extra row of
n cells attached below. These extra cells are referred to as the basement of the augmented diagram. We let
λ(γ) be the partition that results by taking the weakly decreasing rearrangement of the parts of γ. Thus if
γ = (2, 0, 1, 0, 3), then λ(γ) = (3, 2, 1, 0, 0).

Figure 1: The diagram of γ = (2, 0, 1, 0, 3) .

Macdonald [7] defined a famous family of symmetric polynomials Pλ(x1, x2, . . . , xn; q, t), which have
important applications to a variety of areas. In [6], Macdonald showed that many of the properties of
the Pλ, such as satisfying a multivariate orthogonality condition, are shared by a family of nonsymmetric
polynomials Eγ(x1, . . . , xn; q, t), where γ is a weak composition with n parts. Haglund, Haiman and Loehr

[1] obtained a combinatorial formula for Eγ(x1, . . . , xn; q, t) in terms of fillings of d̂g(γ) by positive integers
satisfying certain constraints. It will be simpler for us to phrase things in terms of a transformed version of
the Eγ studied by Marshall [8] which we denote by Êγ(x1, . . . , xn; q, t). The Êγ can be obtained from the
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Eγ by sending q → 1/q, t → 1/t, reversing the x-variables, and reversing the parts of γ. The corresponding

combinatorial expression for Êγ(x1, . . . , xn; 0; 0) from [1] involves what the second author [9], [10] later

called semi-standard augmented fillings. It was previously known that Êγ(x1, . . . , xn; 0, 0) (hereafter denoted

more simply by Êγ(x1, . . . , xn)), equals the “standard bases” of Lascoux and Schützenberger [5], which are
also referred to as Demazure atoms. The second author introduced a generalization of the RSK insertion
algorithm involving semi-standard augmented fillings, and used this to give combinatorial proofs of several
results involving Demazure atoms. For example, this generalized RSK insertion algorithm gives a bijective
proof that for any partition β,

sβ(x1, . . . , xn) =
∑

γ
λ(γ)=β

Êγ(x1, . . . , xn). (1)

This extended Robinson-Schensted-Knuth insertion algorithm is also instrumental in work of Haglund,
Luoto, Mason and van Willigenburg, who developed the theory of a new basis for the ring of quasisymmetric
functions called quasisymmetric Schur functions [3], [4]. In particular these authors use it in proving a
generalization of the Littlewood-Richardson rule, where the product of a Schur function and a Demazure atom
(Demazure character, quasisymmetric Schur function) is expanded in terms of Demazure atoms (Demazure
characters, quasisymmetric Schur functions), respectively, with positive coefficients.

Let ǫn denote the identity 1 2 · · · n in Sn and ǭn the reverse of the identity n n − 1 · · · 1. In [9], [10]

and in [3],[4], the basements of the diagrams d̂g(γ) are always filled by either ǫn (i.e., i is in the ith column
of the basement), or by ǭn. In this article we show that many of the nice properties of the extended RSK
insertion algorithm hold with the basement consisting of an arbitrary permutation σ ∈ Sn. In particular we
define a weight preserving bijection which shows

sβ(x1, . . . , xn) =
∑

γ

Êσ
γ (x1, . . . , xn) (2)

where the sum is over all weak compositions γ such that λ(γ) = β and γi ≥ γj whenever i < j and σi > σj .

Here Êσ
γ (x1, . . . , xn) is the version of Êγ(x1, . . . , xn) with basement σ which we call a generalized Demazure

atom. In the special case when σ = ǭn there is only one term in the sum above so that sβ = E ǭn

β , while if σ
is ǫn then (2) reduces to (1).

Part of our motivation for studying the Êσ
γ (x1, . . . , xn) is an unpublished result of M. Haiman and the

first author which can be described briefly as follows. Let Êσ
γ (x1, . . . , xn; q, t) denote the polynomial obtained

by starting with the combinatorial formula from [1] for Êγ(x1, . . . , xn; q, t) involving sums over nonattacking
fillings, replacing the basement ǫn by σ1 σ2 · · ·σn, and keeping other aspects of the formula the same. Then
if i + 1 occurs to the left of i in the basement σ1 σ2 · · ·σn, we have

TiÊ
σ
γ (x1, . . . , xn; q, t) = tAÊσ′

γ (x1, . . . , xn; q, t). (3)

Here A equals one if the height of the column of d̂g(γ) above i + 1 in the basement is greater than or equal
to the height of the column above i in the basement, and equals zero otherwise. Also, σ′ is the permutation
obtained by interchanging i and i + 1 in σ. The Ti are generators for the affine Hecke algebra which act on
monomials in the X variables by

Tix
λ = txsi(λ) + (t − 1)

xλ − xsi(λ)

1 − xαi
,

with xαi = xi/xi+1. See [1] for a more detailed description of the Ti and their relevance to nonsymmetric

Macdonald polynomials. Our Êσ
γ (x1, . . . , xn) can be obtained by setting q = t = 0 in Êσ

γ (x1, . . . , xn; q, t),

and hence are a natural generalization of the Êγ(x1, . . . , xn) to investigate. If we set q = t = 0 in the
Hecke operator Ti, it reduces to a divided difference operator similar to those appearing in the definition of
Schubert polynomials. By (3), Êσ

γ (x1, . . . , xn) can be expressed (up to a power of t) as a series of the divided

difference operators applied to the Demazure character Ê ǭn
γ (x1, . . . , xn).
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As with the extended insertion algorithm, we shall see that our insertion algorithm with general basements
also commutes in a natural way with the RSK insertion algorithm. This useful fact will allow us to extend
the results of the second author to our more general setup. Moreover, we shall give a precise characterization
of how the results of our insertion algorithm vary as the basement σ varies. If σ = ǭn our algorithm becomes
essentially equivalent to the ordinary RSK row insertion algorithm, while if σ = ǫn, it reduces to the extended
insertion algorithm.

The outline of this paper is as follows. In section 2, we formally define the objects we will be working
with, namely permuted basement semi-standard augmented fillings relative to a permutation σ (PBFs). In
sections 3 and 4, we describe our insertion algorithm for PBFs and derive its general properties. In section
5, we use it to prove analogues of the Pieri rules for the product of a homogeneous symmetric function
hn(x1, . . . , xn) times an Êσ

γ (x1, . . . , xn) and the product of an elementary symmetric function en(x1, . . . , xn)

times an Êσ
γ (x1, . . . , xn). In section 6, we define a generalization of the RSK correspondence between N-

valued matrices and pairs of column strict tableaux for permuted basement fillings and prove several of its
basic properties. Finally, in section 7 we study the analogue of evacuation for PBF’s.

2 Permuted basement semi-standard augmented fillings.

The positive integer n is fixed throughout, while γ will always denote a weak composition into n parts and
σ a permutation in Sn. We let (i, j) denote the cell in the i-th column, reading from left to right, and the

j-th row, reading from bottom to top, of d̂g(γ). The basement cells of d̂g(γ) are considered to be in row 0 so

that d̂g(γ) = dg′(γ) ∪ {(i, 0) : 1 ≤ i ≤ n}. The reading order of the cells of d̂g(γ) is obtained by reading the
cells in rows from left to right, beginning at the highest row and reading from top to bottom. Thus a cell
a = (i, j) is less than a cell b = (i′, j′) in the reading order if either j > j′ or j = j′ and i < i′. For example,

if γ = (0, 2, 0, 3, 1, 2, 0, 0, 1), then d̂g(γ) is pictured in Figure 2 where we have placed the number i in the i-th

cell in reading order. An augmented filling, F , of an augmented diagram d̂g(γ) is a function F : d̂g(γ) → P,

which we picture as an assignment of positive integers to the cells of d̂g(γ). We let F (i, j) denote the entry
in cell (i, j) of F . The reading word of F , read(F ), is obtained by recording the entries of F in the reading
order of dg′(γ). The content of F is the multiset of entries which appear in the filling F . Throughout this
article, we will only be interested in fillings F such that entries in each column are weakly increasing reading
from top to bottom and the basement entries form a permutation in the symmetric group Sn.

1

2 3 4

5 6 7 8 9

10 11 12 13 14 15 16 17 18

Figure 2: The reading word order of the cells of the augmented board for γ = (0, 2, 0, 3, 1, 2, 0, 0, 1).

Next we define type A and B triples as in [9]. A type A triple in an augmented diagram of shape γ is a
set of three cells a, b, c of the form (i, k), (j, k), (i, k − 1) for some pair of columns i < j of the diagram and
some row k > 0, where γi ≥ γj . A type B triple is a set of three cells a, b, c of the form (j, k + 1), (i, k), (j, k)
for some pair of columns i < j of the diagram and some row k ≥ 0, where γi < γj . Note that basement
cells can be elements of triples. As noted above, in this article our fillings F have weakly increasing column
entries reading from top to bottom, so we always have the entry values satisfying F (a) ≤ F (c). We say that
a triple of either type is an inversion triple if the relative order of the entries is either F (b) < F (a) ≤ F (c)
or F (a) ≤ F (c) < F (b). Otherwise we say that the triple is a coinversion triple, i.e. if F (a) ≤ F (b) ≤ F (c).
Figure 3 pictures type A and B triples.

A semi-standard augmented filling is a filling of an augmented diagram with positive integer entries so
that (i) the column entries are weakly increasing from top to bottom, (ii) the basement entries form a
permutation of 1, 2, . . . , n where n is the number of cells in the basement, and (iii) every Type A or B triple
is an inversion triple. We say that cells c1 = (x1, y1) and c2 = (x2, y2) are attacking if either c1 and c2 lie
in the same row, i.e. y1 = y2, or if c1 lies strictly to the left and one row below c2, i.e. if x1 < x2 and
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...
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γ
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a b

c

column j column i

Figure 3: Type A and B triples.

y2 = y1 + 1. We say that filling F is non-attacking if F (c1) 6= F (c2) whenever c1 and c2 are attacking.
It is easy to see from our definition of inversion triples that a semi-standard augmented filling F must be
non-attacking. A superscript σ on a filling F , as in F σ, means the basement entries form the permutation
σ.

We say that a filling F σ is a permuted basement semi-standard augmented filling (PBF) of shape γ with
basement permutation σ if

(I) F σ is a semi-standard augmented filling of d̂g(γ),
(II) F σ((i, 0)) = σi for i = 1, . . . , n, and
(III) for all cells a = (i2, j), b = (i1, j − 1) such that i1 < i2 and γi1 < γi2 , we have F σ(b) < F σ(a).
We shall call condition (III) the B-increasing condition, as pictured in Figure 4.

We note that the fact that a PBF F σ has weakly increasing columns, reading from top to bottom, and
satisfies the B-increasing condition automatically implies that every B-triple in F σ is an inversion triple.
That is, suppose that γi < γj where i < j and a = (j, k + 1), b = (i, k) and c = (j, k) is B-triple. Then
F σ(b) < F σ(a) ≤ F σ(c) since the B-increasing condition forces F σ(b) < F σ(a) and the weakly increasing
column condition forces F σ(a) ≤ F σ(c). Thus {a, b, c} is an inversion triple.

F  (b) < F  (a)σ σ

row j−1

row j

column icolumn i1 2

γ

a

b

i 1
γ

i 2
<

Figure 4: The B-increasing condition for F σ.

Given a PBF F σ of shape γ , we define the weight of F σ, W (F σ), to be

W (F σ) =
∏

(i,j)∈dg′(γ)

xF σ(i,j). (4)

We let PBF(γ, σ) denote the set of all PBFs F σ of shape γ with basement σ. We then define

Êσ
γ (x1, x2, . . . , xn) =

∑

F σ∈PBF(γ,σ)

W (F σ). (5)

The following fact about PBFs will be used frequently in the sequel.

Lemma 1. Let F σ be a PBF of shape γ and assume that i < m.

(i) Suppose that F σ(i, j) < F σ(m, j) for some j > 0. Then F σ(i, j − 1) < F σ(m, j). Moreover, for all
0 ≤ k < j, F σ(i, k) < F σ(m, k + 1) ≤ F σ(m, k).
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(ii) Suppose that F σ(i, j) > F σ(m, j) for some j ≥ 0. Then γi ≥ γm and , for all j ≤ k ≤ γm, F σ(i, k) >
F σ(m, k).

Proof. For (i), we consider two cases. First if γi < γm, then the B-increasing condition forces F σ(i, j − 1) <
F σ(m, j). Second, if γi ≥ γm, then consider the A-triple a = (i, j), b = (m, j), and c = (i, j − 1). As we
are assuming that F σ(a) < F σ(b), it must be the case that F σ(i, j − 1) = F σ(c) < F σ(b) = F σ(m, j) since
otherwise {a, b, c} would be coinversion triple in F σ. Thus it always the case that F σ(i, j − 1) < F σ(m, j).
But then we know that F σ(i, j − 1) < F σ(m, i) ≤ F σ(m, j − 1) so that F σ(i, j − 1) < F σ(m, j − 1). Thus
we can repeat our argument to show that for all 0 ≤ k < j, F σ(i, k) < F σ(m, k + 1) ≤ F σ(m, k).

For (ii), suppose that F σ(i, j) > F σ(m, j). Then we claim that it cannot be the case that γi < γm since
otherwise (m, j + 1) must be a cell in F σ which would mean that F σ(i, j) > F σ(m, j) ≥ F σ(m, j + 1). But
then a = (m, j + 1) and b = (i, j) would violate the B-increasing condition. Thus it must be the case that
γi ≥ γm. We claim that it also must be the case that F σ(i, k) > F σ(m, k) for all j < k ≤ γm. If this is
not the case, then let k be the smallest ℓ such that ℓ ≥ j and F σ(i, ℓ) ≤ F σ(m, ℓ). This implies the triple
{(i, k), (m, k), (i, k − 1)} is a type A coinversion triple since

F σ(i, k) ≤ F σ(m, k) ≤ F σ(m, k − 1) < F σ(i, k − 1).

Since we are assuming that F σ has no type A coinversion triples, there can be no such k.

Note that part (ii) of Lemma 1 tells us that the basement permutation σ restricts the possible shapes of
a PBF F σ with basement σ. That is, if σi > σm, then it must be the case that height of column i in F σ is
greater than or equal to the height of column m in F σ.

We end this section by considering the two special cases of PBFs where the basement is either the
identity or the reverse of the identity. In the special case where the basement permutation σ = ǫn, a PBF
is a semi-standard augmented filling as defined in [9]. Next consider the case where F ǭn is a PBF of shape
γ = (γ1, . . . , γn) with basement ǭn. In that case, Lemma 1 implies that γ1 ≥ γ2 ≥ · · · ≥ γn and that F σ must
be strictly decreasing in rows. Since the entries of F ǭn must weakly decrease in columns reading from bottom
to top, we see that F ǭn is what could be called a reverse row strict tableau with basement ǭn attached. It
follows that for γ a partition, Ê ǭn

γ (x1, x2, . . . , xn) is equal to the Schur function sγ(x1, x2, . . . , xn).

3 An analogue of Schensted insertion

In [9], the second author defined a procedure k → F to insert a positive integer k into a semi-skyline
augmented filling, which is a PBF with basement permutation equal to the identity. In this section, we
shall describe an extension of this insertion procedure which inserts a positive integer into a PBF with an
arbitrary basement permutation.

Let F σ be a PBF with basement permutation σ ∈ Sn. We shall define a procedure k → F σ to insert a
positive integer k into F σ. Let F̄ σ be the extension of F σ which first extends the basement permutation σ
by adding j in cell (j, 0) for n < j ≤ k and then adds a cell which contains a 0 on top of each column. Let
(x1, y1), (x2, y2), . . . be the cells of this extended diagram listed in reading order. Formally, we shall define
the insertion procedure of k → (x1, y1), (x2, y2), . . . of k into the sequence of cells (x1, y1), (x2, y2), . . ..

Let k0 = k and look for the first i such that F̄ σ(xi, yi) < k0 ≤ F̄ σ(xi, yi − 1). Then there are two cases.

Case 1. If F̄ σ(xi, yi) = 0, then place k0 in cell (xi, yi) and terminate the procedure.

Case 2. If F̄ σ(xi, yi) 6= 0, then place k0 in cell (xi, yi), set k0 := F̄ σ(xi, yi) and repeat the procedure
by inserting k0 into the the sequence of cells (xi+1, yi+1), (xi+2, yi+2), . . .. In such a situation, we say that
F̄ σ(xi, yi) was bumped in the insertion k → F σ.

The output of k → F σ is the filling that keeps only the cells that are filled with positive integers. That is,
we remove any cells of F̄ σ that still have a 0 in them.
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The sequence of cells that contain elements that were bumped in the insertion k → F σ plus the final
cell which is added when the procedure is terminated will be called the bumping path of the insertion. For
example, Figure 5 shows an extended diagram of a PBF with basement permutation equal to 6 1 3 4 2 5. If
we insert 5 into this PBF, then it is easy to see that the first element bumped is the 4 in column 1. Thus
that 4 will be replaced by 5 and we will insert 4 into the remaining sequence of cells. The first element that
4 can bump is the 2 in column 4. Thus that 4 will replace the 2 in column 4 and 2 will be inserted in the
remaining cells. But then that 2 will bump the 0 in column 5 so that the procedure will terminate. Thus
the circled elements in Figure 5 correspond to the bumping path of this insertion. Clearly, the entries of F̄ σ

in the bumping path must strictly decrease as we proceed in reading order.

5

= 6 1 3 4 2 5

5

3

1 3

35

4 2

6 1 3 4 2 5

5

4

3

1 3

3

2

0

0 0

0 0

0

Figure 5: The bumping path of an insertion into a PBF.

We note that if we try to insert 8 in to the PBF pictured in Figure 5, 8 would have no place to go unless
we created extra columns with basement entries 7 and 8. Thus in our case, it is easy to see that inserting
8 into the PBF Figure 5 would give us the PBF pictured in Figure 6. For the rest of this paper, when we
consider an insertion k → F σ, we will assume that σ ∈ Sn where n is greater than or equal to k and all of
the entries in F σ.

=

8

6 1 3 4 2 5

5

4

3

1 3

3

2

7 8

8

6 1 3 4 2 5

5

4

3

1 3

3

2

0

0 0

0 0

0

Figure 6: Inserting 8 into the PBF of Figure 5.

The following lemmas are needed in order to prove that the insertion procedure terminates and the result
is a PBF.

Lemma 2. Let c1 = (i1, j1) and c2 = (i2, j2) be two cells in a PBF F σ such that F σ(c1) = F σ(c2) = a,
assume c1 appears before c2 in reading order, and no cell between c1 and c2 in reading order contains the
entry a. Let c′1 = (i′1, j

′
1) and c′2 = (i′2, j

′
2) be the cells in k → F σ containing the entries from c1 and c2

respectively. Then j′1 > j′2.

Proof. Consider the cell c1 = (i1, j1 − 1) immediately below c1 in the diagram F σ. Note that c1 attacks all
cells of F σ to its right that lie in same row as well as all cells to its left that lie one row below the row of c1.
Since entries in cells which are attacked by c1 must be different from F σ(c1), it follows that c2 must appear
weakly after c1 in reading order. If c2 = c1 = (i1, j1−1), then the entry in cell c1 cannot be bumped because
that would require F σ(i1, j1) < k0 ≤ F σ(i1, j1 − 1). Thus either c2 is not bumped in which case the Lemma
automatically holds or c2 is bumped in which case its entry ends up in a cell which is later in reading order
so that j1 = j′1 > j1 − 1 ≥ j′2.

Thus we may assume that F σ(c1) > F σ(c1) and that c2 follows c1 in reading order. This means that
the element c2 = (i2, j2 + 1) which lies immediately above c2 follows c1 in reading order and the entry in
cell c2 must be strictly less than a by our choice of c2. If the entry in c1 is not bumped, then again we can
conclude as above that the entry in c2 will end up in a cell which follows c1 in reading order so that again
j1 = j′1 > j1 − 1 ≥ j′2. Finally, suppose that the entry a in cell c1 is bumped. Since F σ(c2) < a = F σ(c2), it
follows that F σ(c2) is a candidate to be bumped by a. Thus the a that was bumped out of cell c1 must end
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up in a cell which weakly precedes c2 in reading order and hence it ends up in a row which is higher than
the row of c2. Since the elements in a bumping path strictly decrease, the a in cell c2 cannot be part of the
bumping path. Thus the lemma holds.

Lemma 3. Suppose that F σ is a PBF and k is a positive integer. Then every type A triple in k → F σ is
an inversion triple.

Proof. Suppose that F σ is of shape γ = (γ1, . . . , γn) where n ≥ k. Consider an arbitrary type A triple
{a = (x1, y1), b = (x2, y1), c = (x1, y1 − 1)} in F̃ σ := k → F σ. Suppose for a contradiction that {a, b, c} is
a coinversion triple so that F̃ σ(a) ≤ F̃ σ(b) ≤ F̃ σ(c). Since the entries in the bumping path in the insertion
k → F σ form a strictly decreasing sequence when read in reading order, only one of {F σ(a), F σ(b), F σ(c)}
can be bumped by the insertion procedure k → F σ. Let F̄ σ be the extended diagram corresponding to F σ

as defined in our definition of the insertion k → F σ. We claim that the triple conditions for F σ imply that
either F̄ σ(b) < F̄ σ(a) ≤ F̄ σ(c) or F̄ σ(a) ≤ F̄ σ(c) < F̄ σ(b). This follows from the fact that F σ is a PBF if
a, b, c are cells in F σ. Since the shape of F̃ σ arises from γ by adding a single cell on the outside of γ, we
know that c is a cell in F σ. However, it is possible that exactly one of a or b is not in F σ and is filled with
a 0 in F̄ σ. If it is b, then we automatically have F̄ σ(b) < F̄ σ(a) ≤ F̄ σ(c). If it is a, then the column that
contains a is strictly shorter than the column that contains b because in F̃ σ, it must be the case that the
height of column x1 is greater than or equal to the height of column x2 since {a, b, c} is a type A triple in
F̃ σ. But then the B-increasing condition for F σ forces F̄ σ(c) < F̄ σ(b) and, hence, F̄ σ(a) ≤ F̄ σ(c) < F̄ σ(b)
must hold.

We now consider two cases.

Case 1. F̄ σ(b) < F̄ σ(a) ≤ F̄ σ(c).

Note in this case, 0 < F̄ σ(a) so that a is a cell in F σ. Moreover the entries in a and c cannot be bumped
in the insertion k → F σ since their replacement by a larger value would not produce the desired ordering
F̃ σ(a) ≤ F̃ σ(b) ≤ F̃ σ(c). Thus it must be the case that F̃ σ(b) was bumped in the insertion k → F σ. We
now consider two subcases.

Subcase 1.a. F̄ σ(a) < F̃ σ(b).

We know that F̃ σ(b) bumps F̄ σ(b). We wish to determine where F̃ σ(b) came from in the insertion process
k → F σ. It cannot be that F̃ σ(b) = k or that it was bumped from a cell that comes before a in the reading
order since it would then meet the conditions to bump the entry F σ(a) in cell a as F σ(a) < F̃ σ(b) ≤ F σ(c).
Thus it must have been bumped from a cell after a but before b in reading order. That is, F̃ σ(b) = F σ(d)
where d = (x3, y1) and x1 < x3 < x2. Thus we have the situation pictured in Figure 7.

row y

row y −1

a b

c

d

column x column x column x21 3

1

1

Figure 7: Picture for Subcase 1.a.

However, this is not possible since if γx1 ≥ γx3 , then the entries in cells a, d, and c would violate the
A-triple condition for F σ and, if γx1 < γx3 , then the entries in cells c and d would violate the B-increasing
condition on F σ.

Subcase 1.b F̄ σ(a) = F̃ σ(b).

Again we must determine where F̃ σ(b) came from in the insertion process k → F σ. To this end, let r
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be the least row such that r > y1 and F̄ σ(x1, r) < F̄ σ(x1, r − 1). Then we will have the situation pictured
in Figure 8 where d is the cell in column x1 and row r. Thus all the entries of F σ in the cells in column x1

between a and d are equal to F σ(a).

row y

row y −1

b

column x2

1

1 c

a

row r

column x1

d

=
=

=
=

=
<

Figure 8: Picture for Subcase 1.b.

Now the region of shaded cells pictured in Figure 8 are cells which are attacked or attack some cell which
is equal to F σ(a) and hence their entries in F σ must all be different from F σ(a). Hence F̃ σ(b) cannot have
come from any of these cells since we are assuming that F̄ σ(a) = F̃ σ(b). Thus F̃ σ(b) must have come from
a cell before d in reading order. But this is also impossible because F̃ σ(b) would then meet the conditions
to bump F̄ σ(d) which would violate our assumption that it bumps F σ(b).

Case 2. F̄ σ(a) ≤ F̄ σ(c) < F̄ σ(b).

The entry in cell c is the only entry which could be bumped in the insertion k → F σ if we are to end
up with the relative ordering F̃ σ(a) ≤ F̃ σ(b) ≤ F̃ σ(c). Since F σ(c) is bumped, this means that c is not in
the basement. But if we do not bump either a or b in the insertion k → F σ and a and b are cells in F̃ σ, it
must be the case that a and b are cells in F σ and that there is no change in the heights of columns x1 and
x2. Thus γx1 ≥ γx2 . Let c be the cell immediately below c and b be the cell immediately below b. Thus we
must have F σ(c) < F̃ σ(c) ≤ F σ(c). We now consider two subcases.

Subcase 2.a. F̃ σ(c) = F σ(b).

Let r be the least row such that r > y1 and F̄ σ(x2, r) < F̄ σ(x2, r − 1). Then we will have the situa-
tion pictured in Figure 9 where d is the cell in column x2 and row r. Thus all the entries of F σ in the cells
on column x2 between b and d are equal to F σ(b).

Now the region of shaded cells pictured in Figure 9 are cells which are attacked or attack some cell which
is equal to F σ(b) and hence their entries in F σ must all be different from F σ(b). Thus F̃ σ(c) cannot have
come from any of these cells since we are assuming that F σ(b) = F̃ σ(c). Hence F̃ σ(c) must have come from
a cell before d in reading order. But this is also impossible because F̃ σ(c) would then meet the conditions
to bump F̄ σ(d) which would violate our assumption that it bumps F σ(c).

Subcase 2.b. F σ(b) < F̃ σ(c).

First consider the A-triple c, c, b in F σ. We cannot have that F σ(b) < F σ(c) ≤ F σ(c) since that would
imply F σ(b) ≤ F σ(b) < F σ(c), which would violate our assumption that F σ(a) < F σ(c) < F σ(b). Thus it
must be the case that F σ(c) ≤ F σ(c) < F σ(b). But then we would have F σ(b) < F̃ σ(c) ≤ F σ(c) < F σ(b)
which would mean that F̃ σ(c) satisfies the conditions to bump F σ(b). Since it does not bump F σ(b), it must
be the case that F̃ σ(c) came from a cell which is after b in the reading order. We now consider two more
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Figure 9: Picture for Subcase 2.a.

subcases.

Subcase 2.b.i. F̃ σ(c) is in the same row as F σ(b).

Assume that F̃ σ(c) = F σ(d) where d = (x3, y1) and x2 < x3. It cannot be that γx2 < γx3 since
then the B-increasing condition would force that F σ(b) < F σ(d) = F̃ σ(c). But that would mean that
F σ(b) < F̃ σ(c) ≤ F σ(c) which violates the fact that F σ(c) ≤ F σ(c) < F σ(b). Thus it must be the case
that γx2 ≥ γx3 and, hence, b, b, d is a type A triple. As we cannot have F σ(b) < F σ(d) = F̃ σ(c), it must be
the case that F̃ σ(c) = F σ(d) < F σ(b) ≤ F σ(b). But this is also impossible because we are assuming that
F σ(b) < F̃ σ(c).

Subcase 2.b.ii. F̃ σ(c) is in the same row as F σ(c).

In this case, let e1, . . . , es, es+1 = c be the cells in the bumping path of the insertion of k → F σ in row
y1 − 1, reading from left to right. Thus we are assuming that F̃ σ(c) = F σ(es). For each ei, we let ei be the
cell directly below ei and ei be the cell directly above ei. Thus we have the picture in Figure 10 where we
are assuming that s = 3 and we have circled the elements in the bumping path.

e

a

c

c

b

bee

e e e

eee

1

1

2

2

2

1 3

3

3

Figure 10: Picture for Subcase 2.b.ii.

Since the elements in the bumping path strictly decrease, we have that F σ(e1) > · · · > F σ(es) >
F σ(es+1) = F σ(c) and that for each i, F σ(ei+1) < F σ(ei) ≤ F σ(ei+1). Let ej = (zj , y1 − 1). Thus
zs+1 = x1. By Lemma 1, we must have γz1 ≥ · · · ≥ γzs

≥ γx1 . This means that the eis are cells in F σ

so that Lemma 1 also implies that F σ(e1) > · · · > F σ(es). Note that in this case, we have γx1 ≥ γx2 so
that we know that γz1 ≥ · · · ≥ γzs

≥ γx1 ≥ γx2 . Now consider the A triples {ei, ei, b}. We are assuming
that F σ(c) = F σ(es+1) ≤ F σ(es+1) = F σ(c) < F σ(b). But since F σ(es+1) < F σ(es) ≤ F σ(es+1), the
{es, es, b} A-triple condition must be that F σ(es) ≤ F σ(es) < F σ(b). Now if es−1 exists, then we know
that F σ(es) < F σ(es−1) ≤ F σ(es) and, hence, the {es−1, es−1, b} A-triple condition must also be that
F σ(es−1) ≤ F σ(es−1) < F σ(b). If es−2 exists, then we know that F σ(es−1) < F σ(es−2) ≤ F σ(es−1) and,
hence, the {es−2, es−2, b} A-triple condition must also be that F σ(es−2) ≤ F σ(es−2) < F σ(b). Continuing
on in this way, we can conclude that for all j, F σ(ej) ≤ F σ(ej) < F σ(b). Next consider the ei, ei, b
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A-triple conditions. We are assuming that F σ(b) < F̃ σ(c) = F σ(es). Thus it must be the case that
F σ(b) < F σ(es) ≤ F σ(es). Since F σ(es) < F σ(es−1) < · · · < F σ(e1), it must be the case that for all j,
F σ(b) < F σ(ej) ≤ F σ(ej).

Thus in this case, we must have F σ(b) < F σ(e1) ≤ F σ(e1) ≤ F σ(e1) < F σ(b). Now the question is
where can the element z which bumps F σ(e1) come from? We claim that z cannot equal k or come from
a cell before b in reading order since it satisfies the condition to bump b and b is not bumped. Thus it
must have come from a cell d = (x3, y1) which lies in the same row as b but comes after b in reading order.
In that case, we must have F σ(e1) < F σ(d) ≤ F σ(e1) < F σ(b). Thus it cannot be that γx2 < γx3 since
the B-increasing condition would force F σ(b) < F σ(d). Thus γx2 ≥ γx3 . But in that case, we would have
F σ(b) < F σ(d) < F σ(b) which would be a coinversion A triple in F σ.

Thus we have shown that in Subcase 2, c could not have been bumped and, hence, there can be no
coinversion A triples in k → F σ.

It is obvious that our insertion algorithm ensures that the columns of k → F σ are weakly increasing
when read from top to bottom. Thus if we can show that k → F σ satisfies the B-increasing condition, we
know that all B triples in k → F σ will be inversion triples.

Lemma 4. If F σ is a PBF, then F̃ σ = k → F σ satisfies the B-increasing condition.

Proof. Suppose that F σ is of shape γ = (γ1, . . . , γn) where n ≥ k. Suppose that F̃ σ does not satisfy the
B-increasing condition. Thus there must be a type B triple {b = (x1, y1), a = (x2, y1 + 1), c = (x2, y1)} in
F̃ σ := k → F σ as depicted in Figure 11 such that F̃ σ(b) ≥ F̃ σ(a). Assume that we have picked a and b so
that b is as far left as possible. Let b denote the cell immediately above b and b denote the cell immediately
below b. Then there are two possibilities, namely, it could be that γx1 < γx2 so that {a, b, c} forms a type
B triple in F σ or it could be that γx1 = γx2 and we added an element on the top of column x2 during the
insertion k → F σ so that in F̃ σ, the height of column x1 is strictly less than the height of column x2.

ab

b

b

c

column xcolumn x 21

row y1

Figure 11: A type B triple.

Case 1. γx1 < γx2 .

In this case, the B-increasing condition for F σ implies that F σ(b) < F σ(a) and F σ(b) < F σ(c). As the
elements in the bumping path strictly decrease, it must be the case that F σ(b) is bumped and F σ(a) is not
bumped. Thus we must have that F σ(b) ≥ F̃ σ(b) > F σ(b).

First we claim that we cannot be the case that F̃ σ(b) = F σ(a). Otherwise, let r be the least row such
that r > y1 + 1 and F̄ σ(x2, r) < F̄ σ(x2, r − 1). Then we will have the situation pictured in Figure 12 where
d is the cell in column x2 and row r. Thus all the entries of F σ in the cells in column x2 between a and
d are equal to F σ(a). Now the region of shaded cells pictured in Figure 12 are cells which are attacked or
attack some cell which is equal to F σ(a) and hence their entries in F σ must all be different from F σ(a).
Hence F̃ σ(b) cannot have come from any of these cells since we are assuming that F σ(a) = F̃ σ(b). Thus
F̃ σ(b) must be either equal to k or have come from a cell in F σ which precedes d in reading order. But this
is also impossible because F̃ σ(b) would then meet the conditions to bump F̄ σ(d) which would violate our
assumption that it bumps F σ(b).

Thus we can assume that F σ(a) < F σ(b). Now the question is where did F̃ σ(b) come from?
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Figure 12: The cells which are attacked by cells equal to F σ(a).

First it cannot be that F̃ σ(b) was either equal to k or was equal to F σ(d) where d comes before a in
reading order since then we have that

F σ(a) < F σ(b) < F̃ σ(b) ≤ F σ(b) < F σ(c).

But this would mean that F̃ σ(b) meets the condition to bump F σ(a) which would violate our assumption
that F̃ σ(b) bumps F σ(b).

Similarly, it cannot be the case that F̃ σ(b) = F σ(d) where d is a cell to the right of a and in the same
row as a. That is, if d = (x3, y1 + 1) where x2 < x3, then either (i) γx2 < γx3 in which case the fact that
F σ(c) > F σ(d) = F̃ σ(b) would mean that cells d and c violate the B-increasing condition for F σ or (ii)
γx2 ≥ γx3 in which case the triple {a, c, d} would be a type A coinversion triple in F σ.

Thus it must be the case that F̃ σ(b) came from a cell to the left of b and in the same row as b in F σ. So
let e1, . . . , es, es+1 = b be the cells in the bumping path of the insertion of k → F σ in row y1, reading from
left to right. Thus we are assuming that F̃ σ(b) = F σ(es). For each ei, we let ei be the cell directly below ei.
Thus we have the situation pictured in Figure 13 where we are assuming that s = 3 and we have circled the
elements in the bumping path.

e ee

eee1

2

2

1 3

3

b

b

a

c

Figure 13: Picture for F̃ σ(b) is in the same row as b.

Since the elements in the bumping path strictly decrease, we have that F σ(e1) > · · · > F σ(es) >
F σ(es+1) = F σ(b) > F σ(a). Moreover, for each 1 ≤ i ≤ s, we have F σ(ei+1) < F σ(ei) ≤ F σ(ei+1). Let
ej = (zj , y1) for j = 1, . . . , s + 1. Thus zs+1 = x1. By Lemma 1, we must have γz1 ≥ · · · ≥ γzs

≥ γx1 . Note
that the fact that we chose b to be as far left as possible means that it must be the case that γzj

≥ γx2

for 1 ≤ j ≤ s. That is, if for some 1 ≤ j ≤ s, γzj
< γx2 , then the entries in cells a and ej would

violate the B-increasing condition in F σ which would violate our choice of b. Thus {ej, ej , c} is a type A
triple for 1 ≤ j ≤ s. Since F σ(c) > F σ(b) = F σ(es+1) ≥ F σ(es), it must be the case that the {c, es, es}
A triple condition is F σ(es) ≤ F σ(es) < F σ(c). Now assume by induction that we have shown that
F σ(ej) ≤ F σ(ej) < F σ(c). Then since F σ(ej−1) ≤ F σ(ej), the {a, ej−1, ej−1} A triple condition must be
that F σ(ej−1) ≤ F σ(ej−1) < F σ(c). It thus follows that F σ(e1) ≤ F σ(e1) < F σ(c).

Now the question is where did F̃ σ(e1) come from? Note that we have shown that

F σ(a) < F σ(e1) < F̃ σ(e1) ≤ F σ(e1) < F σ(c).
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Thus it cannot be that F̃ σ(e1) is equal to k or is equal to F σ(d) for some cell d which precedes a in
reading order since then F̃ σ(e1) would bump F σ(a). By our choice of e1, the only other possibility is that
F̃ σ(e1) = F σ(d) for some cell d to the right of a and in the same row as a. Say d = (x3, y1+1) where x2 < x3.
Then it cannot be that γx2 < γx3 since then the cells d and c would violate the B-increasing condition in F σ

and it cannot be that γx2 ≥ γx3 since then the triple {a, c, d} would be a type A coinversion triple in F σ.
Thus we have shown that γx1 < γx2 is impossible.

Case 2. γx1 = γx2 = y

Thus we must have added an element on the top of column x2 during the insertion k → F σ so that in F̃ σ,
the height of column x1 is strictly less than the height of column x2. In this case, neither b nor c were involved
in the bumping path of k → F σ so that F σ(b) = F̃ σ(b) and F σ(c) = F̃ σ(c). We claim that it must be the
case that F̃ σ(x1, y) ≥ F̃ σ(x2, y + 1). That is, if y = y1, then F̃ σ(x1, y) = F̃ σ(b) ≥ F̃ σ(a) = F̃ σ(x2, y + 1)
since we are assuming that F̃ σ(b) ≥ F̃ σ(a). If y > y1, then the triple {b, a, b} is a type A triple in F σ

and F σ(a) = F̃ σ(a). We now have two possibilities, namely, either (i) F σ(a) < F σ(b) ≤ F σ(b) or (ii)
F σ(b) ≤ F σ(b) < F σ(a). Note that (ii) is inconsistent with our assumption that F̃ σ(b) ≥ F̃ σ(a) so that it
must be the case that F σ(b) > F σ(a). But then we know by part (ii) of Lemma 1 that F σ(x1, y) > F σ(x2, y).
Our insertion algorithm ensures that F σ(x2, y) ≥ F̃ σ(x2, y + 1) so that F σ(x1, y) > F̃ σ(x2, y + 1) in this
case.

Now consider the question of where F̃ σ(x2, y + 1) came from in the bumping process. It cannot be the
case that F̃ σ(x2, y + 1) = k or was bumped from a cell before (x1, y + 1) in the reading order because then
F̃ σ(x2, y + 1) could be placed on top of F σ(x1, y) and F̄ σ(x1, y + 1) = 0 in this case. Thus F̃ σ(x2, y + 1)
must have been bumped from some cell d between (x1, y + 1) and (x2, y + 1) in reading order. But this
is impossible since F σ(x1, y) ≥ F σ(d) = F̃ σ(x2, y + 1) would mean that (x1, y) and d do not satisfy the
B-increasing condition in F σ. Thus we have shown that the assumption that F̃ σ(b) ≥ F̃ σ(a) leads to a
contradiction in all cases and, hence, F̃ σ must satisfy the B-increasing condition.

Proposition 5. The insertion procedure k → F σ is well-defined and produces a PBF.

Proof. Let F σ be an arbitrary PBF of shape γ and basement σ ∈ Sn and let k be an arbitrary positive
integer less than or equal to n. We must show that the procedure k → F σ terminates and that the resulting
filling is indeed a PBF. Lemma 2 implies that at most one occurrence of any given value will be bumped to
the first row. Therefore each entry i in the first row will be inserted into a column at or before the column
σ−1(i). This means that the insertion procedure terminates and hence is well-defined.

Lemmas 3 and 4 imply that k → F σ is a semi-standard augmented filling which satisfies the B-increasing
condition. Thus k → F σ is a PBF.

Before proceeding, we make two remarks. Our first remark is concerned with the process of inverting our
insertion procedure. That is, the last cell or terminal cell in the bumping path of k → F σ must be a cell
that originally contained 0 in F̄ σ. Such a cell was not in F σ so that the shape of F̃ σ is the result of adding
one new cell c on the top of some column of the shape of F σ. However, there are restrictions as to where
this new cell may be placed. That is, we have the following proposition which says that if c is the top cell of
a column in a sequence of columns which have the same height in k → F σ, then c must be in the rightmost
of those columns.

Proposition 6. Suppose that σ ∈ Sn and F σ is a PBF with basement σ and k ≤ n. Suppose that F σ has
shape γ = (γ1, . . . , γn), k → F σ has shape δ = (δ1, . . . , δn), and (x, y) is the cell in δ/γ. Then it must be
case that if x < n, then 1 + γx 6= γx+j for 1 ≤ j ≤ n − x. In particular, if x < n, then δx 6= δx+j for
1 ≤ j ≤ n − x.

Proof. Arguing for a contradiction, suppose that x < n and 1 + γx = γx+j = y for some j such that
1 ≤ j ≤ n − x. Let Gσ = k → F σ. and let F̄ σ and Ḡσ be the fillings which result by placing 0’s on top of
the columns of F σ and Gσ respectively. Thus we would have the situation pictured in Figure 14 for the end
of the bumping path in the insertion k → F σ.

12



In F σ

c

0

col.
x

0

b

col.
x+j

...
b

0

row y

col.

0

c

a

In Gσ

col.
x

...

x+j

Figure 14: The end of the bumping path in k → F σ.

Hence b is at the top of column x + j in both F σ and Gσ and neither F σ(b) nor F σ(c) are bumped
during the insertion of k → F σ. Note that B-increasing condition in F σ forces that F σ(c) < F σ(b). Thus
the {a, b, c} A-triple condition in Gσ must be that

Gσ(a) ≤ Gσ(c) < Gσ(b).

Now consider the question of where Gσ(a) came from in the bumping path of the insertion k → F σ. It
cannot be that Gσ(a) = k or Gσ(a) was bumped from a cell before (x + j, y + 1) because of the fact that
Gσ(a) < Gσ(b) = F σ(b) would allow Gσ(a) to be inserted on top of cell b. Thus either (i) Gσ(a) = F σ(z, y+1)
for some z > x + j or (ii) Gσ(a) = F σ(z, y) for some z < x. Case (i) is impossible since then we would have
γx+j < γz and the B-increasing condition in F σ would force Gσ(b) = F σ(b) < F σ(z, y + 1) = Gσ(a).

If case (ii) holds, let e1, . . . , es, es+1 = (x, y) be the cells in row y of the bumping path of the insertion
of k → F σ, reading from left to right. Thus we are assuming that Gσ(a) = F σ(es). For each ei, we let ei be
the cell directly below ei. Thus we have the picture in Figure 15 where we are assuming that s = 3 and we
have circled the elements in the bumping path.

e ee

eee1
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2

1 3

3

0

(x,y−1)

(x,y)

0

(x+j,y)

Figure 15: Picture for case (ii).

Since the elements in the bumping path strictly decrease, we have that F σ(e1) > · · · > F σ(es) = Gσ(a)
and that for each i, F σ(ei+1) < F σ(ei) ≤ F σ(ei+1). Let ej = (zj , y). Thus zs+1 = x. It follows from Lemma
1 that γz1 ≥ · · · ≥ γzs

> γx.
Now consider the A-triples {ei, ei, (x + j, y)} for i = 1, . . . , s in F σ. We have established that F σ(es) =

Gσ(a) ≤ Gσ(c) < Gσ(b) = F σ(x + j, y). Thus it follows from the {es, es, (x + j, y)} A-triple condition that
F σ(es) ≤ F σ(es) < F σ(b). But then F σ(es) < F σ(es−1) ≤ F σ(es) so that the {es−1, es−1, (x+j, y)} A-triple
condition also implies that F σ(es−1) ≤ F σ(es−1) < F σ(b). Continuing on in this way, we can conclude from
the {ei, ei, (x + j, y)} A-triple condition that F σ(ei) ≤ F σ(ei) < F σ(b) for i = 1, . . . , s.

Now consider the element z that bumps F σ(e1) in the insertion k → F σ. We must have F σ(e1) < z ≤
F σ(e1) < F σ(b). Thus it cannot be that z = k or z = F σ(d) for some cell d which precedes (x + j, y + 1) in
reading order because that would mean that z meets the conditions to be placed on top of b. Thus it must
be that z = F σ(d) for some cell d which follows (x + j, y + 1) in reading order. Suppose that d = (t, y + 1)
where t > x + j. But we are assuming that (x + j, y) is the top cell in column x + j. Thus it must be the
case that γx+j < γt. But then the B-increasing condition in F σ would force F σ(b) < F σ(d) = z which is a
contradiction. Thus case (ii) cannot hold either which implies 1 + γx 6= γx+j.

Except for the restrictions determined by Proposition 6, we can invert the insertion procedure. That is,
to invert the procedure k → F σ, begin with the entry rj contained in the new cell appended to F σ and read

13



backward through the reading order beginning with this cell until an entry is found which is greater than rj

and immediately below an entry less than or equal to rj . Let this entry be rj−1, and repeat. When the first
cell of k → F σ is passed, the resulting entry is r1 = k and the procedure has been inverted.

Our second remark concerns the special case where σ = ǭn and k ≤ n. In that case, we claim that our
insertion procedure is just a twisted version of the usual RSK row insertion algorithm. That is, we know
that F σ must be of shape γ = (γ1, . . . , γn) where γ1 ≥ γ2 ≥ · · · ≥ γn and that F σ is weakly decreasing in
columns, reading from bottom to top, and is strictly decreasing in rows, reading from left to right. Now
if k ≤ F σ(1, γ1), then we just add k to the top of column 1 to form k → F σ. Otherwise suppose that
F σ(1, y1) ≥ k > F σ(1, y1 + 1). Then all the elements in F̄ σ that lie weakly above row y1 + 1 and strictly to
the right of column 1 must be less than or equal to F σ(1, y1 +1). Thus the first place that we can insert k is
in cell (1, y1 + 1). Thus it will be that case that k bumps F σ(1, y1 + 1). Since elements in the bumping path
are decreasing and all the elements in column 1 below row y1 + 1 are strictly larger than F σ(1, y1 + 1), it
follows that none of them can can be involved in the bumping path of the insertion k → F σ. It is then easy
to check that since F σ(1, y1 + 1) ≤ n− 1, the result of the insertion k → F σ is the same as the result of the
insertion of F σ(1, y1 + 1) into the PBF formed from F σ by removing the first column and then adding back
column 1 of F σ with F σ(1, y1 + 1) replaced by k. Thus our insertion process satisfies the usual recursive
definition of the RSK row insertion algorithm. Hence, in the special case where the basement permutation is
ǭn and k ≤ n, our insertion algorithm is just the usual RSK row insertion algorithm subject to the condition
that we have weakly decreasing columns and strictly decreasing rows.

4 General Properties of the insertion algorithm

In this section, we shall prove several fundamental properties of the insertion algorithm k → F σ. In partic-
ular, our results in this section will allow us to prove that our insertion algorithm can be factored through
the twisted version of RSK row insertion described in the previous section.

For any permutation σ, let Eσ be the empty filling which just consists of the basement whose entries are
σ1, . . . , σn reading from left to right. Let si denote the transposition (i, i + 1) so that if σ = σ1 . . . σn, then

siσ = σ1 . . . σi−1σi+1σiσi+2 . . . σn.

Our next lemma will describe the difference between inserting a word w into Eσ versus inserting w into
Esiσ. If w = w1 . . . wt, then let

w → Eσ = wt → (. . . (w2 → (w1 → Eσ)) . . .).

Theorem 7. Let w be an arbitrary word whose letters are less than or equal to n and suppose that σ =
σ1 . . . σn is a permutation in Sn such that σi < σi+1. Let F σ = w → Eσ, γ = (γ1, . . . , γn) be the shape of
F σ, F siσ = w → Esiσ, and δ = (δ1, . . . , δn) be the shape of F siσ. Then

1. {γi, γi+1} = {δi, δi+1} and δi ≥ δi+1,

2. F siσ(i, j) > F siσ(i + 1, j), for j ≤ δi where we let F siσ(i + 1, j) = 0 if (i + 1, j) is not a cell in F σ.

3. F siσ(j, k) = F σ(j, k) for j 6= i, i + 1 so that γj = δj for all j 6= i, i + 1,

4. for all j, {F siσ(i, j), F siσ(i + 1, j)} = {F σ(i, j), F σ(i + 1, j)}.

Proof. Note that since (siσ)i = σi+1 > σi = (siσ)i+1, Lemma 1 implies (1) and (2). Thus we need only
prove (3) and (4).

We proceed by induction on the length of w. The theorem clearly holds when w is the empty word. Now
suppose that the theorem holds for all words of length less than t. Then let G = w1 . . . wt−1 → Eσ and
H = w1 . . . wt−1 → Esiσ and suppose G has shape α = (α1, . . . , αn) and H has shape β = (β1, . . . , βn). Let
Ḡ and H̄ be the fillings with 0’s added to the tops of the columns of G and H respectively. Let G̃ = wt → G
and H̃ = wt → H and suppose that G̃ has shape γ = (γ1, . . . , γn) and H̃ has shape δ = (δ1, . . . , δn). We
compare the bumping path of wt → H to the bumping path in wt → G. That is, in the insertion process
wt → H , suppose we come to a point were we are inserting some element c which is either wt or some
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element bumped in the insertion wt → H into the cells (i, j) and (i+1, j). Assume by a second inner reverse
induction on the size of i, that the insertion of wt → G will also insert c into the cells (i, j) and (i+1, j). This
will certainly be true the first time the bumping paths interact with elements in columns i and i + 1 since
our induction assumption ensures that Ḡ restricted to columns 1, . . . , i − 1 equals H̄ restricted to columns
1, . . . , i− 1. Let x = H̄(i, j), y = H̄(i + 1, j), x = H̄(i, j − 1), and y = H̄(i + 1, j − 1). (See Figure 16.) Our
inductive assumption implies that if x > 0, then x > y and if x > 0, then x > y. Our goal is to analyze
how the insertion of c interacts with elements in cells (i, j) and (i + 1, j) during the insertions wt → H and
wt → G. We will show that either
(A) the bumping path does not interact with cells (i, j) and (i + 1, j) during either the insertions wt → H
or wt → G,
(B) the insertion of c into cells (i, j) and (i + 1, j) results in inserting some c′ into the next cell in reading
order after (i + 1, j) in both wt → H and wt → G, or
(C) both insertions end up terminating in one of (i, j) or (i + 1, j).
This will ensure that wt → H and wt → G are identical outside of columns i and i+1 thus proving condition
(3) of the theorem and that {H(i, j), H(i + 1, j)} = {G(i, j), G(i + 1, j)} which will prove condition (4) of
the theorem.

Now suppose that the elements H̄ are in cells (i, j), (i + 1, j), (i, j − 1), and (i + 1, j − 1) are x, y, x and
y, respectively as pictured on the left in Figure 16. If Ḡ and H̄ agree on those cells, then there is nothing

to prove. Thus we have to consider three cases (I), (II), or (III) for the entries in Ḡ in those cells which are
pictured on the right in Figure 16. We can assume that x 6= 0. Now if y = y = 0, then it is easy to see that
one of (A), (B), or (C) will hold since the insertion procedure sees the same elements possibly in different
columns. Thus we can assume that y 6= 0 and hence, x > y.

x y

x y

x y y x y x

col.
 i+1

col.
  i

col.
 i+1

col.
  i

col.
 i+1

col.
  i

col.
 i+1
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  i

row j

row j−1

x yy x y x

 in H in Gin Gin G

I II III

Figure 16: Possibilities in Ḡ.

We now consider several cases.

Case A. x = y = 0.
This means that x and y sit on top of columns i and i + 1 respectively in H .

First suppose that c ≤ x. Then in wt → H , the insertion will terminate by putting c on top of x. In case
(I), the insertion wt → G will terminate by placing c on top of x and in cases (II) and (III), the insertion
wt → G will terminate by placing c on top of y if c ≤ y, or by placing c on top of x if y < c ≤ x. In either
situation, (C) holds.

Next suppose that x < c, Then in wt → H , c will not be placed in either cell (i, j) or (i+1, j) so that the
result is that c will end up being inserted in the next cell in reading order after (i+1, j). But then in cases (I),
(II), and (III), c will not be placed in either cell (i, j) or (i + 1, j) in the insertion wt → G so that the result
is that c will end up being inserted in the next cell in reading order after (i+1, j). Thus (B) holds in all cases.

Case B. x > 0, and y = 0.
Note that case (I) is impossible since then x and x would violate the B-increasing condition in G.

First consider the case where c does not bump x in the insertion wt → H , and the insertion terminates
with c being placed on top of y. Then it must be the case c ≤ y. Moreover, it is the case that x > c by
Lemma 1. Hence in case (II), c will not bump x and instead will be placed on top of x since c ≤ y < x and
in case (III), c will be put on top of y. However, this is not possible because then the insertion would violate
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Proposition 6. Thus, we know that condition (C) holds.
Next consider the case where in the insertion wt → H , c bumps x and x terminates the insertion by

being placed on top of y. Thus we know that x < c ≤ x and x ≤ y. This rules out case (III) since then x and
y would violate the B-increasing condition and case (I) since then x and x would violate the B-increasing
condition. Now in case (II), c will bump x and x will be placed on top of x if c ≤ y. If c > y, then c will not
bump x and c will be placed on top of x. In either situation, condition (C) holds.

Next consider the case where in the insertion wt → H , c bumps x and x cannot be placed on top of y so
that x is inserted in the next cell in reading order after (i + 1, j). Then we must have y < x < c ≤ x. This
rules out cases (I) and (II) since x cannot sit on top of y. In case (III), c cannot sit on top of y so c will
bump x. Thus condition (B) holds in this case.

Finally consider the case where c does not bump x and c cannot be placed on top of y in the insertion
wt → H so that c is inserted in the next cell in reading order after (i + 1, j). The fact that c does not
bump x means that either c > x or c ≤ x. The fact that c cannot be placed on top of y means that c > y.
If c > x > y, then in cases (II) and (III), c does not meet the conditions for the entries in cells (i, j) and
(i+1, j) to change so that the result is that c will be inserted in the next cell in reading order after (i+1, j).
If c ≤ x, then we know that y < c ≤ x. This rules out cases (I) and (II) since x cannot sit on y. In case
(III), c cannot be placed on y and c cannot bump x so that Case A holds in either situation.

Case C. x, x, y, y > 0.
Then we know that x > y and x > y.

First suppose that in the insertion wt → H , c bumps x, but x does not bump y so that the result is that
x will be inserted into the cell following (i + 1, j) in reading order. Since y < x, the reason that x does not
bump y must be that x > y. Thus it must be the case that x ≥ x > y ≥ y. This means that cases (I) and
(II) are impossible since x cannot sit on top of y in G. But then c > x > y so that in the insertion wt → G,
c cannot bump y in case (III). Thus in case (III), c will bump x so that the result is that x will be inserted
into the cell following (i + 1, j) in reading order as desired. Hence, condition (B) holds in this case.

Next consider the case where c does not bump x but c bumps y. Since c does not bump x then we either
have (i) c > x or (ii) c ≤ x. If (i) holds, then c > x > y which means that c cannot bump y. Thus (ii) must
hold. Since c bumps y, y < c ≤ y. Thus we have two possibilities, namely, y < c ≤ y < x or y < c ≤ x ≤ y.
First suppose that y < c ≤ y < x. Then cases (I) and (II) are impossible since x cannot sit on top of y. In
case (III), c will bump y but y cannot bump x since y < x so that y is inserted in the next cell after (i+1, j).
Next suppose that y < c ≤ x ≤ y. Then in case (I), c will bump but y cannot bump x since y < x so that y
is inserted in the next cell after (i + 1, j). In case (II), c does not bump x since c ≤ x so that c will bump y
and y will be inserted in the next cell after (i +1, j). In case (III), c will bump y but y cannot bump x since
y < x so that y is inserted in the next cell after (i + 1, j). Thus in every, y will be inserted in the next cell
after (i + 1, j). Hence, condition (B) holds in this case.

Next consider the case where in the insertion wt → H , c bumps x and then x bumps y so that the
result is that y will be inserted into the cell following (i + 1, j) in reading order. In this case we must have
y < x ≤ y < x and x < c ≤ x. In case (I), it is easy to see that in the insertion wt → G, c will bump y since
y < x < c ≤ x, but y will not bump x so that the result is that y will be inserted into the cell following
(i + 1, j) in reading order. In case (II), c will bump x and then x will bump y if c ≤ y. However if c > y,
then c will not bump x but it will bump y. Thus in either situation, the result is that y will be inserted
into the cell following (i + 1, j) in reading order. Finally consider case (III). If c ≤ y, then c will bump y
but y will not bump x so that again the result is that y will be inserted into the cell following (i + 1, j) in
reading order. Now if c > y, then we must have that y < x ≤ y < c ≤ x. We claim that this is impossible.
Recall that αi and αi+1 are the heights of column i and i + 1 in G, respectively. Now if αi ≥ αi+1, then
{G(i, j) = y, G(i, j − 1) = y, G(i + 1, j) = x} would be a type A coinversion triple in G and if αi < αi+1,
then {G(i, j − 1) = y, G(i + 1, j) = x, G(i + 1, j − 1) = x} would be a type B coinversion triple in G.

Finally consider the case where c does not bump either x or y in the insertion wt → H so that c is
inserted into the cells following (i + 1, j) in reading order. Then either c ≤ y < x so that c cannot bump
either x or y in cases (I)-(III) or c > x > y so again c cannot bump either x or y in cases (I)-(III). Thus in
all cases, the result is that c will be inserted into the cells following (i + 1, j) in reading order.

Thus we have shown that conditions (A), (B), and (C) always holds which, in turn, implies that conditions

16



(3) and (4) always hold.

Before we proceed, we pause to make one technical remark which will be important for our results in
Section 5. That is, a careful check of the proof of Theorem 7 will show that we actually proved the following.

Corollary 8. Suppose that σ = σ1 . . . σn ∈ Sn, σi < σi+1, and w = w1 . . . wt ∈ {1, . . . , n}t. For j = 1, . . . , t,
let F σ

j = w1 . . . wj → Eσ and F siσ
j = w1 . . . wj → Esiσ. Let F σ

0 = Eσ and F siσ
0 = Esiσ. Let α(j) be the

shape of F σ
j and β(j) be the shape of F siσ

j . Then for all i ≥ 1, the cells in α(i)/α(i−1) and β(i)/β(i−1) lie in
the same row.

Proof. It is easy to prove the corollary by induction on t. The corollary is clearly true for t = 1 since inserting
w1 into either Eσ or Esiσ will create a new cell in the first row. Then it is easy to check that our proof of
Theorem 7 establishing properties (A), (B), and (C) for the insertions wt → F σ

t−1 and wt → F siσ
t−1 implies

that the cells in α(t)/α(t−1) and β(t)/β(t−1) must lie in the same row.

For any alphabet A, we let A∗ denote the set of all words over the alphabet A. If w ∈ {1, . . . , n}∗, then
let P σ(w) = w → Eσ, which we call the σ-insertion tableau of w, and let γσ(w) = (γσ

1 (w), . . . , γσ
n(w)) be the

composition corresponding to the shape of P σ(w). Theorem 7 has a number of fundamental consequences
about the set of σ-insertion tableaux of w as σ varies over the symmetric group Sn. Note that P ǭn(w)
arises from w by performing a twisted version of the RSK row insertion algorithm. Hence γ ǭn(w) is always
a partition. Then we have the following corollary.

Corollary 9. Suppose that w ∈ {1, . . . , n}∗.

1. P σ(w) is completely determined by P ǫn(w).

2. For all σ ∈ Sn, γσ(w) is a rearrangement of γ ǭn(w).

3. For all σ ∈ Sn, the set of elements that lie in row j of P σ(w) equals the set of elements that lie in row
j of P ǭn(w) for all j ≥ 1.

Proof. For (1), note that if σ = σ1 . . . σn where σi < σi+1, then Theorem 7 tells us that P σ(w) completely
determines P siσ(w). That is, to obtain P siσ(w) from P σ(w), Lemma 1 tells us that we need only ensure
that when both (i, j) and (i + 1, j) are cells in P σ(w), then the elements in those two cells in P σ(w) must
be arranged in decreasing order in P siσ(w). If only one of the cells (i, j) and (i + 1, j) is in P σ(w), then
the element in the cell that is occupied in P σ(w) must be placed in cell (i, j) in P siσ(w). Since we can get
from ǫn to any σ ∈ Sn by applying a sequence of adjacent transpositions where we increase the number of
inversions at each step, it follows that P σ(w) is completely determined by P ǫn(w).

For (2) and (3), note that for any σ ∈ Sn, we can get from σ to ǭn by applying a sequence of adjacent
transpositions where we increase the number of inversions at each step. Thus it follows from Theorem 7 that
the set of column heights in γ ǭn(w) must be a rearrangement of the set of column heights of γσ(w).

Moreover, it also follows that the set of elements in row j of P ǭn(w) must be the same as the set of elements
in row j of P σ(w). Note that all the elements in a row of a PBF must be distinct by the non-attacking
properties of a PBF.

The second author [9] introduced a shift map ρ which takes any PBF F with basement equal to ǫn to a
reverse row strict tableau ρ(F ) by simply putting the elements which appear in row j of F (where j ≥ 1) in
decreasing order in row j of ρ(F ), reading from left to right. This map is pictured at the top of Figure 17.
We can then add a basement below ρ(F ) which contains the permutation ǭn to obtain a PBF with basement
equal to ǭn.

We can extend this map to PBFs with an arbitrary basement σ. That is, if F σ is a PBF with basement
σ ∈ Sn, let ρσ(F σ) be the PBF with basement ǭn by simply putting the elements which appear in row j of
F σ in decreasing order in row j of ρσ(F σ) for j ≥ 0, reading from left to right. This map is pictured at the
bottom of Figure 17. To see that ρσ(F σ) is a reverse row strict tableau, we need only check that ρσ(F σ)
is weakly decreasing in columns from bottom to top. But this property is an immediate consequence of the
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fact that every element in row j of F σ where j ≥ 1 is less than or equal to the element it sits on top of in
F σ.

The second author [9] showed that for any reverse row strict tableaux T , there is a unique PBF FT with
basement equal to ǫn such that ρ(FT ) = T . Thus ρ−1 is uniquely defined. In fact, there is a natural procedure
for constructing ρ−1(T ). That is, assume that T has k rows and Pi is the set of elements of T that lie in row i.

Definition of ρ−1 [9]. Inductively assume that the first i rows of T , {P1, . . . , Pi−1}, have been mapped to a
PBF F (i−1) with basement ǫn in such a way the elements in row j of F (i−1) are equal to Pj for j = 1, . . . , i−1.
Let Pi = {α1 > α2 > · · · > αsi

}. There exists an element greater than or equal to α1 in row i − 1 since
α1 sits on top of some element in T . Place α1 on top of the left-most such element in row i − 1 of F (i−1).
Next assume that we have placed α1, . . . , αk−1. Then there are at least k elements of Pi−1 that are greater
than or equal to αk since each of α1, . . . , αk sit on top of some element in row i − 1 of T . Place αk on top
of the left-most element in row i− 1 of F (i−1) which is greater than or equal to αk which does not have one
of α1, . . . , αk−1 on top of it.
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3 5

35 4 2 1

σ

Figure 17: The ρ and ρσ maps.

Now suppose that w ∈ {1, . . . , n}∗. We let rr(w) be the word that results by reading the cells of P ǭn(w)
in reverse reading order excluding the cells in the basement. Thus rr(w) is just the word which consists of
the elements in the first row of P ǭn(w) in increasing order, followed by the elements in the second row of
P ǭn(w) in increasing order, etc. For example, if w = 1 3 2 4 3 2 1 4, then P ǭ4(w) is pictured in Figure 18 so
that rr(w) = 1 2 3 4 3 4 1 2 2.

4

4

3

4 2 13

2

2

2 1

3

1

P      (w) =
4321

rr(w) = 1 2 3 4 3 4 1 2 2

w = 1 3 2 4 3 2 1 4 2

Figure 18: The reverse reading word rr(w).

Since our insertion algorithm for basement ǭn is just a twisted version of the RSK row insertion algorithm,
it is easy to see that rr(w) → E ǭn = P ǭn(w). But then we know by part (3) of Corollary 9 that for all j ≥ 1,
the elements in the j-th row of P ǫn(rr(w)) = rr(w) → Eǫn is equal to the set of elements in the j-th row of
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P ǫn(w) since both sets are equal to the set of elements in the j-th row of P ǭn(w) = P ǭn(rr(w)). Thus

ρ(P ǫn(w)) = ρ(P ǫn(rr(w))) = P ǭn(w) = P ǭn(rr(w)).

Since there is a unique PBF F with basement ǫn such that ρ(F ) = P ǭn(w), we can conclude that P ǫn(w) =
P ǫn(rr(w)). But then by part (1) of Corollary 9, it must be the case that P σ(w) = P σ(rr(w)) for all σ ∈ Sn.
Thus we have the following Theorem.

Theorem 10. (1) If u, v ∈ {1, . . . , n}∗ and P ǭn(w) = P ǭn(u), then P σ(u) = P σ(w) for all σ ∈ Sn.

(2) For any PBF T with basement equal to ǭn and any σ ∈ Sn, there is a unique PBF F σ with basement σ
such that ρσ(F σ) = T .

Theorem 10 says that we can construct P σ(w) = w → Eσ by first constructing P ǭn(w) = w → E ǭn by
our twisted version of RSK row insertion, then find rr(w) which is the reverse reading word of P ǭn(w), and
then compute rr(w) → Eσ. However, it is easy to construct rr(w) → Eσ = ρ−1

σ (P ǭn(w)). That is, suppose
that w = w1w2 . . . ws is the strictly increasing word that results by reading the first row of P ǭn(w) in reverse
reading order. Now consider inserting w = w1w2 . . . ws into Eσ. It is easy to see ws will end up sitting on
top of σi in the basement where i is the least j such that σj ≥ ws. Next consider the entry ws−1. Before the
insertion of ws, ws−1 sat on top σa in the basement where a is the least b such that σb ≥ ws−1. Now if a
equals i, then ws will bump ws−1 and ws−1 will move to σc where c is the least d > i such that σd ≥ ws−1.
Thus once ws is placed, ws−1 will be placed on top of σa in the basement where a is the least b such that
σb ≥ ws−1 and ws is not on top of σb. We continue this reasoning and show that w = w1w2 . . . ws → Eσ can
be constructed inductively as follows.

Procedure to construct ρ−1
σ (P ǭn(w)) = rr(w) → Eσ.

Step 1. Let w1 . . . ws be the first row of P ǭn(w) in increasing order. First place ws on top of σi in
the basement where i is the least j such that σj ≥ ws. Then having placed ws, . . . , wr+1, place wr on top
σu in the basement where u is the least v such that σv ≥ wr and none of ws, . . . , wr+1 are on top of σv.

Step i > 0. Inductively assume that the first i rows of P ǭn(w) , {P1, . . . , Pi−1} have been mapped to
a PBF F (i−1) with basement σ in such a way that the elements in row j of F (i−1) are equal to Pj for
j = 1, . . . , i− 1. Let Pi = {α1 > α2 > · · · > αsi

} be the i-th row of P ǭn(w). There exists an element greater
than or equal to α1 in row i− 1 since there α1 sits on top of some element in P ǭn(w). Place α1 on top of the
left-most such element in row i − 1 of F (i−1). Next assume that we have placed α1, . . . , αk−1. Then there
are at least k elements of Pi−1 that are greater than or equal to αk since each of α1, . . . , αk sit on top of
some element in row i − 1 of P ǭn(w). Place αk on top of the left-most element in row i − 1 of F (i−1) which
is greater than or equal to αk which does not have one of α1, . . . , αk−1 on top of it.

We then have the following theorem which shows that the insertion w → Eσ can be factored through
the twisted RSK row insertion algorithm used to construct w → E ǭn .

Theorem 11. . If w ∈ {1, . . . , n}∗ and σ ∈ Sn, then P σ(w) = w → Eσ equals ρ−1
σ (P ǭn(w)) where

P ǭn(w) = w → E ǭn .

There are several important consequences of Theorem 11. First we will show that our insertion algorithm
satisfies many of the properties that the usual RSK row insertion algorithm satisfies. Consider the usual
Knuth equivalence relations for row insertion. Suppose that u, v ∈ {1, 2, . . .}∗ and x, y, z ∈ {1, 2, . . .}. The
two types of Knuth relations are

(1) uyxzv ∽ uyzxv if x < y ≤ z and
(2) uxzyv ∽ uzxyv if x ≤ y < z.

We say that two words w, w′ ∈ {1, 2, . . .}∗ are Knuth equivalent, w ∽ w′ if w can be transformed into
w′ by repeated use of (1) and (2). If w ∽ w′, then w and w′ give us the same insertion tableau under row
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insertion. In our twisted version of row insertion the two types of Knuth relations become

(1)∗ uyxzv ∽
∗ uyzxv if z ≤ y < x and

(2)∗ uxzyv ∽
∗ uzxyv if z < y ≤ x.

Then we say that two words w, w′ ∈ {1, 2, . . . , n}∗ are twisted Knuth equivalent, w ∽
∗ w′, if w can be

transformed to w′ by repeated use of (1)∗ and (2)∗. Therefore if w ∽
∗ w′, then P ǭn(w) = P ǭn(w′). Then

Theorem 11 immediately implies the following.

Theorem 12. Suppose that w, w′ ∈ {1, 2, . . . , n}∗ and w ∽
∗ w′. Then for all σ ∈ Sn, P σ(w) = P σ(w′).

It also follows from Theorem 11 that for every partition γ, the map ρ−1
σ gives a one-to-one correspondence

between the set of reverse row strict tableaux of shape γ whose entries are less than or equal to n and the
set of PBFs with basement σ whose entries are less than or equal to n and whose shape (δ1, . . . , δn) is a
rearrangement of γ compatible with basement σ. That is, we say that a weak composition δ = (δ1, . . . , δn)
is compatible with basement σ = σ1 . . . σn ∈ Sn if δi ≥ δj whenever σi > σj and i < j. Note that Lemma
1 implies that the shape of any PBF F σ with entries from {1, . . . , n} and basement σ must have a shape
which is a weak composition compatible with basement σ. Then we have the following theorem.

Theorem 13. Let λ = (λ1, . . . , λn) be a partition of n. Then

sλ(x1, . . . , xn) =
∑

δ
λ(δ)=λ

Êσ
δ (x1, . . . , xn) (6)

where the sum runs over all weak compositions δ = (δ1, . . . , δn) which are rearrangements of λ that are
compatible with basement σ.

For example, consider s(2,1,0)(x1, x2, x3). In Figure 4 we have listed the eight PBFs with basement

ǭ3 = 3 2 1 over the alphabet {1, 2, 3}. Below each of these PBFs G, we have pictured ρ−1
123(G), ρ−1

132(G) and
ρ−1
312(G). One can see that

s(2,1,0)(x1, x2, x3) = Ê123
(2,1,0)(x1, x2, x3) + Ê123

(2,0,1)(x1, x2, x3) + Ê123
(1,2,0)(x1, x2, x3) +

Ê123
(1,0,2)(x1, x2, x3) + Ê123

(0,2,1)(x1, x2, x3) + Ê123
(0,1,2)(x1, x2, x3),

s(2,1,0)(x1, x2, x3) = Ê132
(2,1,0)(x1, x2, x3) + Ê132

(1,2,0)(x1, x2, x3) + Ê132
(0,2,1)(x1, x2, x3),

and
s(2,1,0)(x1, x2, x3) = Ê312

(2,1,0)(x1, x2, x3) + Ê312
(2,0,1)(x1, x2, x3).

In fact, if we fix a basement permutation σ ∈ Sn and a partition λ of n, then we can view the set of
generalized Demazure atoms

{Êσ
γ (x1, . . . , xn)|λ(γ) = λ and γ is compatible with basement σ}

as inducing a set partition of the reverse row strict tableaux of shape λ. That is, let RRT (λ) denote the set
of reverse row strict tableaux of shape λ with entries from {1, . . . , n}. Then if λ(γ) = λ and γ is compatible

with basement σ, we can identify Êσ
γ (x1, . . . , xn) with the set

Eσ
γ = {ρσ(P ) : P is a PBF of shape γ}.

The fact that there is a unique PBF with basement σ such ρσ(P ) = T for any reverse row strict tableau T
of shape λ with entries from {1, . . . , n} implies that

Sptσλ := {Eσ
γ : λ(γ) = λ and γ is compatible with basement σ}
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Figure 19: PBFs corresponding to s(2,1,0)(x1, x2, x3).

is a set partition of RRT (λ). For example, if T1, . . . , T8 are the reverse row strict tableaux with basement
321 pictured at the top of Figure 19, reading from left to right, then

E132
(0,2,1) = {T1, T3, T5},

E132
(1,2,0) = {T2, T4, T7}, and

E132
(2,1,0) = {T6, T8}.

Then the collection of such set partitions ST Pλ = {Stpσ
λ : σ ∈ Sn} can be partially ordered by refinement.

We can show that if σ <L τ in the (left) weak Bruhat order on Sn, then Stpσ
λ is a refinement of Stpτ

λ.
Moreover, if λ has n distinct parts then ST Pλ under refinement is isomorphic to the (left) weak Bruhat
order on Sn. These results will appear in a subsequent paper [2].

We end this section with a simple characterization for when Êσ
α(x1, . . . , xn) 6= 0.

Proposition 14. Suppose that α = (α1, . . . , αn) is a weak composition of length n and σ = σ1 . . . σn ∈ Sn.

Then Êσ
α(x1, . . . , xn) 6= 0 if and only if α is compatible with basement σ.

Proof. If Êσ
α(x1, . . . , xn) 6= 0, then there must be a PBF F σ of shape α with basement σ. Then Lemma 1

tells us that if 1 ≤ i < j ≤ n and σi > σj , then αi ≥ αj so that α is compatible with basement σ.

Vice versa, suppose that α is compatible with basement σ. Then let F σ be the filling of d̂g(α) such that
the elements in column i are all equal to σi. The elements of F σ are weakly increasing in columns, reading
from top to bottom. If 1 ≤ i < j ≤ n and αi < αj , then we know that σi < σj so that F σ automatically
satisfies the B-increasing condition. Finally if αi ≥ αi and a = (i, y), b = (j, y) and c = (i, j − 1) is a type A
triple, then we cannot have F σ(a) ≤ F σ(b) ≤ F σ(c), so every type A triple in F σ will be an inversion triple.

Thus F σ is a PBF of shape α with basement σ so that Êσ
α(x1, . . . , xn) 6= 0.

5 Pieri rules

The homogeneous symmetric function hk(x1, . . . , xn) and the elementary symmetric function ek(x1, . . . , xn)
are defined by

hk(x1, . . . xn) =
∑

1≤i1≤···≤ik≤n

xi1 · · ·xik
and

ek(x1, . . . xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik
.

21



The Pieri rules for Schur functions state that

hk(x1, . . . xn)sµ(x1, . . . , xn) =
∑

µ⊆λ

sλ(x1, . . . , xn)

where the sum runs over all partitions λ of k + |µ| such that µ ⊆ λ and λ/µ does not contain two elements
in the same column and that

ek(x1, . . . xn)sµ(x1, . . . , xn) =
∑

µ⊆λ

sλ(x1, . . . , xn)

where the sum runs over all partitions λ of k + |µ| such that µ ⊆ λ and λ/µ does not contain two elements

in the same row. In our case, we think of the Schur function sµ(x1, . . . , xn) as Ê ēn
µ (x1, . . . , xn). Since we

work with reverse row strict tableaux T , µ corresponds to the column heights of the PBF T ǭn . Thus we say
that λ/µ is a transposed skew row of size k if dg′(µ) ⊆ dg′(λ), |λ| = k + |µ| and no two elements in dg′(λ/µ)
lie in the same column. Similarly, we say that λ/µ is a transposed skew column of size k if dg′(µ) ⊆ dg′(λ),
|λ| = k + |µ| and no two elements in dg′(λ/µ) lie in the same row. Thus in this language, the Pieri rules
become

hk(x1, . . . xn)Ê ǭn
µ (x1, . . . , xn) =

∑

µ⊆λ

Ê ǭn

λ (x1, . . . , xn) (7)

where the sum runs over all partitions λ such that µ ⊆ λ and λ/µ is a transposed skew row of size k and

ek(x1, . . . xn)Ê ǭn
µ (x1, . . . , xn) =

∑

µ⊆λ

Ê ǭn

λ (x1, . . . , xn) (8)

where the sum runs over λ such that µ ⊆ λ and λ/µ is a transposed skew column of size k.
The main goal of this section is to prove an analogue of the Pieri rules (7) and (8) for the products

hk(x1, . . . xn)Êσ
γ (x1, . . . , xn) and ek(x1, . . . xn)Êσ

γ (x1, . . . , xn).
We start with a simple lemma about the effect of inserting two letters into a PBF. If α and β are weak

compositions of length n and dg′(α) ⊆ dg′(β), then dg′(β/α) will denote the cells of dg′(β) which are not in
dg′(α).

Lemma 15. Suppose that F σ is a PBF, Gσ = k → F σ and Hσ = k′ → Gσ. Suppose F σ is of shape α, Gσ

is of shape β, Hσ is of shape γ, T is the cell in dg′(β/α), and T ′ is the cell in dg′(γ/β). Then

1. if k ≥ k′, then T is strictly below T ′ and

2. if k < k′, then T appears before T ′ in reading order.

Proof. There is no loss in generality in assuming that σ = σ1 . . . σn ∈ Sn where n ≥ max(k, k′). Assume
F̄ σ is the diagram that results by adding 0’s on top of the cells of F σ as in the definition of the insertion
k → F σ. Let c1, c2, . . . be the cells in reading order that are in F̄ σ but not in the basement. We will prove
this result by induction on the number of cells p in the list c1, c2, . . ..

First suppose that p = 0 so that F σ just consists of the basement permutation σ and thus the cells
c1, c2, . . . are simply the zero entries on top of the basement in F̄ σ. Then k will be inserted in cell (i, 1)
where i is the least j such that k ≤ σj . Now if k′ ≤ k, then it is easy to see that k′ will be inserted on top
of k in the insertion k′ → Gσ so that T will be strictly below T ′.

If k′ > k, then suppose that k is in cell (i, 1) in Gσ. Then it is clear that k′ cannot be placed in any of
the cells (j, 1) with j < i since k could not be placed in any of those cells. Hence k′ either bumps k or is
placed in the first row in some cell to the right of k. In either case, T precedes T ′ in reading order.

Now if p > 0, there are two cases.

Case 1. k is placed in cell ci which is either equal to c1 or in the same row as c1.
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In either case, ci is a cell on top of a column in F
σ
. Let ci be the cell immediately above ci. Then cell ci

will be the first cell in reading order in Ḡσ. If k′ ≤ k, then k′ will be placed in ci so that ci = T and ci = T ′.
Thus T will occur below T ′.

If k < k′, then k′ cannot be placed in ci. Moreover, k′ cannot bump any of the entries in cells c1, . . . , ci−1

since k does not bump any of those elements. That is, for 1 ≤ j < i, let cj be the cell immediately below
cj . Then the reason that k does not bump F σ(cj) was that k > F σ(cj) in which case k′ > F σ(cj) since the

entries in cells c1, . . . , ci−1 are all zero. Thus either k′ bumps k in cell ci or it is inserted into cells of F̄ σ

after ci. In either case, it is easy to see that T ′ must follow ci = T in reading order.

Case 2 k is placed in cell a ci which is not in the same row as c1.

Let cj be the first cell in our list which is not in the same row as cell c1. If k′ is not placed in any of the
cells c1, . . . cj−1, then we are inserting k followed by k′ into the sequence F̄ σ(cj), F̄

σ(cj +1), . . . so the result
follows by induction. However, the only way that k′ can be placed in a cell ci in the same row as c1 is if
k′ < k in which case T ′ = ci. In that case, T lies in a row below the row of c1 so that T lies strictly below
T ′.

Suppose that γ and δ are weak compositions such that dg′(γ) ⊆ dg′(δ) and dg′(δ/γ) consists of a single
cell c = (x, y). Then we say that c is a removable cell from δ if there is no j such that x < j ≤ ℓ(δ) and
δj = 1 + y. The idea is that if F σ is a PBF of shape γ and basement σ, and δ is the shape of k → F σ, then
Proposition 6 tells us that the cell c in dg′(δ/γ) must be a removable cell.

Now suppose that γ and δ are weak compositions of length m such that dg′(γ) is contained in dg′(δ) and
σ = σ1 . . . σm is a permutation in Sm. Let c1 = (x1, y1), . . . , ck = (xk, yk) be the cells of dg′(δ/γ) listed in
reverse reading order. Let dg′(δ(i)) consist of the diagram of γ plus the cells c1, . . . , ci. Then we say that
δ/γ is a γ-transposed skew row relative to basement σ if

1. y1 < y2 < · · · < yk,

2. for i = 1, . . . , k, dg′(δ(i)) is the diagram of weak composition δ(i) which is compatible with basement
σ,

3. dg′(γ) ⊂ dg′(δ(1)) ⊂ dg′(δ(2)) ⊂ · · · ⊂ dg′(δ(k)), and

4. ci is a removable square from δ(i) for i = 1, . . . , k.

.
Next suppose that γ and ǫ are weak compositions of length m such that dg′(γ) is contained in dg′(ǫ).

Let d1 = (x1, y1), . . . , dk = (xk, yk) be the cells of dg′(ǫ/γ) listed in reading order. Let dg′(ǫ(i)) consist of the
diagram of γ plus the cells d1, . . . , di. We say that say that ǫ/γ is a γ-transposed skew column relative
to basement σ if

1. for i = 1, . . . , k, dg′(ǫ(i)) is the diagram of weak composition ǫ(i) which is compatible with basement σ,

2. dg′(γ) ⊂ dg′(ǫ(1)) ⊂ dg′(ǫ(2)) ⊂ · · · ⊂ dg′(ǫ(k)), and

3. di is a removable square from ǫ(i) for i = 1, . . . , k.

For example, if m = 9, σ = 127346589, and γ = (2, 0, 3, 1, 1, 3, 1, 0, 0), then, in Figure 20, we have pictured
a γ-transposed skew row relative to basement σ in the top left and a γ-transposed skew column relative to
basement σ in the bottom left. The diagram on the top right is not a γ-transposed skew column relative
to basement σ since c3 is not a removable cell from δ(3) = (2, 0, 3, 3, 1, 3, 1, 1, 0) and the diagram on the
bottom right is not a γ-skew row since the diagram consisting of γ plus cells d1 and d2 does not correspond
to the diagram of a weak composition. It is easy to check that if σ = ǭn and γ is of partition shape, then
a γ-transposed skew row δ/γ relative to basement ǭn implies that δ is a partition containing γ such that
no two cells δ/γ can lie in the same column. In this case, the removable cell condition is automatic since
the there are no cells to the right of any cell in δ/γ. Similarly, it is easy to check that a γ-transposed skew
column ǫ/γ relative to basement ǭn is just a transposed skew column.
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Figure 20: Transposed skew rows and transposed skew columns for γ = (2, 0, 3, 1, 1, 3, 1, 0, 0) relative to
basement 127346589

Theorem 16. Let γ = (γ1, . . . , γn) be a weak composition of p and σ ∈ Sn. Then

hk(x1, . . . xn)Êσ
γ (x1, . . . , xn) =

∑

δ

Êσ
δ (x1, . . . , xn), (9)

where the sum runs over all weak compositions δ = (δ1, . . . , δn) of size p + k such that dg′(γ) ⊆ dg′(δ) and
δ/γ is a γ-transposed skew row relative to basement σ.

ek(x1, . . . xn)Êσ
γ (x1, . . . , xn) =

∑

ǫ

Êσ
ǫ (x1, . . . , xn), (10)

where the sum runs over all weak compositions ǫ = (ǫ1, . . . , ǫn) of size p + k such that dg′(γ) ⊆ dg′(ǫ) and
ǫ/γ is a γ-transposed skew column relative to basement σ.

Proof. The left hand side of (9) can be interpreted as the weight of the set of pairs (w, F σ) where w =
w1 . . . wk and n ≥ w1 ≥ · · · ≥ wk ≥ 1, F σ is a PBF of shape γ with basement σ, and the weight W (w, F σ)

of the pair (w, F σ) is equal to W (F σ) =
∏k

i=1 xwi
. The right hand side of (9) can be interpreted as the sum

of the weights of all PBFs Gσ with basement σ such Gσ has shape δ = (δ1, . . . , δn) for some δ which is a
weak composition of size p + k such that δ/γ is a γ-transposed skew row relative to basement σ.

Now consider the map Θ which takes such a pair (w, F σ) to

Θ(w, F σ) = w → F σ = Gσ.

Let Gσ
i = w1 . . . wi → F σ for i = 1, . . . , k and let Gσ

0 = F σ. Let δ(i) be the shape of Gσ
i . It follows

that each δ(i) is a weak composition of size p + i which is compatible with basement σ. Then let ci be
the cell in dg′(δ(i)/δ(i−1)) for i = 1, . . . , k. By Lemma 15, we know that ci+1 must be strictly above ci for
i = 1, . . . , k − 1. Also, by Proposition 6, we know that ci must be a removable cell for δ(i). It follows that
Gσ is a PBF of some shape δ such that δ/γ is a γ-transposed skew row relative to basement σ. Moreover,
it is clear that W (Gσ) = W (w, F σ). Since our insertion procedure can be reversed, it is easy to see that Θ
is one-to-one.

To see that Θ is a bijection between the pairs (w, F σ) contributing to the left hand side of (9) and the
PBFs Gσ contributing to the right hand side (9), we must show that for each Gσ contributing to the right
hand side (9), there is a pair (w, F σ) contributing to the left hand side (9) such that w → F σ = Gσ. Suppose
that Gσ is a PBF with basement σ such Gσ has shape δ = (δ1, . . . , δn) where δ/γ is γ-transposed skew row
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relative to basement σ. Let ck, . . . , c1 be the cells of dg′(α/γ) reading from top to bottom. Because ck is a
removable square for δ, it follows from our remarks following Proposition 6 that we can reverse the insertion
procedure starting at cell ck. Similarly, ck−1 is removable cell for shape consisting of δ with ck removed,
and, in general, ci must be a removable cell for the shape of δ with ck, . . . , ci+1 removed. Thus we can first
reverse the insertion process for the element in cell ck in Gσ to produce a PBF F σ

k−1 with basement σ and
shape δ with cell ck removed and a letter wk such that wk → F σ

k−1 = Gσ. Then we can reverse our insertion
process for the element in cell ck−1 of F σ

k−1 to produce a PBF F σ
k−2 with basement σ and shape δ with cells

ck and ck−1 removed and a letter wk−1 such that wk−1wk → F σ
k−2 = Gσ. Continuing on in this manner

we can produce a sequence of PBF’s F σ
0 , . . . , Fσ

k−1 with basement σ and a word w = w1 . . . wk such that
wi . . . wk → F σ

i−1 = Gσ and the shape of F σ
i−1 equals δ with the cells ci, ci+1, . . . , ck removed. Thus F σ

0 will
be a PBF with basement σ and shape γ such that w → F σ

0 = Gσ. The only thing that we have to prove is
that w1 ≥ · · · ≥ wk. But it cannot be that wi < wi+1 for some i because Lemma 15 would imply that ci

appears before ci+1 in reading order which it does not. Thus Θ is a bijection which proves that (9) holds.
The left hand side of (10) can be interpreted as the weight of the set of pairs (u, Hσ) where u = u1 . . . uk

and 1 ≤ u1 < · · · < uk ≤ n, Hσ is a PBF of shape γ with basement σ, and the weight W (u, Hσ) of the

pair (u, Hσ) is equal to W (Hσ)
∏k

i=1 xui
. The right hand side of (10) can be interpreted as the sum of the

weights of all PBFs Kσ with basement σ such that Kσ has shape ǫ = (ǫ1, . . . , ǫn) for some weak composition
ǫ of size p + k such that ǫ/γ is a γ-transposed skew column relative to basement σ.

Again consider the map Θ which takes such a pair (u, Hσ) to

Θ(u, Hσ) = u → Hσ = Kσ.

Let Kσ
i = u1 . . . ui → Hσ for i = 1, . . . , k and let Kσ

0 = Hσ. Then let ǫ(i) be the shape of Kσ
i so that

ǫ(i) is a weak composition of size p + i which is compatible with basement σ. Then let di be the cell in
dg′(ǫ(i)/ǫ(i−1)) for i = 1, . . . , k. By Lemma 15, we know that di must appear before di+1 in reading order
for i = 1, . . . , k − 1. Moreover, di must be a removable cell from ǫ(i) by Proposition 6.

It follows that Kσ is a PBF of some shape ǫ = (ǫ1, . . . , ǫn) such that ǫ/γ is a γ-transposed skew column
relative to basement σ. Moreover, it is clear that W (Gσ) = W (w, F σ). Since our insertion procedure can be
reversed, it is easy to see that Θ is one-to-one.

To see that Θ is a bijection between the pairs (u, Hσ) contributing to the left hand side of (10) and the
PBFs Kσ contributing to the right hand side (10), we must show that for each Kσ contributing to the right
hand side of (10), there is a pair (u, Hσ) contributing to the left hand side of (10) such that u → Hσ = Kσ.
So suppose that Kσ is a PBF with basement σ such Kσ has shape ǫ = (ǫ1, . . . , ǫn) such that ǫ/γ is a
γ-transposed skew column relative to basement σ of size k. Let dk, . . . , d1 be the cells of dg′(ǫ/γ) read in
reverse reading order. Since dk is a removable cell for ǫ, we can reverse our insertion process starting at cell
dk. Similarly, dk−1 is removable cell for shape consisting of ǫ with ck removed, and, in general, di must be
a removable cell for the shape of ǫ with dk, . . . , di+1 removed. This means that we can reverse our insertion
process staring with cell di after we have reversed the insertion process starting at cells dk, . . . , di+1. Then
we first reverse the insertion process for the element in cell dk in Kσ to produce a PBF Hσ

k−1 with basement
σ and shape ǫ with cell dk removed and a letter uk such that uk → Hσ

k−1 = Kσ. Then we can reverse our
insertion process for the element in cell dk−1 of Hσ

k−1 to produce a PBF Hσ
k−2 with basement σ and shape

ǫ with cells dk and dk−1 removed and a letter uk−1 such that uk−1uk → Hσ
k−2 = Kσ. Continuing in this

manner we can produce a sequence of PBF’s Hσ
0 , . . . , Hσ

k−1 with basement σ and a word u = u1 . . . uk such
that ui . . . uk → Hσ

i−1 = Gσ and the shape of Hσ
i−1 equals ǫ with the cells di, di+1, . . . , dk removed. Thus

Hσ
0 will be a PBF with basement σ and shape γ such that u → Hσ

0 = Kσ. The only thing that we have to
prove is that u1 < · · · < uk. But it cannot be that ui ≥ ui+1 for some i because Lemma 15 would force di+1

to appear in a row which is strictly above the row in which di appears which would mean that di+1 does not
follow di in reading order. Thus Θ is a bijection which proves that (10) holds.

We can show that there is an analogue of the Littlewood-Richardson rule for the product of a Schur
function sλ(x1, . . . , xn) times a Êσ

γ (x1, . . . , xn) for all γ and σ ∈ Sn. This rule will appear in a subsequent
paper.
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6 A permuted basements analogue of the Robinson-Schensted-

Knuth algorithm

We are now ready to state an analogue of the Robinson-Schensted-Knuth Algorithm for PBF’s.
Let A = (ai,j) be an arbitrary n × n-matrix with nonnegative integer entries and let σ = σ1 . . . σn ∈ Sn.

For each pair i, j such that ai,j > 0, create a sequence of ai,j biletters
i
j

. Let wA be the unique two-line

array consisting of such biletters so the top letters are weakly increasing and for all pairs with the same top
letter the bottoms letters are weakly increasing. For example, if

A =




1 1 0 1 0
1 1 0 2 0
0 0 2 1 0
1 1 0 0 1
0 0 0 0 0




,

then

wA =
1 1 1 2 2 2 2 3 3 3 4 4 4
1 2 4 1 2 4 4 3 3 4 1 2 5

.

Let uA be the word consisting of the top row of wA and vA be the word consisting of the bottom row of wA.
Let P σ

0 = Qσ
0 = Eσ be empty PBFs with basement σ. We say that P σ

0 is the initial insertion PBF and Qσ
0

is the initial recording PBF relative to σ.
Now suppose that uA = i1 . . . it and vA = j1 . . . jt. Then insert the biletters of wA into the insertion

and recording PBFs using the following inductive procedure. Assume that the last k biletters of wA have
already been inserted and the resulting pair of PBFs is (Pk

σ, Qk
σ) such that the partitions obtained by

rearranging the shapes of Pk
σ and Qk

σ are the same. Insert the entry jt−k into Pk
σ according to the

procedure jt−k → Pk
σ. Suppose the new cell created in the insertion jt−k → Pk

σ lies in row r. Record
the position of the new entry by placing the entry it−k into the leftmost empty cell in row r of Qk

σ which
lies immediately above a cell greater than or equal to it−k. Note there will be such a cell since all the
elements of Qk

σ are greater than or equal to it−k and there is at least one cell in row r which is not occupied
that lies above an occupied cell in row r − 1 in Qk

σ since there is such a cell in Pk
σ. The resulting filling

is Qσ
k+1. Repeat this procedure until all of the biletters from wA have been inserted. The resulting pair

(Pn
σ, Qn

σ) := (P σ, Qσ) is denoted by Ψσ(A). For example, if σ = 1 4 2 5 3 and A is the matrix given above,
then Ψσ(A) = (P σ, Qσ) is pictured in Figure 21.

σP   = σQ   =

1 4 2 5 3 1 4 2 5 3
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Figure 21: Ψσ(wA) = (P σ, Qσ).

Next consider the special case where σ = ǭn. Note that P ǭn = jtjt−1 . . . j1 → E ǭn is constructed by a
twisted version of the usual RSK row insertion algorithm. In that case, the recording PBF Qǭn is constructed
in the same way that the usual RSK recording tableau is constructed except that we are constructing tableaux
such that columns are weakly decreasing reading from bottom to top and the rows are strictly decreasing
reading from left to right. Thus Ψǭn

is just a twisted version of the usual RSK correspondence between
N-valued n × n-matrices and pairs of column strict tableaux of the same shape. In particular, we know
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that if A is an N-valued n × n-matrix and AT is its transpose, then Ψǭn
(A) = (P ǭn , Qǭn) if and only if

Ψǭn
(AT ) = (Qǭn , P ǭn).

Theorem 17. Let σ = σ1 . . . σn ∈ Sn. The map Ψσ is a bijection between N-valued n × n matrices and
pairs (P σ, Qσ) of PBF’s with basement σ such that if α is the shape of P σ and β is the shape of Qσ, then
λ(α) = λ(β) and α and β are compatible with basement σ.

Proof. Suppose that A is an N-valued n × n matrix and Ψσ(A) = (P σ, Qσ). The filling P σ is a PBF by
Lemma 5. The shape α of P σ satisfies αi ≥ αj for all inversions i < j of σ by Lemma 1. It is also easy to
see that our definition of Ψσ ensures that λ(α) = λ(β).

We must prove that the filling Qσ is a PBF. The columns of Qσ are weakly decreasing from bottom to
top by construction. For any given i, the bottom elements of biletters whose top elements are i are inserted
in weakly decreasing order. It then follows from Lemma 15 that i cannot occur twice in the same row in Qσ.

To see that every triple is an inversion triple, consider first a type A triple consisting of the cells a =
(x1, y1), b = (x2, y1), and c = (x1, y1 − 1) where x1 < x2 as depicted below.

a b

c

This triple would be a type A coinversion triple only if Qσ(a) ≤ Qσ(b) ≤ Qσ(c). Since we can not have
two equal elements in Qσ in the same row, it must be that Qσ(a) < Qσ(b) ≤ Qσ(c). There are now two
cases. First if Qσ(b) < Qσ(c), then under the Ψσ map, Qσ(c) was placed first in Qσ, then Qσ(b) was
placed, and then Qσ(a) was placed. But this means at the time Qσ(b) was placed, it could have been placed
on top of Qσ(c) which is a contradiction since the Ψσ map requires that Qσ(b) be placed in the left-most
possible position subject to the requirement that the columns are weakly decreasing. The second case is
when Qσ(b) = Qσ(c). In that case, Lemma 15 ensures that the cells created by the insertion of the bottoms
of biletters whose tops equal Qσ(b) are created from bottom to top. This means that the biletter which
created cell c in Qσ must have been processed before the biletter which created cell b. But this means that
under the Ψσ map, Qσ(c) was placed first in Qσ, then Qσ(b) was placed, and then Qσ(a) was placed, which
we have already determined is impossible. Thus there are no type A coinversion triples in Qσ.

Now suppose that there exists a = (x2, y), b = (x1, y−1), and c = (x2, y−1), where x1 ≤ x2, which form
a type B coinversion triple in Qσ as depicted below.

a

b c

We know that Qσ(b) 6= Qσ(c) since we cannot have two equal elements in the same row in Qσ. Thus we must
have Qσ(a) ≤ Qσ(b) < Qσ(c). Now if Qσ(a) < Qσ(b), then under the Ψσ map, Qσ(c) was placed first in Qσ,
then Qσ(b) was placed, and then Qσ(a) was placed. However, if Qσ(a) = Qσ(b), then Lemma 15 ensures
that the cells created by the insertion of the bottoms of biletters whose tops equal Qσ(b) are created from
bottom to top. This means that the biletter which created cell b in Qσ must have been processed before
the biletter which created cell a. Thus in either case, under the Ψσ map, Qσ(c) was placed first in Qσ, then
Qσ(b) was placed, and then Qσ(a) was placed. The only reason that Qσ(a) was not placed on top of Qσ(b) is
that there must have already existed an element e which was on top of Qσ(b) at the time Qσ(a) was placed.
This means that Qσ(a) ≤ e since the cells in Qσ are created by adding elements in weakly decreasing order.
However since we can not have two equal elements in the same row, we must have that Qσ(a) < e. Thus we
know Qσ(x1, y) > Qσ(x2, y). But this means that if we added an element z in cell (x2, y + 1) which sits on
top of Qσ(a), then the only reason that z was not placed on top of e = Qσ(x1, y) is that there must have
already been an element in Qσ(x1, y + 1) at the time we added z. But then we can argue as above that it
must be the case that Qσ(x1, y + 1) > Qσ(x2, y + 1). But then we can repeat the argument for row y + 2
so that if (x2, y + 2) is a cell in Qσ, then (x1, y + 2) must have already been filled at the time we added
an element to (x2, y + 2) and that Qσ(x1, y + 2) > Qσ(x2, y + 2). Continuing on in this way, we conclude
that the height of column x1 in Qσ is greater than or equal to the height of column x2 in Qσ. But that is a
contradiction, since if {a, b, c} is a type B triple, the height of column x1 in Qσ must be less than the height
of column x2 in Qσ. Thus there can be no type B coinversion triples in Qσ.
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Note that our argument above did not really use any properties of Qσ(c), but only relied on the fact
that Qσ(a) ≤ Qσ(b). That is, we proved that if x1 < x2 and Qσ(x1, y − 1) ≥ Qσ(x2, y), then the height of
column x1 in Qσ must be greater that or equal to the height of column x2 in Qσ. But this means that if
the height of column x1 in Qσ is less than the height of column x2 in Qσ, then Qσ(x1, y − 1) < Qσ(x2, y),
which is precisely the B-increasing condition. Thus Qσ is a PBF.

Next consider the shape β of Qσ. We must prove that βi ≥ βj for all inversions i < j of σ. Consider the
shape β(1) of Qσ after we have placed jn into Qσ. Since jn is placed on top of the leftmost entry σk such
that σk ≥ jn, the first k − 1 entries of σ are less than σk and hence the claim is satisfied after the initial
insertion.

Assume that the claim is satisfied after the insertion of each of the last k − 1 letters of wA and consider
the placement of the entry jn−k in Qσ. Let s be the index of the column into which jn−k is placed. Let t be
an integer less than s such that σt > σs. Then column t is weakly taller than column s before the placement
of jn−k by assumption. If column t is strictly taller, then the placement of jn−k on top of column s will not
alter the relative orders of the columns. If the heights of columns t and s are equal, then the highest entry
in column t was inserted before the highest entry in column s, for otherwise the columns would violate the
condition immediately after the highest entry of column s was inserted. But then jn−k would be inserted
on top of column t, a contradiction. Therefore the shape β of Qσ satisfies the condition that βi ≥ βj for all
pairs (i, j) satisfying i < j and σi > σj .

Thus we know that Ψσ maps any n × n matrix A to a pair of PBFs (P σ, Qσ). Now suppose that
uA = i1 . . . it and vA = j1 . . . jt and σ = σ1 . . . σn where σi < σi+1. We would like to determine the
relationship between Qσ and Qsiσ. We established in Corollary 8 that as we consider the sequence of
insertions

jt → Eσ jt → Esiσ

jtjt−1 → Eσ jtjt−1 → Esiσ

...
...

jt . . . j1 → Eσ jt . . . j1 → Esiσ,

the new cells that we created by the insertions at each stage were in the same row of Eσ as in Esiσ. This
implies that for all j, the elements in row j of Qσ and Qsiσ are the same. But then it is easy to prove by
induction on the number of inversions of σ that for all j, the elements in row j of Qσ and Qǭn are the same.
That is, ρ(Qσ) = Qǭn . Since there is a unique PBF Q with basement σ such that for all j, the elements in
row j of Q and Qǭn are the same, it follows that Qσ = ρ−1

σ (Qǭn) for all σ. Since P σ = jtjt−1 . . . j1 → Eσ

for all σ, we know by the results of Section 3 that P σ = ρ−1
σ (P ǭn) for all σ. Thus it follows that for any

N-valued n × n matrix A,
Ψσ(A) = (P σ, Qσ) = (ρ−1

σ (P ǭn), ρ−1
σ (Qǭn)).

Since Ψǭn
and ρ−1

σ are bijections, it follows that Ψσ is also a bijection between N-valued n × n matrices A
and pairs (P, Q) of PBFs with basement σ.

We note that another way to define the inverse of Ψσ is given by choosing the first occurrence (in reading
order) of the smallest value in Qσ, removing it from Qσ, and labeling this entry j1. Then choose the rightmost
entry in this row of P σ which sits at the top of its column and apply the inverse of the insertion procedure
to remove this cell from P σ. The resulting entry is then i1. Repeat this procedure to obtain the array wA.

Note that our proof of Theorem 17 allows us to prove the following corollary which says that for any
σ ∈ Sn, the map Ψσ can be factored through our twisted version of the RSK correspondence.

Corollary 18. For any N-valued n × n matrix A,

Ψσ(A) = (P σ, Qσ) = (ρ−1
σ (P ǭn), ρ−1

σ (Qǭn)) (11)

where the map
Ψǭn

(A) = (P ǭn , Qǭn) (12)

is a twisted version of the usual RSK correspondence.
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Corollary 18 allows us to prove that our permuted basement version of the RSK correspondence Ψσ

satisfies many of the properties that are satisfied by the RSK correspondence. For example, we have the
following theorem.

Theorem 19. Suppose that A is an N-valued n × n matrix and AT is its transpose. Then for all σ ∈ Sn,

Ψσ(A) = (P σ, Qσ) ⇐⇒ Ψσ(AT ) = (Qσ, P σ). (13)

Proof. By the usual properties of the RSK correspondence, we know that

Ψǭn
(A) = (P ǭn , Qǭn) ⇐⇒ Ψǭn

(AT ) = (Qǭn , P ǭn). (14)

Then (13) follows immediately from (14) and (11).

6.1 Standardization

Let w = w1 . . . wn ∈ {1, . . . , n}∗ be a word and let P σ(w) = w1 . . . wn → Eσ where σ = σ1 . . . σn ∈ Sn. One
can standardize w in the usual manner. That is, if w has ij j’s for j = 1, . . . n, then the standardization of
w, st(w), is the permutation that results by replacing the 1’s in w by 1, . . . , i1, reading from right to left,
then replacing the 2’s in w by i1 + 1, . . . , i1 + i2, reading from right to left, etc.. If st(w1 . . . wn) = s1 . . . sn,
then we define the standardization of P σ(w) by letting st(P σ(w)) = s1 . . . sn → Eσ.

In the special case where σ = ǭn, there are two different ways to find st(P σ(w)). That is, we can
compute st(P ǭn) = st(w) → E ǭn directly or we can compute P ǭn = w → E ǭn and then standardize the
reverse row strict tableau P ǭn . Here, for any reverse row strict tableau T , st(F ) is the standard reverse row
strict tableau obtained by replacing the 1’s in T 1, . . . , i1 in order from top to bottom, then replacing the
2’s in T by i1 + 1, . . . , i1 + i2, reading from top to bottom, etc.. This follows from the fact that the usual
standardization operation for words and column strict tableaux commutes with RSK row insertion; see [11].
Thus our standardization operation for words and reverse row strict tableaux commutes with our twisted
version of RSK row insertion. That is, suppose w = w1 . . . wn ∈ {1, . . . , n}∗ and st(w) = s1 . . . sn. Then
w → E ǭn = T if and only if s1 . . . sn → E ǭn = st(T ). Because our insertion algorithm where the basement
permutation is ǭn can be factored through our twisted version of RSK row insertion, the same thing happens
when the basement is σ. That is,

st(P σ(w)) = s1 . . . sn → Eσ

= ρ−1
σ (P ǭn(st(w)))

= ρ−1
σ (st(P ǭn(w))).

We can summarize the above discussion in the following two propositions.

Proposition 20. Let σ = σ1 . . . σn ∈ Sn, w = w1 . . . wn ∈ {1, . . . , n}∗, and st(w) = s1 . . . sn. If P σ(w) =
w1 . . . wn → Eσ is of shape γ where γ is a weak composition of n, then the PBF st(P σ(w)) = s1 . . . sn → Eσ

is a PBF whose shape is a rearrangement of γ.

Proof. We have proved above that st(P σ(w)) = ρ−1
σ (st(P ǭn(w))). Thus since the shape of st(P ǭn(w)) is

λ(γ), we know that ρ−1
σ (st(P ǭn(w))) is a rearrangement of γ.

Proposition 21. The standardization of words and PBFs commutes with our insertion algorithm relative to
the basement σ = σ1 . . . σn ∈ Sn in the sense that for any w = w1 . . . wn ∈ {1, . . . , n}∗, we have the following
commutative diagram.

T

P σ(w) P σ(st(w)) = st(P σ(w))

st(T )

ρσ ρ−1
σ
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Figure 22: An example of the commutativity of standardization with the insertion algorithm with basement
σ = 3 1 5 2 6 4 7 8.

A specific example of this process for w = 4 3 1 3 2 3 4 1 is pictured in Figure 22.
By the same reasoning, we can show that the RSK algorithm for PBFs with basement σ also commutes

with standardization. That is, suppose that we are given an N-valued matrix n × n matrix A such that the

sum of then entries of A is less than or equal to n. Then if wA =
uA

vA
and

Ψσ(A) = Ψσ

(
uA

vA

)
= (P σ, Qσ),

it will be the case that

Ψσ

(
st(uA)
st(vA)

)
= (ρ−1

σ (st(ρ(P σ))), ρ−1
σ (st(ρ(Qσ)))).

7 Evacuation

The evacuation procedure on reverse semi-standard Young tableaux associates to each reverse SSYT T a
new reverse SSYT evac(T ) through a deletion process coupled with jeu de taquin. Specifically, let T be a
reverse SSYT with n cells whose largest entry is m and let a be the entry in cell (1, 1). Remove the entry
a from T and apply jeu de taquin to create a new reverse SSYT, T ′, with n − 1 cells. The skew shape
sh(T )/sh(T ′) therefore consists of one cell which is then filled with the complement, m + 1− a, of a relative
to m. Repeat this procedure with T ′ (but without changing the value of m) and continue until all of the
cells from T have been evacuated and their complements relative to m have been placed into the appropriate
locations in the diagram consisting of the union of all the one-celled skew shapes. This resulting diagram is
a reverse semi-standard Young tableau called evac(T ).

We define an evacuation procedure on standard PBFs with basement σ as follows. Given a standard
PBF F σ with basement σ, we define evac(F σ) = ρ−1

σ (evac(ρσ(F σ))). That is, we first use the ρσ map to
send F σ to a reverse standard tableau ρσ(F σ). Then we apply the usual evacuation procedure to produce
a reverse standard tableau evac(ρσ(F σ)) and next apply ρ−1

σ to map evac(ρ(F σ)) back to a standard PBF
with basement σ. We claim that in the special case where σ = ǫn is the identity, then we can define the
evacuation procedure directly on the standard PBF which will allow us to compute evacuation without using
jeu de taquin.

Procedure 22. Let F ǫn be an arbitrary PBF of size n whose largest entry is m, and let Ri be the collection
of entries appearing in the ith row of F ǫn , reading from bottom to top. Let e1 be the largest entry in the first
row of F ǫn, C1 be the column containing e1, and let h1 be the height of C1 in F ǫn . Assign m + 1 − e1 row
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Rh1 in evac(F ǫn). Remove e1 and shift the remaining entries in column C1 down by one position so that
there are no gaps in the column. Next rearrange the entries in the rows in the resulting figure according to
the same procedure that we used in defining the ρ−1

ǫn
map to produce a PBF F ǫn

1 . Repeat the procedure on the
new diagram F ǫn

1 . That is, let e2 be the largest entry in the first row of F ǫn

1 , C2 be the column that contains
e2, and h2 be the height of column C2 in F ǫn

1 . Assign m + 1 − e2 row Rh2 in evac(F ǫn). Remove e2 and
shift the remaining entries in column C2 down by one position so that there are no gaps in the column. Next
rearrange the entries in the rows of the resulting figure according to same procedure that we used in defining
the ρ−1

ǫn
map to the to produce a PBF F

ǫn−2

2 . Continue in this manner until all of the entries have been
removed. The PBF evac(F ǫn) is produced by letting row i contain the complements of each entry relative to
m associated with a column of height i and applying the map ρ−1

ǫn
to send the resulting entries in the given

rows to their appropriate places.

See Figure 23 for an example of this procedure.

Theorem 23. If F ǫn is a PBF, then one can construct evac(F ǫn) = ρ−1
ǫn

(evac(ρ(F ǫn))) by procedure 22.

Proof. Let F be a PBF with basement ǭn and let Gǫn = ρ−1
ǫn

(F ). Let e1 = F (1, 1) so that e1 is the largest
entry in the first row of F and hence it will be the largest entry in the first row of Gǫn . Now consider the jeu
de taquin path of the empty space created by the removal of e1 from F . That is, in jeu de taquin, we move
the empty space to cell (2, 1) and put F (2, 1) in cell (1,1) if F (2, 1) is defined and either F (2, 1) ≥ F (1, 2)
or F (1, 2) is not defined. Otherwise, we put F (1, 2) in cell (1, 1) and move the empty space to cell (1, 2). In
general, if the empty space is in cell (i, j), then we move the empty space to cell (i+1, j) and put F (i+1, j)
into cell (i, j) if F (i+1, j) is defined and either F (i+1, j) ≥ F (i, j+1) or F (i, j+1) is not defined. Otherwise,
we put F (i, j + 1) in cell (i, j) and move the empty space to cell (i, j + 1). The jeu de taquin path ends at
cell (i, j) when both F (i, j + 1) and F (i + 1, j) are undefined.

Now suppose in the evacuation of e1 = F (1, 1), the path of the empty space ends in row s and that ci is
the right-most column involved in the jeu de taquin path in row i for i = 1, . . . , s. Thus the jeu de taquin
path involves cells (1, 1), . . . , (c1, 1) in row 1 of F , cells (c1, 2), . . . , (c2, 2) in row 2 of F , cells (c2, 3), . . . , (c3, 3)
in row 3 of F , etc.. Now if F1 is the PBF with basement ǭn that results from evacuating e1, then it follows
that in F1, each of the entries F (ci, i + 1) will end up in row i of F1 and all the other entries will be in
the same row in F1 as they were in F . We claim that in Gǫn = ρ−1

ǫn
(F ), the column containing e1 consists

of e1, F (c1, 2), F (c2, 3), . . . , F (cs−1, s), reading from bottom to top. Once we prove the claim, it will follow
that in our direct evacuation of e1 in Gǫn to produce Gǫn

1 , the entries in row i in F1 and Gǫn

1 are the same.
But then ρ(Gǫn

1 ) = F1 so that ρ−1
ǫn

(F1) = Gǫn

1 since the row sets of F1 completely determine ρ−1
ǫn

(F1). The
theorem then easily follows by induction.

To prove the claim, note that the entries in the first row of F must all be distinct so that in constructing
ρ−1

ǫn
(F ), each entry i in row 1 of F will be placed on column i. Now the fact that (2, 1), . . . , (c1, 1) are in the

jeu de taquin path means that F (2, 1) ≥ F (1, 2), F (3, 1) ≥ F (2, 2), . . . , F (c1, 1) ≥ F (c1 −1, 2). The fact that
F (c1, 2) is in the jeu de taquin path means that F (c1, 2) > F (c1 +1, 1) or F (c1 +1, 1) is not defined. It then
follows that in constructing ρ−1

ǫn
(F ), the entries F (1, 2), . . . F (c1−1, 2) can be placed on the columns occupied

by F (2, 1), . . . , F (c1, 1) but not on top of any of the columns occupied by F (c1 +1, 1), F (c1 +2, 1), . . .. Thus
the F (1, 2), . . . F (c1 − 1, 2) will be placed somewhere in the columns occupied by F (2, 1), . . . , F (c1, 1). Thus
when we go to place F (c1, 2) in the left-most available column, it must go on top of e1 since it can not go
on top of any of the columns occupied by F (c1 + 1, 1), F (c1 + 2, 1), . . .. Finally any entries strictly right
of (c1, 2) in row 2 must be placed on top of columns occupied by entries strictly to the left of the column
containing e1 in row 1 of F . Now consider the construction of the the third row of ρ−1

ǫn
(F ). The entries

F (1, 3), . . . , F (c1−1, 3) can go on top of the entries F (1, 2), . . . , F (c1−1, 2) since F (i, 3) ≤ F (i, 2) for all i for
which both F (i, 3) and F (i, 2) are defined. Next the fact that (c1 + 1, 2), . . . , (c3, 2) are in the jeu de taquin
path means that F (c1 + 1, 2) ≥ F (c1, 3), . . . , F (c2 − 1, 3) ≥ F (c2, 2). Thus F (c1, 3), F (c1 + 1, 3), . . . , F (c2, 3)
can go on top of the entries F (c1 + 1, 2), . . . , F (c2, 2) in row two of ρ−1

ǫn
(F ). The fact that (c2, 3) is in the

jeu de taquin path of e1 in F means that F (c2, 3) > F (c2 + 1, 2) so that none of F (c1 + 1, 3), . . . , F (c2, 3)
can go on top of entries F (c2 + 1, 2), F (c2 + 2, 2), . . . in row two of ρ−1

ǫn
(F ). Hence F (1, 3), . . . , F (c2 − 1, 3)

will be able go on top of entries F (1, 2), . . . , F (c1 − 1, 2), F (c1 + 1, 2), . . . , F (c2, 2) in row 2 of ρ−1
ǫn

(F ) but
they can not go on top of the entries F (c2 + 1, 2), F (c2 + 2, 2), . . . in row 2 of ρ−1

ǫn
(F ). Hence it must be the

case that F (1, 3), . . . , F (c2 − 1, 3) end up on top of entries F (1, 2), . . . , F (c1 − 1, 2), F (c1 + 1, 2), . . . , F (c2, 2)
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in row 2 of ρ−1
ǫn

(F ). Since F (c2, 3) can not go on top of the entries F (c2 + 1, 2), F (c2 + 2, 2), . . . in row 2 of
ρ−1

ǫn
(F ), the only place left to place F (c2, 3) is on top of the column that contains e1. Continuing on in this

way establishes the claim. 1

F ǫ8 = 2
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Figure 23: The evacuation procedure on a PBF with basement ǫ8.

1We wish to thank an anonymous referee who made numerous helpful suggestions for improving the presentation of this

paper.
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