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Abstract— In this paper we consider a probabilistic model
of a pursuit-evasion game on Rn, in which neither pursuer
nor evader positions are known with certainty. Both parties
are represented by normal distributions that evolve according
to a Kalman filter as new sensor readings (observation from
overhead camera/satellite images) are obtained. The objective
is to design the control commands issued by the pursuer
(which is executed noisily). The control commands issued by
the evader are unknown – only sensor measurements are given.
Even with such limited knowledge we prove boundedness of a
distance between the pursuer’s distribution and the evader’s
true distribution (one that takes into account the evader’s
control commands). Our simulation results support the claimed
guarantees.

I. INTRODUCTION
Consider the pursuit-evasion game played by two agents

on Rn – an evader, E, moving in the space, and a pursuer, P ,
trying to catch it [4], [2], [8]. Typically the future motion of
the evader is not known (or only some bounds on velocity
or a coarse strategy is known), and the task at hand is to
design a control strategy for moving the pursuer so that
it eventually catches the evader. The precise definition of
‘catch’ may vary. Often, given the unpredictability of the
evader, the desired objective is to be able to reach the evader
within a finite distance.

In this paper we consider a discrete-time single-pursuer
(P ) single-evader (E) game on Rn, but instead of represent-
ing the agents as points in Rn, we represent them by normal
distributions on Rn. Such requirements may arise when, for
example, the precise location of the agents are not known, but
only approximate/noisy sensor measurements are available.
This, at best, allows us to infer a probability distribution
about the location of the agents. In particular, we will model
the pursuer and the evader as normal distributions that evolve
according to the rules of a Kalman filter [3], updated by noisy
sensor observations. The goal is to design control velocities
for the pursuer so as to catch the evader. The support of the
[normal] distributions being the entire Rn, one cannot use
a simple Euclidian metric to measure the distance between
the agents. Instead we employ a metric on distributions to
compare E and P .

Probabilistic pursuit-evasion games such as this have
been studied, mostly in general probability distribution set-
tings [10], [5]. Although more general in their setup, such
algorithms are accompanied by little-to-no theoretical guar-
antees. In this paper, we aim for a stronger theoretical
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foundation to this line of research. In particular, we propose
some weak assumptions and design control strategies for
the pursuer such that the distance between their probability
distributions remain bounded by a finite positive value: a
no-win criterion for the evader. The reason for an emphasis
on (pseudo-) metrics on distributions (as opposed to the
simpler mean-pursuit approach [10]) is to prepare for a
theory adapted to multimodal distributions.

A. Problem Description

We represent agents, P and E, in Euclidean Rn as non-
degenerate normal distributions, φP and φE respectively,
which are the best estimates for their true distribution. A
Kalman filter can be used to update the distributions as
sensor readings about the positions of the respective agents
(e.g., readings from overhead/satellite camera) are obtained.
A Kalman filter can also incorporate information about noisy
velocity commands (control inputs/commands) issued by the
respective agents to compute even better estimate of the
distributions.
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Fig. 1. The true evader φEk , the estimated evader φ̂Ek and the pursuer φPk

Assume that sensors obtain noisy position readings of both
the agents, and that the sensor model is known, and that the
sensor can communicate with the pursuer, P , to convey the
readings. The pursuer also knows the control command that
it issues at every [discrete] time step. However we do not
assume that the control commands issued by the evader are
known. Hence, in our problem, we have the following three
distributions:

i. φP : This is the normal distribution representing the
pursuer, P , and is updated using a Kalman filter as
new sensor readings of the position of the pursuer
({zP0 , zP1 , zP2 , · · · }) and the control commands issued
by the pursuer ({dP0 , dP1 , dP2 , · · · }) are obtained. This
distribution is of course at the disposal of the controller
for designing the control commands for the pursuer.

ii. φ̂E : This is the estimate of the normal distribution
representing the evader, E, and is updated using a



Kalman filter as new sensor readings of the position
of the evader ({zE0 , zE1 , zE2 , · · · }) arrive. However the
update cannot use the control commands issued by
the evader, since that information is unavailable to the
pursuer. This distribution is also known for design of
control commands for pursuer.

iii. φE : This is the true normal distribution representing
the evader, E, and is updated by a Kalman filter
using sensor readings of the position of the evader
({zE0 , zE1 , zE2 , · · · }) as well as the control commands
issued by the pursuer ({dE0 , dE1 , dE2 , · · · }). This distri-
bution is not known to the controller in designing the
control commands, and is only used in our theoreti-
cal analysis to prove that the distribution is within a
bounded distance from φ̂E .

We assume that the observation model and the system
dynamics model of both the evader and the pursuer are
known for designing the control commands for the pursuer.

First, we will show that in spite of partial knowledge of the
sequence of inputs, the distance between φE and φ̂E remains
bounded under certain assumptions as time goes to infinity.
Then we will show that the distance between estimated
evader and the pursuer is also bounded. For these we will
use two distinct notions of distances between distributions
— a metric in the space of normal distributions, and the
F-distance, which is a distance function not satisfying the
coincidence axiom of a metric.

II. PRELIMINARIES

A. Normal distributions
We consider non-degenerate normal distributions on Rn

with the standard Euclidean metric. Upon fixing a coordinate
on Rn, such a distribution, φ, is completely described by a
mean, µ ∈ Rn, and a covariance matrix, Σ ∈ Sym+(n,R).
In particular, we write φ = N (µ,Σ), and the explicit formula
for the distribution is given by

φ(x) =
1√

(2π)n|Σ|
exp
[
−1

2
(x− µ)T Σ−1(x− µ)

]
, x ∈ Rn

(1)
where, |Σ| is the determinant of the covariance matrix.

We restrict attention to the space of non-degenerate normal
distributions, which is isomorphic to Rn × Sym+(n,R).
We denote this space of normal distributions on Rn by
N n ⊂P(Rn) (where P(Rn) is the space of all probability
distributions on Rn). Thus, φ = N (µ,Σ) ∈ N n.

B. Kalman filters
Suppose the system dynamics and measurement mod-

els [9] are described by
zk = Hxk + vk

xk+1 = Fxk + Bdk + wk (2)

where, xk ∈ Rn is the system state; for m ≤ n, zk ∈ Rm

is the measurement (or observations) taken by an observer;
dk ∈ Rq is the input; and wk and vk are the system and
measurement noises respectively with the joint covariance

matrix E

([
wk

vk

]
[wT

k v
T
k ]

)
=

[
Q S
ST R

]
. By writing the

the above equation in the particular order we emphasize that

in designing control command, dk, at the kth time-step, the
observation zk is available.

The Kalman filter associated with this system, and its
optimality and stability properties are well-known [7]. In
particular, if the distribution of xk is the normal distribution
with mean µk and covariance Σk, we define the mean and
covariance of the posterior distribution as mk = Fµk and
Vk = FΣkF

T + Q. Then mk and Vk evolve according to
the following (time-invariant) Kalman filter recursion:

mk+1 = (F −∆kH) (mk +Auk +Bdk) + ∆kzk (3)

Vk+1 = (F −∆kH)Vk(F −∆kH)T

+ (Q− SR−1ST )

+ (∆k − SR−1)R(∆k − SR−1)T
(4)

∆k is often called the Kalman gain and is given by
∆k = (FVkH

T + S)(HVkH
T +R)−1 (5)

In the literature there are several equivalent formulations
of the filter in use, and often the problem is simplified by
assuming S = 0. Our current formulation is closely related
to that presented in [7].

C. Notations

Note that for a given set of system and measurement pa-
rameters, {F,H,B,Q,R, S}, the sequences {m0,m1, · · · }
and {V0, V1, · · · } are completely determined by the ini-
tial values (m0 and V0) and the sequences {u0, u1, · · · },
{d0, d1, · · · } and {z0, z1, · · · }. Also, assuming F to be of
full rank, µk = F−1mk and Σk = F−1(Vk −Q)F−T gives
the prior distribution.

We will use the following notations for brevity:
i. {φk}k=0,1,2,··· be the sequence of normal distributions

with mean µk and covariance Σk which evolve accord-
ing to the equations (3) and (4).

ii. The set of parameters governing the evolution of the
distribution, P = {F,H,B,Q,R, S}.

iii. The Kalman filter can be thought of a function that
takes in the parameter set, the initial conditions, the
sequence of control commands and the sequence
of observations, and generates the sequence of
distributions, and hence can be compactly written as
either of the following:
{mk, Vk}k=0,1,2,··· =

KFpost
P ({m0, V0}; {dk}k=0,1,2,···; {zk}k=0,1,2,···)

{φk}k=0,1,2,··· =
KFpri

P ({m0, V0}; {dk}k=0,1,2,···; {zk}k=0,1,2,···).

D. Riccati equation

It can be observed that the evolution of the covariance
matrix according to equation (4) depends only on the system
parameters and the initial covariance matrix V0. It does
not depend on m0, the inputs {uk, dk}k=0,1,2,···, or the
observations {zk}k=0,1,2,···. Thus, the evolution governed by
equation (4) is often studied separately and is called the
discrete-time Matrix Riccati equation. Results related to its
convergence, stability and uniqueness of the limiting value
are well-known and summarized next.



Definition 1 (Stabilizable pair): For matrices F and G,
(F,G) is called a stabilizable pair if there exists a matrix
K such that all the eigenvalues of F − GK have absolute
values less than unity.

Definition 2 (Detectable pair): For matrices H and F ,
(H,F ) is called a detectable pair if there exists a matrix
K such that all the eigenvalues of F −KH have absolute
values less than unity.

Note: stabilizability and detectability are generic condi-
tions – almost all pairs (except a set of measure zero) are
stabilizable as well as detectable.

Lemma 1 (Matrix Riccati equation [7], [1]):
a. (Convergence) If (H,F ) is a detectable pair, then

the sequence {Vk}k=0,1,2,··· (generated by Eqn. (4))
converges to V∞ — a finite matrix that satisfies the
algebraic Riccati equation:

V = F̃ (V )V F̃ (V )T + (Q− SR−1ST )

+ (∆(V )− SR−1)R(∆(V )− SR−1)T
(6)

where, F̃ (V ) = F − (FV HT +S)(HVHT +R)−1H, and
∆(V ) = (FV HT + S)(HVHT +R)−1 (7)

b. (Stability and Uniqueness) If (F,G) is a stabilizable
pair for any G such that GGT = Q, then the solution
V∞ of (6) to which {Vk}k=0,1,2,··· converges to is
unique (i.e., independent of the initial choice of V0)
and F −∆(V∞)H is stable, that is, the spectral radius
ρ(F −∆(V∞)H) < 1.

E. Metrics and Distance Functions on Space of Normal
Distributions

1) Product Metric: Consider the problem of measuring
the distance between the true distribution of the evader,
φEk , and its estimated distribution, φ̂Ek . If the distributions
are exactly the same we could say that the estimate is
perfect, and this fact should be reflected by our equipment for
measuring their distances. Thus it is natural to use a metric,
D : N n ×N n → R+, so that D(φE , φ̂E) = 0 if and only
if φE = φ̂E and satisfies the other axioms of metric. The
simple choice we make is the product metric of the Euclidean
metric on the space of means of the normal distributions
and the induced 2-norm of the difference of matrices as the
metric on the space of the normal distributions’ covariance
matrices. Thus,

D(φE
k , φ̂

E
k ) =

√
‖F (µk − µ̂k)‖2 + ‖FT (Σk − Σ̂k)F‖2 (8)

where, φEk = N (µE
k ,Σ

E
k ) and φ̂Ek = N (µ̂E

k , Σ̂
E
k )

2) F-distance: Next consider the problem of measuring
the distance between the pursuer and the estimated evader.
By “distance” we would like to measure an analogue of the
expected distance between the position of the pursuer and
that of the evader. The interesting point to note here is that a
metric will not suffice, since when the distributions φPk and
φ̂Ek are exactly same, the expected distances won’t be zero.
Thus we define the F-distance, F :P(Rn)×P(Rn)→R+,

F(φP
k , φ̂

E
k ) =

√∫
Rn

∫
Rn

φP
k (x)φ̂E

k (y) (d(x, y))2 dx dy (9)

This, in essence, is similar to the more well-
known Lukaszyk-Karmowski distance [6], LK(φ1, φ2) =

∫
Rn

∫
Rn φ1(x)φ2(y) d(x, y) dx dy, but computationally

more favorable. In particular, F has the following properties
(see Appendix for proofs):

i. For φPk = N (µP
k ,Σ

P
k ) and φ̂Ek = N (µ̂E

k , Σ̂
E
k ),

F(φP
k , φ̂

E
k ) =

√
Tr(ΣP

k ) + Tr(Σ̂E
k ) + ‖µP

k − µ̂E
k ‖2, and,

ii. F satisfies triangle inequality: F(φ1, φ3) ≤
F(φ1, φ2) + F(φ2, φ3), ∀φi ∈ N n

III. MAIN RESULTS

Our principal results are split into two parts: i. Proving
that limk→∞D(φEk , φ̂

E
k ) is bounded (Proposition 1), and,

ii. designing the control commands, dPk , k = 0, 1, · · · ,
which dictate the evolution of φPk with k, and hence
prove that limk→∞ F(φPk , φ̂

E
k ) is bounded (Proposition 2).

A final corollary concludes the paper by establishing that
limk→∞ F(φPk , φ

E
k ) is bounded as well.

For clarity, we present abridged statements of the main
propositions in this section, while the detailed statements
and proofs are presented in the Appendix.

A. Distance between real/true evader and estimated evader

For a symmetric matrix Q, Q > 0 means that Q is a
positive semi-definite.

Lemma 2: [7] Let (H,F ) be a detectable pair (Defini-
tion 2). Let {Ak} be a sequence generated by:
Ak+1 = (F −KH)Ak(F −KH)T + (Q− SR−1ST )

+ (K − SR−1)R(K − SR−1)T .
(10)

If A0 = V0, then Vk 6 Ak (note: {Vk} is generated by (4)).

Proposition 1: Suppose P = {F,H,B,Q,R, S} is the
set of model parameters that govern the evolution of the
distributions φEk and φ̂Ek . Consider the following Kalman
Filter sequences for the evolution of the evader’s true and
estimated distributions:

{φE
k }k=0,1,2,··· = KFpri

P ({m0, V0}; {dk}k=0,1,2,···; {zk}k=0,1,2,···)

{φ̂E
k }k=0,1,2,··· = KFpri

P

(
{m̂0, V̂0}; {0}k=0,1,2,···; {zk}k=0,1,2,···

)
If (F,H) is detectable, and (F,G) is a stabilizable pair for

any G such that GGT = Q, and if ‖Bdk‖ ≤ c1, ‖Hmk −
zk‖ ≤ c2 and ‖F − ∆(V∞)H‖ < 1 for some positive
constants c1, c2, then limk→∞D(φEk , φ̂

E
k ) is bounded.

The assumption ‖Bdk‖ ≤ c1 simply implies that the
evader cannot move arbitrarily fast. The statement ‖Hmk −
zk‖ ≤ c2 is justified by the fact that zk, the sensor
measurement of the true position of the evader, is a sample
from a distribution whose estimated mean is Fµk = mk.
The H appears due to the transformation of the position
coordinates into the sensor’s measurement coordinates. The
final condition is a modestly stronger requirement than
(F,G) be stable.

As consequence of the above proposition, we can guar-
antee that our estimate φ̂Ek of the evader’s distribution,
computed without the knowledge of the control commands
issued by the evader, will remain within a finite distance of
the true distribution even as k →∞.
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Fig. 2. Snapshots of simulation at different values of k. The three ellipses represent the covariance and mean of the distributions φ̂Ek , φEk and φPk .

B. Pursuit-Evasion on distributions

Proposition 2: Let φPk be the normal distribution describ-
ing the pursuer, which evolves according to the Kalman filter

KFpri

PP

(
{mP

0 , V
P
0 }; {dPk }k=0,1,2,···; {zPk }k=0,1,2,···

)
where the given set of system and measurement parame-
ters are, PP = {FP , HP , AP , BP , QP , RP , SP }. Suppose
(F,H) is detectable, (F,G) is a stabilizable pair for any G
such that GGT = Q, (FP , HP ) detectable and (FP , GP ) is
a stabilizable pair for any GP such that GP (GP )T = QP ,
‖Bdk‖ ≤ c1, ‖Hmk − zk‖ ≤ c2, ‖F − ∆(V∞)H‖ < 1,
‖HmP

k − zPk ‖ ≤ c3, and FP −∆(V P
∞)HP is invertible. If

the pursuer issues the control command

dPk = (BP )−1(FP −∆P
kH

P )−1[(F − ∆̂kH)mP
k

− (FP −∆P
kH

P )mP
k + ∆̂kHm̂k −∆P

kHm
P
k

]
,

(11)

then limk→∞ F(φPk , φ̂
E
k ) is bounded.

The conditions ‖Bdk‖ ≤ c1, ‖Hmk−zk‖ ≤ c2 and ‖F −
∆(V∞)H‖ < 1 are same as Proposition 1. ‖HmP

k − zPk ‖ ≤
c3 is justified due to the fact that zPk is an observation made
from the pursuer’s distribution. The invertibility of FP −
∆(V P

∞)HP is once again a weak assumption.
Due to the way we define of the subscripts of measure-

ments, (2), we note that this design of dk respects causality.

C. Bound on the pursuer-evader distance

Corollary 1: If the distributions of the true evader φEk ,
the estimated evader φ̂Ek and the pursuer φPk evolve accord-
ing to the conditions given in Proposition 1 and 2, then
limk→∞ F(φPk , φ

E
k ) is bounded.

This concludes our result on the claimed boundedness.

IV. SIMULATION

We implemented the Kalman filter and the described
control in C++ programming language. In this section we
present the result of the simulations.

For the simulation result presented in this paper, we choose
the following parameters for the dynamics and measurement
models of the evader, and the initial conditions for the
evader’s true distribution:
µ0=

[
0
0

]
, Σ0=

[
5 0
0 5

]
, F=

[
1 0
0 1

]
, B=

[
0.01 0

0 0.01

]
,

10-1

100

101

102

k

Fig. 3. The distances D(φEk , φ̂
E
k ), F(φ̂Ek , φ

P
k ) and F(φPk , φ

E
k ) plotted

against k. (note that the Y axis has a logarithmic scale).

H=
[

1 0
0 1

]
, Q=

[
0.01 0

0 0.01

]
, R=

[
2.0 0.5
0.5 1.0

]
, S=

[
0 0
0 0

]
For the evader estimate we choose,
µ̂E
0 =

[
0.1
−0.1

]
, Σ̂E

0 =
[

1 0
0 1

]
,

F̂ = F, B̂ = B, Ĥ = H, Q̂ = Q, R̂ = R, Ŝ = S

and for the pursuer,
µP
0 =
[−10
−15

]
, ΣP

0 =
[

5 0
0 5

]
, FP=

[
1 0
0 1

]
,

BP=
[

0.01 0
0 0.01

]
, HP=

[
1 0
0 1

]
,

QP=
[

0.001 0
0 0.001

]
, RP=

[
1.0 −0.25
−0.25 0.5

]
, SP=

[
0 0
0 0

]
With these parameters the snapshots of the simulation

results obtained is shown in Figure 2, while the plot in
Figure 3 shows how D(φEk , φ̂

E
k ), F(φPk , φ̂

E
k ) and D(φ̂Ek , φ

P
k )

varies with k. Although there is almost random oscillation
in the values of F(φPk , φ̂

E
k ) and D(φ̂Ek , φ

P
k ), the bounds are

clearly noticeable even for large values of k.



APPENDIX

A. Proof of claimed properties of F
Statement: F(φ1, φ2) =

√
Tr(Σ1) + Tr(Σ2) + ‖µ1 − µ2‖2

and F(φ1, φ3) ≤ F(φ1, φ2)+F(φ2, φ3) for all φi = N (µi,Σi) ∈
N N .

Proof: From the definitions,
F(φ1, φ2) =

√∫
Rn

∫
Rn φ1(x1)φ2(x2) ‖x1 − x2‖2 dx1 dx2,

xi ∈ RN . By plugging in ‖x1 − x2‖2 =
∑

i=1,2 ‖xi − µi‖2 +

‖µ1 −µ2‖2 − 2(x1 −µ1)T (x2 −µ2) + 2(µ1 −µ2)T ((x1 −µ1)−
(x2−µ2)) into the above, and noting that: (1)

∫
Rn φi(xi) dxi = 1;

(2)
∫
Rn φi(xi)‖xi−µi‖2 dxi = Tr(Σi); and (3)

∫
Rn φi(xi)(xi−

µi) dxi = 0, the proof for the first part follows immediately.
Using this result we have

(F(φ1, φ2) + F(φ2, φ3))2 =

= Tr(Σ1) + 2 Tr(Σ2) + Tr(Σ3) + ‖µ1 − µ2‖2 + ‖µ2 − µ3‖2

+2

√ (
Tr(Σ1) + Tr(Σ2) + ‖µ1 − µ2‖2

)(
Tr(Σ2) + Tr(Σ3) + ‖µ2 − µ3‖2

)
≥ Tr(Σ1) + Tr(Σ3) + (‖µ1 − µ2‖+ ‖µ2 − µ3‖)2

≥ Tr(Σ1) + Tr(Σ3) + ‖µ1 − µ3‖2 = (F(φ1, φ3))2

B. Proof of Proposition 1
Statement of Proposition 1: Suppose P = {F,H,B,Q,R, S}

is the set of model parameters that govern the evolution of the
distributions φE

k and φ̂E
k . Consider the following Kalman Filter

sequences for the evolution of the evader’s true and estimated
distributions:

{φE
k }k=0,1,2,··· = KFpri

P ({m0, V0}; {dk}k=0,1,2,···; {zk}k=0,1,2,···)

{φ̂E
k }k=0,1,2,··· = KFpri

P

(
{m̂0, V̂0}; {0}k=0,1,2,···; {zk}k=0,1,2,···

)
If (F,H) is detectable, and (F,G) is a stabilizable pair for any G
such that GGT = Q, and if ‖Bdk‖ ≤ c1, ‖Hmk − zk‖ ≤ c2 and
‖F −∆(V∞)H‖ < 1 for some positive constants c1, c2, then there
is a finite constant C(V0, V̂0) such that limk→∞D(φE

k , φ̂
E
k ) ≤

‖m0 − m̂0‖+ C(V0, V̂0).
Proof: First we write down the expression for D(φE

k , φ̂
E
k ):

D(φE
k , φ̂

E
k ) =

√
‖mk − m̂k‖2 + ‖FT (Σk − Σ̂k)F‖2. (12)

By definition, Vk = FΣkF
T + Q and V̂k = F Σ̂kF

T + Q. By
Lemma 1, limk→∞ Vk = limk→∞ V̂k = V∞. Thus the second
term under the square root in (12) vanishes as k →∞.

Next, ∆̂k, the Kalman gain of an estimated evader is given by
∆̂k = (FV̂kH

T + S)(HV̂kH
T +R)−1.

Since mk = (F − ∆k−1H)(mk−1 + Bdk−1) + ∆k−1zk−1 and
m̂k = (F − ∆̂k−1H)m̂k−1 + ∆̂k−1zk−1 by definition,
mk − m̂k = (F − ∆̂k−1H)(mk−1 − m̂k−1) +

(F −∆k−1H)Bdk−1 + (∆̂k−1 −∆k−1)(Hmk−1 − zk−1)

Inducting on this yields:
mk − m̂k =

∏k−1
i=0 (F − ∆̂k−1−iH)(m0 − m̂0)

+
∑k−1

i=0 [
∏i−1

j=0(F − ∆̂k−1−jH)](F −∆k−1−iH)Bdk−1−i

+
∑k−1

i=0 [
∏i−1

j=0(F − ∆̂k−1−jH)](∆̂k−1−i −∆k−1−i)ek−1−i

where ek = Hmk − zk and
∏−1

j=0 = Id. Since limk→∞ ‖(F −
∆(V∞)H)k‖1/k = ρ(F −∆(V∞)H) < 1 by Lemma 1, we have

lim
k→∞

‖mk − m̂k‖ ≤ ‖m0 − m̂0‖

+ c1 lim
k→∞

k−1∑
i=0

‖[
i−1∏
j=0

(F − ∆̂k−1−jH)](F −∆k−1−iH)‖

+ c2 lim
k→∞

k−1∑
i=0

‖[
i−1∏
j=0

(F − ∆̂k−1−jH)](∆̂k−1−i −∆k−1−i)‖.

We need to show that two limits in the previous inequality are
bounded. Since ‖F −∆(V∞)H‖ < 1, there exists a constant ε > 0
such that ‖F −∆(V∞)H‖+ ε < 1. Since limk→∞∆k = ∆(V∞)
and limk→∞ ∆̂k = ∆(V∞), there exists a positive integer k0 =
k0(ε) such that ‖F − ∆kH‖ − ‖F − ∆(V∞)H‖ < ε and ‖F −
∆̂kH‖ − ‖F −∆(V∞)H‖ < ε for all k ≥ k0.

Consider the terms in the sum
∑k−1

i=0 ‖[
∏i−1

j=0(F −
∆̂k−1−jH)](F − ∆k−1−iH)‖ when k ≥ k0. The
first term is ‖F − ∆k−1H‖ (since i = 0), and is
bounded by ‖F − ∆(V∞)H‖ + ε. The second term is
‖(F − ∆̂k−1H)(F −∆k−2H)‖ (since i = 1), and is bounded by
(‖F−∆(V∞)H‖+ε)2. Following similar argument, sum from i=0
to i=k−k0−1 is bounded by

∑k−k0−1
i=0 (‖F −∆(V∞)H‖+ ε)i+1.

Since
∑∞

i=0(‖F − ∆(V∞)H‖ + ε)i+1 is a constant, the limit
limk→∞

∑k−1
i=0 ‖[

∏i−1
j=0(F − ∆̂k−1−jH)](F −∆k−1−iH)‖ exists

and is bounded.
Similarly, since ∆(V∞)=limk→∞ ∆̂k=limk→∞∆k, the limit

limk→∞
∑k−1

i=0 ‖[
∏i−1

j=0(F − ∆̂k−1−jH)](∆̂k−1−i − ∆k−1−i)‖
exists and is bounded. Thus we have the proposed constant

C(V0, V̂0) = c1 lim
k→∞

k−1∑
i=0

‖[
i−1∏
j=0

(F − ∆̂k−1−jH)](F −∆k−1−iH)‖

+ c2 lim
k→∞

k−1∑
i=0

‖[
i−1∏
j=0

(F − ∆̂k−1−jH)](∆̂k−1−i −∆k−1−i)‖.

C. Proof of Proposition 2
Statement of Proposition 2: Let φP

k be the normal distribution
describing the pursuer, which evolves according to the Kalman filter

{φP
k }k=0,1,··· = KFpri

PP

(
{mP

0 , V
P
0 }; {dPk }k=0,1,···; {zPk }k=0,1,···

)
,where the given set of system and measurement parameters are,
PP = {FP , HP , AP , BP , QP , RP , SP }. Suppose (F,H) is de-
tectable, (F,G) is a stabilizable pair for any G such that GGT = Q,
(FP , HP ) detectable and (FP , GP ) is a stabilizable pair for any
GP such that GP (GP )T = QP , ‖Bdk‖ ≤ c1, ‖Hmk−zk‖ ≤ c2,
‖F −∆(V∞)H‖ < 1, ‖HmP

k −zPk ‖ ≤ c3, and FP −∆(V P
∞)HP

is invertible. If the pursuer issues the control command/input

dPk = (BP )−1(FP −∆P
kH

P )−1
[
(F − ∆̂kH)mP

k

− (FP −∆P
kH

P )mP
k + ∆̂kHm̂k −∆P

kHm
P
k

]
,

then there is an integer k1 ≥ 0 such that

lim
k→∞

F(φP
k , φ̂

E
k )2 ≤ Tr(V∞) + Tr(V P

∞)

+ [‖m̂k1 −m
P
k1
‖+ C(V0, V̂0, V

P
0 )]2

where the quantity on the right is finite, with V P
∞ = lim

k→∞
V P
k and



C(V0, V̂0, V
P
0 )

= c3 lim
k→∞

k−k1−1∑
i=0

‖[
i−1∏
j=0

(F − ∆̂k−1−jH)]∆P
k−1−i‖

+ lim
k→∞

k−k1−1∑
i=0

‖[
i−1∏
j=0

(F−∆̂k−1−jH)]∆̂k−1−i(Hm̂k−1−i − zk−1−i)‖

Proof: Due to Lemma 1, V P
∞ = limk→∞ V

P
k is finite and

is unique. Since limk→∞∆P
k = ∆(V P

∞) and FP −∆(V P
∞)HP is

invertible, there is an integer k1 ≥ 0 such that FP − ∆P
kH

P is
invertible for all k ≥ k1. Since mP

k = (FP −∆P
k−1H

P )(mP
k−1 +

BP dPk−1) + ∆P
k−1z

P
k−1, then for all k ≥ k1 we have,

m̂k −mP
k = (F − ∆̂k−1H)(m̂k−1 −mP

k−1)

+ ∆P
k−1(HmP

k−1 − zPk−1)− ∆̂k−1(Hm̂k−1 − zk−1).

Inducting on this yields:

m̂k −mP
k =

k−k1−1∏
i=0

(F − ∆̂k−1−iH)(m̂k1 −m
P
k1

)

+

k−k1−1∑
i=0

[

i−1∏
j=0

(F − ∆̂k−1−jH)]∆P
k−1−i(Hm

P
k−1−i − zPk−1−i)

−
k−k1−1∑

i=0

[

i−1∏
j=0

(F − ∆̂k−1−jH)]∆̂k−1−i(Hm̂k−1−i − zk−1−i)

where
∏−1

j=0 = Id.
Since limk→∞ ‖(F −∆(V∞)H)k‖1/k = ρ(F −∆(V∞)H) is

less than 1 by Lemma 1, then we have

limk→∞ ‖m̂k −mP
k ‖

≤ ‖m̂k1 −mP
k1
‖

+ c3 limk→∞
∑k−k1−1

i=0 ‖[
∏i−1

j=0(F − ∆̂k−1−jH)]∆P
k−1−i‖

+ lim
k→∞

k−k1−1∑
i=0

‖[
i−1∏
j=0

(F − ∆̂k−1−jH)]∆̂k−1−i(Hm̂k−1−i − zk−1−i)‖.

Since by Proposition 1 ‖mk−m̂k‖ is bounded for all k, and since
‖Hmk−zk‖ ≤ c2, we have that ‖Hm̂k−1−i−zk−1−i‖ is bounded
for all k. Thus, using arguments similar to those in the proof of
Proposition 1, we can show that the limits inside C(V0, V̂0, V

P
0 )

exist and are bounded since ‖∆P
k ‖ and ‖∆̂k‖ are bounded.

This means

lim
k→∞

‖m̂k −mP
k ‖ ≤ ‖m̂k1 −m

P
k1
‖+ C(V0, V̂0, V

P
0 ).

Since
(
F(φP

k , φ̂
E
k )
)2

= Tr(V̂k) + Tr(V P
k ) + ‖m̂k −mP

k ‖2,

lim
k→∞

(
F(φP

k , φ̂
E
k )
)2
≤ Tr(V∞) + Tr(V P

∞)

+ [‖m̂k1 −m
P
k1
‖+ C(V0, V̂0, V

P
0 )]2.

D. Proof of Corollary 1
Statement of Corollary 1: If the distributions of the true evader

φE
k , the estimated evader φ̂E

k and the pursuer φP
k evolve ac-

cording to the conditions given in Proposition 1 and 2, then
limk→∞ F(φP

k , φ
E
k ) is bounded.

Proof: Since F satisfies triangle inequality, we have

F(φP
k , φ

E
k ) ≤ F(φP

k , φ̂
E
k ) + F(φ̂E

k , φ
E
k )

= F(φP
k , φ̂

E
k ) +

√
Tr(Vk) + Tr(V̂k) + ‖mk − m̂k‖2.

Taking k →∞, and using (12) and following, one has

lim
k→∞

F(φP
k , φ

E
k ) ≤

lim
k→∞

F(φP
k , φ̂

E
k ) +

√
2 Tr(V∞) + lim

k→∞
‖mk − m̂k‖2

= lim
k→∞

F(φP
k , φ̂

E
k ) +

√
2 Tr(V∞) + lim

k→∞

(
D(φE

k , φ̂
E
k )
)2

Thus by Proposition 1 and 2, limk→∞ F(φP
k , φ

E
k ) is bounded.
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