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ABSTRACT
We consider coverage problems in sensor networks of stationary
nodes with minimal geometric data. In particular, there are no
coordinates and no localization of nodes. We introduce a new
technique for detecting holes in coverage by means of homol-
ogy, an algebraic topological invariant. The impetus for these
techniques is a completion of network communication graphs
to two types of simplicial complexes: the nerve complex and
the Rips complex. The former gives information about coverage
intersection of individual sensor nodes, and is very difficult to
compute. The latter captures connectivity in terms of inter-node
communication: it is easy to compute but does not in itself yield
coverage data. We obtain coverage data by using persistence
of homology classes for Rips complexes. These homological
invariants are computable: we provide simulation results.

I. INTRODUCTION

Coverage problems in sensor networks are extremely important
in a wide variety of contexts, from cell-phone communications to
beacon navigation to security and defense. We restrict attention to
systems with stationary nodes in Rd having radially symmetric
coverage domains. Depending on the application, these coverage
balls may denote broadcast domains, sensing regions, or visibility
domains. Knowing the topology of the union of the coverage
domains — in particular the location and morphology of holes
— is of significant relevance to the coverage problem.

I-A. Related Work

To our knowledge, there are two prominent approaches to
coverage problems. The first is perhaps best described as the
‘computational geometry’ approach, in which one uses the co-
ordinates of the nodes and standard geometric tools (such as
the Delaunay or Voronoi diagrams) to determine coverage. For
examples of such an approach, see [1], [2], [3], [4]. One feature
of this approach is that the precise geometry of the domain and
the exact locations of the nodes must be known.

To circumvent some of these difficulties, many researchers turn
to probabilistic methods for coverage. For example, in [5], the
author assumes a randomly and uniformly distributed collection
of nodes in a domain with a fixed geometry and proves expected
area coverage. Other approaches [6], [7], [8] give percolation-
type results about coverage and network integrity for randomly
distributed nodes. The drawback of these methods is the need for
strong assumptions about the exact shape of the domain, as well
as the need for a uniform distribution of nodes.

I-B. Features and Bugs
We initiate a significant departure from both of these tech-

niques: our tools come from algebraic topology, homology theory
in particular. This paper does not solve the coverage problem,
although the techniques we introduce here can be used to give
effective coverage criteria [17]. In order to introduce the homo-
logical approach, we restrict attention to a simplified version of
the coverage problem: given a collection of nodes X ⊂ Rd

covered by balls of a fixed radius, what is the topology of the
union of the covering discs? Specifically, are there any holes in
the cover? If so, where are the holes located?

We give a sufficient criterion for detecting holes in a coverage
network. Our techniques have the following features:

1) Everything is coordinate-free. Nodes have no localization
capabilities.

2) The criterion is computable: we present simulations.
3) The methods we present can be generalized to apply to a

wide class of coordinate-free sensor networks problems.
Our methods have the following drawbacks:
1) Our criterion is centralized. We believe that a decentralized

computation is possible, but it is a significant algorithmic
and topological challenge.

2) Our criterion is sufficient to detect a hole, but not necessary.
3) We have not determined the computational complexity of

the computation of the homological criterion.

II. PROBLEM FORMULATION
We assume as little as possible about the nodes and their

geometry. Consider a collection of stationary nodes X ⊂ Rd.
In most practical settings, d = 2 or d = 3. Our tools are not
adapted to any particular d; therefore, we leave d as an open
variable throughout the rest of the paper. We adopt the following
assumptions on our system.

A1 Nodes have radially symmetric cover domains of radius rc.
A2 Nodes broadcast their unique ID numbers. Each robot can

detect the identity of anyone within radius rs via a strong
signal, and via a weak signal within a larger radius rw.

A3 The radii of communication rs, rw and the coverage radius
rc satisfy

2rc = rw ≥ rs

√
d (1)

where d is the dimension of the domain in which the nodes
lie.

It is important to note what we do not assume. The coordinates
of the nodes are unknown. Neither are there localization or



orientation capabilities. Nodes are completely devoid of any in-
formation apart from the identities of ‘very close’ and ‘somewhat
close’ neighbors. This ability to differentiate between strong and
weak signals provides a coarse form of distance measurement.
For example, if a particular node scans its communications, it
can determine whether a certain node is within distance rs or rw

or neither.

Fig. 1. Sensor coverage discs and their union.

III. TOOLS FROM ALGEBRAIC TOPOLOGY
The mathematical tools we use are by no means novel: with the

exception of the simulations, this paper could have been written
in the 1930s. However, as these tools are not in the repertoire of
researchers in sensor networks, we give a brief (and necessarily
incomplete) treatment here. For further reading of various degrees
of depth, see [10], [13], [12]; for an introduction in the context of
applications and computations see the recent text by Kaczynski
et al. [11].

III-A. Simplicial complexes
All of the topological objects we work with in this paper

belong to a certain class of spaces called simplicial complexes.
Given a set of points V , a k-simplex is an unordered subset
{v0, v1, . . . , vk} where vi ∈ V and vi 6= vj for all i 6= j, see
Fig. 2. The faces of this k-simplex consist of all (k−1)-simplices

0- Simplex [v0] 1- Simplex [v0, v1]

2- Simplex [v0, v1, v2] 3- Simplex [v0, v1, v2, v3]
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Fig. 2. Oriented simplices of dimension zero through three.

of the form {v0, . . . , vi−1, vi+1, . . . , vk} for 0 ≤ i ≤ k. A

simplicial complex is a collection of simplices which is closed
with respect inclusion of faces: see Figure 3 for non-examples.
Triangulated surfaces form a concrete example, where the vertices
of the triangulation correspond to V , edges correspond to 1-
simplices, and faces correspond to 2-simplices. The orderings of
the vertices correspond to an orientation. Any abstract simplicial
complex on a (finite) set of points V has a geometric realiza-
tion in some Rn. See Figures 8-10 for examples of geometric
realizations. See [12], [13] for an elementary introduction.

Fig. 3. Non-examples of simplicial complexes.

III-B. Simplicial homology

Homology is an algebraic procedure for counting ‘holes’ of
various types. There are numerous variants of homology: we de-
scribe simplicial homology with real coefficients. Let X denote
a simplicial complex. The homology of X , denoted H∗(X),
is a sequence of vector spaces {Hk(X) : k = 0, 1, 2, 3 . . .},
where Hk(X) is called the k-dimensional homology of X . The
dimension of Hk(X), called the kth Betti number of X , is a
coarse measurement of the number of different holes in the space
X that can be sensed by using subcomplexes of dimension k.

For example, the dimension of H0(X) is equal to the number
of path-connected components of X . These are the types of
‘holes’ in X that points can detect — are two points connected
by a sequence of edges or not? The simplest basis for H0(X)
consists of a choice of vertices in X , one in each path-component
of X . Likewise, the simplest basis for H1(X) consists of loops in
X , each of which surrounds a different ‘hole’ in X . For example,
if X is a graph, then H1(X) is a measure of the number and
types of cycles in the graph.

Let X denote a simplicial complex. Define for each k ≥ 0,
the vector space Ck(X) to be the vector space whose basis
is the set of oriented k-simplices of X; that is, a k-simplex
{v0, . . . , vk} together with an order type denoted [v0, . . . , vk]
where a change in orientation corresponds to a change in the
sign of the coefficient:

[v0, . . . , vj , . . . , vi, . . . , vk]− [v0, . . . , vi, . . . , vj , . . . , vk].

For k larger than the dimension of X , Ck(X) = 0. The
boundary map is defined to be the linear transformations ∂ :
Ck → Ck−1 which acts on basis elements [v0, . . . , vk] via

∂[v0, . . . , vk] :=

kX
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk], (2)

as illustrated in Fig. 4.
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Fig. 4. The boundary operator on a 2-simplex [top] and a 3-
simplex [bottom].

This gives rise to a chain complex: a sequence of vector spaces
and linear transformations

· · · ∂−→ Ck+1
∂−→ Ck

∂−→ Ck−1 · · · ∂−→ C1
∂−→ C0

Consider the following two subspaces of Ck: the cycles (those
subcomplexes without boundary) and the boundaries (those
subcomplexes which are themselves boundaries).

k-cycles : Zk(X) = ker(∂ : Ck → Ck−1)
k-boundaries : Bk(X) = im(∂ : Ck+1 → Ck)

(3)

A simple lemma demonstrates that ∂ ◦ ∂ = 0; that is, the
boundary of a chain has empty boundary. It follows that Bk is a
subspace of Zk. The k-cycles in X are the basic objects which
count the presence of a ‘hole of dimension k’ in X . But, certainly,
many of the k-cycles in X are measuring the same hole; still
other cycles do not really detect a hole at all — they bound a
subcomplex of dimension k + 1 in X .

We say that two cycles ξ and η in Zk(X) are homologous if
their difference is a boundary:

[ξ] = [η] ↔ ξ − η ∈ Bk(X).

The k-dimensional homology of X , denoted Hk(X) is the
quotient vector space,

Hk(X) =
Zk(X)

Bk(X)
. (4)

Specifically, an element of Hk(X) is an equivalence class of
homologous k-cycles. This inherits the structure of a vector space
in the natural way: [ξ]+ [η] = [ξ +η] and c[ξ] = [cξ] for c ∈ R.

One may show that the homology H∗(X) is a topological
invariant of X: it is indeed an invariant of homotopy type. A
homotopy between two continuous functions f0 : X → Y and
f1 : X → Y is continuous a 1-parameter family of continuous
functions ft : X → Y connecting f0 to f1. Two spaces
X and Y are said to be of the same homotopy type if there
exist functions f : X → Y and g : Y → X with g ◦ f

homotopic to the identity map on X and f ◦ g homotopic to
the identity map on Y . More specifically, homeomorphic spaces
are homotopy equivalent, as are spaces obtained from a larger
space by ‘deforming’ or ‘collapsing’ in a continuous manner.
Homology groups are invariant under such operations.

Readers familiar with the Euler characteristic of a triangulated
surface will not find it odd that intelligent counting of simplicies
yields a topological invariant. Indeed, for any simplicial com-
plex, the Euler characteristic is the alternating sum of the Betti
numbers.

III-C. Induced homomorphisms
Consider two simplicial complexes X and X ′. Let f : X →

X ′ be a continuous simplicial map: f takes each k-simplex of X
to a k′-simplex of X ′, where k′ ≤ k. Then, the map f induces
a linear transformation f# : Ck(X) → Ck(X ′). It is a simple
lemma to show that f# takes cycles to cycles and boundaries to
boundaries; hence there is a well-defined linear transformation
on the quotient spaces

f∗ : Hk(X) → Hk(X ′) : f∗ : [ξ] 7→ [f#(ξ)].

This is called the induced homomorphism of f on H∗. This
operation satisfies two elementary properties: (1) the identity map
Id : X → X induced the identity map on homology; and (2) the
composition of two maps g ◦ f induces the composition of the
induced homomorphisms: (g ◦ f)∗ = g∗ ◦ f∗.

IV. SIMPLICIAL COMPLEXES IN SENSOR
NETWORKS

IV-A. Nerves and Rips
The problem of computing the topological type of a union of

sets is classical, and easily handled using the concept of a nerve.
Definition V: Given a collection of sets U = {Uα}, the nerve

complex of U , N (U), is the abstract simplicial complex whose
k-simplices correspond to nonempty intersections of k+1 distinct
elements of U .

Hence, the vertices of N correspond to the elements of U
themselves. An edge in N exists between two vertices if and only
if the corresponding elements of U intersect. Higher dimensional
simplices are regulated by mutual intersections of collections of
elements of U . Among the many uses of nerves in topology, the
following classical result would appear to be of great importance
in applications:

Theorem 1 (The Čech Theorem): The nerve complex of a col-
lection of convex sets has the homotopy type of the union of the
sets.

For a proof, see, e.g., [14]. Unfortunately, nerves are very
difficult to compute without precise locations of the nodes and a
global coordinate system. We therefore turn to a different method
for obtaining a simplicial complex from a sensor network, using
only pairwise communication data.

The following type of complex goes back to the 1927 paper
of Vietoris on the foundations of homology theory [15]: similar
objects were reinvented by Rips in the 1980’s in the context of
geometric group theory and have been used extensively since.

Definition VI: Given a set of points X = {xα} ⊂ Rn

in Euclidean n-space and a fixed radius ε, the Vietoris-Rips
complex of X , R(X ), is the abstract simplicial complex whose



k-simplices correspond to unordered (k + 1)-tuples of points in
X which are pairwise within Euclidean distance ε of each other.

We will abbreviate this to the term ‘Rips’ complex. Since Rips
complexes are determined by pairwise distances, they are com-
pletely determined by the communication graph of the system:
any time you see a triangle in the communication graph, you fill
in an abstract 2-simplex. Any time you see a complete subgraph
on k + 1 vertices, you fill it in with an abstract k-simplex.

Fig. 5. [left] An example of a Rips complex for a set of points:
edges are determined by whether each boundary nodes lies within
a radial disc centered about the other. [right] The nerve complex
associated to this collection of discs.

It would seem reasonable to conjecture that the radius R Rips
complex of a set of nodes would be topologically equivalent to
the nerve complex of the balls of a particular radius at the nodes.
Unfortunately, this is not true. Figure 6 gives an example for
which the Rips complex fails to capture the nerve: the nerve is
topologically a circle with a single hole in the middle, whereas
the Rips complex is an octahedron, which is simply connected.
These two complexes have different homology groups and are
thus not of the same homotopy type. Similar examples can be
constructed for arbitrary choice of coverage radius.

Fig. 6. A Rips complex not homotopy equivalent to the union of
cover discs.

There is a way to modify the Rips complex to resolve these
issues. We define the `∞ communication graph to be the graph
whose vertices are X and whose edges are those nodes whose
`∞ distance is less than or equal to rs. Denote by R∞s the Rips
complex of this graph. The following result is very simple.

Lemma VII: R∞s is precisely the nerve complex of the cover
of X by closed d-dimensional cubes of side-length rs.

Proof: In the case where d = 1, the result is immediate. For
the general case, since distances are measured in the `∞ norm
(each coordinate is measured) and cover elements are cubes, the
entire problem decomposes into cross-products of the d = 1
case. ¦

If our sensors were outfitted with a natural `∞ geometry,
Lemma VII would immediately imply that the topological prop-
erties of the cover (by cubical sensor domains) are completely
determined by the topology of R∞s . Unfortunately, it is physically
unrealistic to assume that communication can be carried out with
precise `∞ geometry — sensors are assumed to be free of all
coordinates and orientations.

We therefore consider what can be done with radially sym-
metric communication and sensing. The core idea is that we can
‘squeeze’ the `∞ Rips complex (hence a nerve complex) between
two standard Rips complexes of different radii.

VIII. COORDINATE-FREE DETECTION OF HOLES
The following theorem is our principal criterion for hole

detection:
Theorem 2: A sensor network satisfying assumptions A1-A3

has a coverage hole if there is a nonzero homology class in Rs

which is also nonzero as a homology class in Rw. That is, the
homomorphism

ι∗ : Hk(Rs) → Hk(Rw) (5)

induced by the inclusion ι : Rs ↪→ Rw is nonzero for some
k > 0.

Remarks:
1) If k ≥ d, then ι∗ = 0 always.
2) The type of hole is determined by k; e.g., if d = 3, then

a hole of dimension k = 1 means that the cover has a
‘tubular’ hole running through it, whereas as k = 2 hole
means that there is a ‘hollow’ portion of the cover.

3) This criterion is a sufficient criterion, but not necessary.
In an extreme case, one can choose rs to be exceedingly
small, in which case Hk(Rs) = 0 for all k > 0 and the
criterion automatically fails.

Proof of Theorem 2: We claim that there exists a chain of
inclusions

Rs ⊂ Nc ⊂ Rw, (6)

where Nc is the nerve complex of the cover of X by balls of
radius rc. Assume for the moment that these inclusions hold,
and denote them as j : Rs ↪→ Nc and j′ : Nc ↪→ Rw. Since
ι = j′ ◦ j, we conclude that the induced homomorphisms on
homology satisfy ι∗ = j′∗ ◦ j∗. Hence, if ι∗ is nonzero, then
it takes a nonzero element of Hk(Rs) to a nonzero element of
Hk(Rw), which itself is in the image of j′∗. This implies that
Hk(Nc) 6= 0. From the Čech Theorem, we conclude that the
cover has a hole of dimension k.

We now demonstrate that Equation (6) holds. Clearly, the
inclusion j′ : Nc ↪→ Rw holds because (since rc = rw/2)
both complexes have the same 1-dimensional skeleton and the
Rips complex has all possible simplices of this 1-skeleton filled
in.

The inclusion j : Rs ↪→ Nc is not as direct. Clearly,
Rs ⊂ R∞s . From Lemma VII, R∞s equals the nerve of the
cover of X by cubes of side length rs. These cubes are
contained inside of balls of radius rc ≥ rs

√
d. (See Fig. 7 for

an illustration of this nesting.) Hence, Rs ⊂ Nc. Equation (6)
holds and the theorem is proved. ¦
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Fig. 7. The nesting of sensing and covering discs with the `∞

balls used in R∞s .

The proof that we use involves the `∞-Rips complex. This
is not the optimal way to obtain Equation (6). A result of de
Silva (see [17]) states that the optimal ratio rw/rs for which the
equation holds is

p
2d/(d + 1); hence, the results of this note

hold with replacing
√

d in A3 with the aforementioned constant.

IX. SIMULATIONS
To a mathematician, homology is ‘easy’ to compute: a linear

algebra computation. However, in practice, the number of sim-
plices in a complex increases exponentially with the dimension
of that complex. To make matters worse, the standard algorithm
for computing generators in homology is of quintic order in
the number of simplices: this would discourage computation of
homology in all but very low dimensions. Fortunately, the past
few years have witnessed an explosion in algorithms and software
for computing homology of simplicial complexes which make
nontrivial computations possible (see [11] and references therein).

In order to verify the theoretical results developed in the
previous section, we have successfully run several simulations
using a publicly available computational homology software
known as CHomP [16]. These simulations have been written using
MATLAB as the frontend (primarily for generating the simplicial
complexes from various point-data sets, data formatting and for
visualization.) The CHomP routines have been used for simplifica-
tion of the Rips complexes, computing the homology groups and
for localizing the non-trivial generators of the homology groups.

Note that in the figures and examples which follow, we
illustrate the cover using coordinates. The frontend keeps track of
coordinates for purposes of drawing pictures. However, CHomP
has no information about coordinates: the homology criterion uses
only connectivity data as per our assumptions.

Results of one such simulation appear in Figure 8. Figure
8.(a) illustrates the union of sensor coverage discs in R2, each
of radius rc = 1√

2
. Clearly, there is a hole inside the union

of sensor domains. Figure 8.(b) shows the Rips complex Rs

generated by the detection of a strong signal within radius rs = 1.
Using CHomP, we detect two generators for the first homology
group H1(Rs) of this complex. Representative cycles for each
equivalence class of generators are depicted in the same figure in
green and blue. The generator depicted in blue envelops a non-
collapsible cycle of 5 nodes in the lower part of the complex
whereas the generator colored as green envelops another non-
collapsible cycle of nodes in the left part of the complex. The

(a) The union of coverage discs in R2.
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(b) Rips Complex Rs. (c) Rips Complex Rw.

Fig. 8. Simulation results with rc = 1√
2
, rs1 and rw =

√
2.

Rips complex Rw generated by the detection of a weak signal
within rw = 2rc =

√
2 appears in Figure 8.(c). First, note

that Rs ⊂ Rw. A greater radius of detection adds several
new edges to the complex, which in turn induce many higher
dimensional simplices. The result of the induced homomorphism
of the inclusion map ι∗ : H1(Rs) → H1(Rw) can be understood
as follows. The cycle of nodes enveloped by the blue generator in
Rs no longer remains non-collapsible in Rw due to the addition
of many 2-simplices. Therefore the same blue generator when
seen in Rw becomes trivial and vanishes. However, the green
generator remains non-collapsible when seen in Rw, despite the
shortening of the non-collapsible cycle it envelops. Therefore, in
the language of Theorem 2, ι∗ : H1(Rs) → H1(Rw) is non-
zero and indicates the presence of a 1-dimensional hole, as clearly
verified from Figure 8.(a).

Another such simulation appears in Figure 9. Again, there are
two generators (colored as purple and orange,) in H1(Rs), each
bounding a non-trivial cycle in Rs. However, only one of them
survives the inclusion map to H1(Rw), showing the presence of
a hole. The inclusion map picks the right generator so that the
true hole is identified and the false cycle gets killed. We give no
illustrations for the criterion in dimension three as these would
be altogether unilluminating; the computation involved would not
be significantly harder.

The homology computation also indicates the location of holes
in the network. As pointed out earlier, a cycle representing
a generator of a homology group actually represent its entire
equivalence class. Two cycles are equivalent if their difference is
a boundary. Therefore one can use this property to collapse the
generators till they lock exactly onto the non-collapsible cycles
they envelop. We denote such cycles as minimal. For simplicial
complexes, this kind of collapsing or minimization has a nice
geometrical interpretation. If two edges of a cycle in dimension 1



(a) The union of sensor discs in R2.
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(b) Rips Complex Rs.
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(c) Rips Complex Rw.

Fig. 9. Simulation results for a second data set with rc
1√
2
, rs = 1

and rw =
√

2.

belong to a 2-simplex, then one can collapse the cycle to the third
edge. This procedure can be generalized to higher dimensions as
well [11]. For the purpose of demonstration, such minimization
is depicted in Figure 10 for a certain Rips complex generated
in our simulations. The non-trivial generator is minimized till it
captures the nodes that surround the hole. Although, this method
can be applied to all simplicial complexes, it has one serious
drawback. For more than one hole in the network, this kind
of minimization depends on the initial choice of representative
cycles. Ideally, one may wish for each generator surrounding
exactly one hole. However, the homology group can possibly
be generated equivalently if one hole is enveloped by more than
one generators. In that case, the minimization would at best partly
detect the location of the holes in the network.

All computations are performed on a Pentium 4, 1.60 GHz,
512 Mb RAM, Windows 2000 machine, running Matlab 6.1
as the front end for CHomP. Table I gives the runtimes for a
variety of systems. It is noted that the runtime is dominated
by the construction of the Rips complexes: these can have
a large number of simplices as a function of the number of
nodes. It is a pleasant observation that the homology computation
is relatively quick, even though we have not optimized the
homology computation code for out (rather particular) type of
systems. The signal complexity of the process — the number
of communications required between nodes — is a function of
the number of edges in the Rips complex, listed in the second
column.

X. GENERALIZATIONS AND CONCLUSIONS
The methods presented are novel and of potentially great use

in sensor networks. The use of topological methods allows one
to dispense with assumptions about coordinates, distances, and

Fig. 10. Minimization of generators to detect location of network
holes.

# Nodes # Edges T exp
w T exp

s Thom
w Thom

s
20 45 0.14 0.13 0.49 0.47
67 345 1.46 1.41 0.60 0.60
84 285 3.15 3.11 0.73 0.58
154 1059 26.2 26.1 1.25 0.63
214 1243 92.2 90.2 1.08 0.69

Table I. Run times for five simulations: all times listed in
seconds. Here, T exp is the time to build and export the Rips
complex (weak and strong respectively) and T hom is the time to
compute the homology of the complex.

orientations: this is a boon. The results presented in this note are
by no means the best possible results, the reliance on having rc

equal to exactly rw/2 is something that would not necessarily
hold in a physical setting.

We have chosen to present a limited result for ease of exposi-
tion. In recent work with Vin de Silva [17], we have developed a
homological coverage criterion which is dual to the hole-detection
criterion presented here. We briefly outline the ingredients of this
more general theory.

In addition to Assumptions A1-A3, there are further assump-
tions about the domain D ⊂ Rd in which the nodes lie. First,
D is assumed to be bounded with boundary ∂D which is not
too ‘pinched’. Second, nodes can detect if they are within some
radius rf of ∂D. These ‘boundary’ nodes generate subcomplexes
Fs ⊂ Rs and Fw ⊂ Rw. The result in [17] states that U contains
all of D (except for possibly a neighborhood of ∂D) whenever
the induced map

ι∗ : Hd(Rs/Fs) → Hd(Rw/Fw)

is nonzero. Here, the quotients Rs/Fs and Rw/Fw mean the
abstract simplicial complexes obtained by collapsing Fs or Fw

to a single vertex.
This coverage criterion has several nice features. There are no

assumptions on the geometry or topology of D; for example, it
is not assumed that ∂D is connected. In addition, the radius rc
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Fig. 11. An example of a system of 129 nodes: [left] Rs, [center] Rw, [right] U .

needs to satisfy only an inequality, not an equality as in this note
(since, of course, increasing rc can only improve coverage). The
minimal ratio rw/rs is different than in this paper.

In a further work [?], extensions to systems involving mobile
nodes and nodes which go off-line and on-line as a function of
time are also possible. In addition, with appropriate control of
the boundary nodes, the homological coverage criteria hold for
systems with a single communication radius. This reduces the
need for the weak-radius Rips complex (which saves expensive
computations) and does not require the dual-radius assumption
on the sensor nodes.

Perhaps the most crucial direction for this work is to develop
a local coverage criterion from which a distributed coverage
algorithm could be developed. This seems theoretically possible,
since homology is a local operation.
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