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Abstract—We consider a collection of robots sharing a optima automatically yields the set of all optima for all
common environment, each robot constrained to move on (monotone) scalarizations of the cost functions: see [t].
a roadmap in its configuration space. To program optimal addition, it provides a (hopefully small) template of opdim

collision-free motions requires a choice of the appropriag o ) . .
notion of optimality. We work in the case where each robot coordinations which can be used for on-line adaptation to

wishes to travel to a goal while optimizing elapsed time and changing needs and cost functions in day-to-day factory
consider vector-valued (Pareto) optima. operations.

Earlier work demonstrated a finite number of Pareto-optimal Given the desire to filter the space of all possible coor-
classes of motion plans when the robots are subjected to velty  jination schemes to a small set of best cases independent
bounds but no acceleration bounds. This paper demonstrates . . . .
that when velocity and acceleration are bounded, the finiteess of biases on the rol?ots, we f’;\re certalply r?‘_’St interested in
result still holds for certain systems, e.g., two robots; haever, the cases where this collection of optimafissite, and the

in the general case, the acceleration bounds can lead to cimta  existence of such is the focal point of this note.
of Pareto optima. We give examples and explain the result in
terms of the geometry of phase space. B. History

I. INTRODUCTION Multi-robot coordination is of course a special case of
. . . .general motion planning for multiple robots, for which a
This note considers the well-studied problem of multl-g P g P

. : . X long history of work exists. Centralized approaches tylpica
robot motion planning. The specific focus is on (vector- g y bp b

lued Paret timal dinati f i h construct paths in a configuration space derived from the
valued, or Fare o) optimal coordination of agents, eac %rtesian product of the configuration spaces of the individ
which has elapsed time-to-goal as its cost function. Suc

. e . tial robots (e.qg., [2], [3], [23]). More decoupled approache
optimal coordination problems introduce challenges bdyor}nay gener(atg irEd]ep[e]nd[ent]) robot paths gnd tr?gn resolve

those of simple _obst.acle av0|dan<_:e and motion p'af‘”'”g I|ﬁegal interactions between the robots (e.g., [5], [918])1
single robot settings; robot-robot interactions mustJiles The approach in [9] prioritizes the robots, and defines

be controlled. a sequence of planning problems for which each prob-
A. Motivation lem involves moving one robot while those with higher

Our perspective is to emphasize vector-valued optimizé)-ripri_ty are considered as predictablg, moying obsta_cles.
tion, preserving all cost function data. This notionR&reto This involves the construction of two-dimensional pathel

optimality [19], [22] is standard in mathematical economics’Pa¢€ [13_] over WhiCh the ve_Iocity of the robot is tuned to
to model individual consumers striving to optimize dis—avoId collisions with the moving obstacles. In [1], [4], [7]

tinct economic goals. It avoids data loss that comes Wit[‘?o]' [18], [24] robot paths are independently determined,

scalarizatione.g, minimizing average time, or total elapsedand a coordination diagram is used to plan a collision-

time. Such scalarizations are both common and commonfl € 'Frajectory al_ong the pa_ths. The approache_s in [1], [20]
dditionally consider dynamics. In [15], [26], an independ

appropriate in robotics ([12], [17], [25]), yet there is &$0 . o
associated with this scalar reduction. In the context of, Saroadmap is computed for each robot, and coordination occurs

a dynamic manufacturing or warehousing scenario, the p@n the Cartesian product of the roadmap path domains. In

orities associated to individual agents may change from da 6]' an approximate Dlijkstra-like allgor.i'Fhm to find Pareto
ptimal solutions was given. The suitability of one appioac

to-day, resulting in ever-changing optimization problems ) _
This note treats the global optimization problem for multi-°V€" the other is usually determined by the trade-off betwee

ple robot coordination without scalarizing the vectorued cor(‘jnphutatmnal corfnplexnly assouart]ed .W'lth alglven problel_m,
cost function. This centers on the notionR&reto optimality and the amount of completeness that is lost. In some applica-

[19], [22], a concept which is widely used in mathematicapons' such as the coordination of AGVs, the roadmap might

economics to model individual consumers striving to Opti_represent all allowable mobility for each robot.

mize distinct economic goals. The classification of Pareto There are very feyv results which give a rigorous cla§sifi-
cation of Pareto optima [8], [11], [10]. The paper [11] gives

This work supported by DARPA # HR0011-07-1-0002. a finiteness result for Pareto optima with respect to elapsed



time in the setting of AGVs restricted to roadmaps. However, That is to say, a cylindrical coordination space is one for

these results assumed only a bound on velocity, not amhich illegal states are determined by pairwise configura-

acceleration. Acceleration constraints have been coreside tions. If two robots have collided, it makes no difference

in several important works for scalar optimization. In [6],what the positions or configurations of the remaining robot

an exact algorithm for kinodynamic planning in the 2-d casare — this state still counts as an illegal “collision” state

was given: many of the ideas here are crucial in our analysis. o

In [21], the first known polynomial-time approximation B Paréto-optimality

algorithm for curvature-constrained shortest-path prots A coordination of N robots is a pathy in the roadmap

in higher dimensions was given. configuration spacet. Throughout this note, each robot

will use its elapsed time; as a cost function with which

optimality is measured. However, since there areobots,
This note extends the finiteness results of [11] in the conhere is acost vectorT = (71, ..., 7y) that is a function of

text of acceleration bounds. Section Il reviews the classifi the coordinationy.

tion of Pareto-optima in the bounded velocity case [11]. In A path~ : [0,7] — X is pareto optimal if and only if

§l11, we argue that an appropriate first step for implementing(~) is minimal with respect to the partial order on vectors:

acceleration bounds is to impose an upper bound without a , , )

lower bound: acceleration is more limited than decelenatio T(y) <7(Y) & m(v) <m(y) Vi=1...N. (3)

We show that in this context, the finiteness results for Baret  Tyyo pathsy andy’ are Pareto equivalent if and only if they

optimal paths persists for two robots. fiV we give @  are homotopic through locally Pareto optimal paths whieh ar

canonical example of a system with three robots for whicRqyay in the partial ordei;e, 7(v) = 7(v'), see Fig. 1.

the acceleration upper bound forces an infinite collection

(a continuum in fact) of inequivalent Pareto-optimal path

classes. We conclude with a geometric explanation for this

change in behavior from 2-d to 3-d: it is regulated by the

discrete curvature of the system’s phase space. &

Il. REVIEW: UNBOUNDED ACCELERATION CASE

This section contains basic definitions and a review of
the finiteness theorem for Pareto optimal robot coordimatio
from [11].

C. Contributions

O

A. Coordination Spaces Fig. 1. A collection of Pareto-optimal paths weaving througpstacles

Recall that each robot travels orr@admap, represented forms a single equivalence class.
as a 1-d subspace or grapgh, i = 1,..., N. The coordina-
tion space is the product of these roadmaps with all illegal theorem 2.3 ([11]):0n a simply-connected cylindri-

or collision sets. removed. o cal coordination space, there is a unique Pareto-optimal
Definition 2.1: A roadmap coordination spaceof graphs  (pounded velocity) path class between fixed endpoints. On

{T:}1" is any space of the form a general cylindrical coordination space, the number of
N globally Pareto-optimal path classes is finite.
X = <H FZ-) -0, (1) The key to Theorem 2.3 is the construction of a canonical
i=1 Pareto-optimal path: sucleft-greedypaths are reviewed in
where© denotes an (open) obstacle set. the subsequent section.

For simplicity, one may focus on the case where each m
factor I'; is a single edge. This is the case where a robot o i ]
translates along a track from an initial to final locationl Al The finiteness result dfll relies crucially on the lack of
illustrations in this note follow this convention, thoughet Pound on acceleration, since the left-greedy paths used as
results hold for the general setting. All coordination smac canonical path classesvaysinvolve sudden starts and stops.
are assumed to be sufficiently “tame” (see [11] for details)Qf course, acceleration bounds are critical in any readenab

Most coordination spaces arising in robotics have afPPotsystem, and the question becomes to what extent these
obstacle se® which is cylindrical, in the following sense: constraints effect Pareto-optima. If we add the accekemati

Definition 2.2: A coordination spacet is said to be bound then the class of admissible paths becomes much more
cylindrical if O is of the form complex, making optimization more challenging.

. INITIAL BOUNDED ACCELERATION

A. Left-greedy paths

N
_ N (o o . .
0= U {(xk)l = Hl—‘z P @i zy) € AW}’ @) Assume thatt is a simply-connected (connected and
vy k=1 ‘hole-free’) cylindrical coordination space amdg € X are
for some (open) setd; ; C I'; x I'; wherel <4< j < N. fixed endpoints for a coordination. Letbe a path fromp



Algorithm 1 (x, V) = IBAL EFTGREEDY(X, )
Require: ~ is a collision-free coordination itk

1: Using v label each obstacle, determine critical events,
and compute crossing sequence.

2: Start at the initial pointry, and set = 1.

3: Apply maximum or minimum acceleration until the
integral curve meet critical events from Step 1 and store
the velocity profileV (¢).

4: Let xz‘—wi—l‘FfTTf,l V(s)ds where[T;_1, T;] is the time
interval fromzx;_; to z;.

5. If 2, is not the goal point, then increment i and go toFig. 2. An Initial Bounded Acceleration left-greedy patolig) and a
Step 3. Otherwise, terminate and repor: (UCO, L 7$t) Pareto-optimal path (dashed). Empty circles are OC (affaxt) points.
andV (s).

1) IBA left-greedy pathsAlgorithm 1 computes an IBA
(Initial Bounded Acceleration) left-greedy path. It sthidm
to ¢. For any pointy = (yx);’ € X on the pathy, consider injtial point with zero velocity vector. We can decide the
the NV distincthyperplanesat y: Hy(y) is defined to be the maximum velocity and acceleration we need at the current
connected component ¢fc € X : x, =y, } containingy.  point by the information from Step 1, and keep moving
The following definition comes from [10]. forward or backward until it meet the next critical eventeTh
Definition 3.1: A path in X' from p to ¢ is left-greedyif  sign of acceleration depends on hyperplanes that separate
it crosses all hyperplanes separatingnd ¢ as quickly as the current point and the goal point. One continues until the
possible. More specifically, for anyc v and allk = 1...N,  path reaches the goal point. During this step, one stores the
the (forward) tangent vector to the pati(y), satisfies the velocity profile V and the critical points:;. The bounded-
following: velocity left-greedy path is a piecewise-linear path foiiakh
(1) If H.(y) separatep from ¢ in X, then thek*" compo- robots maintain constant velocity on each segment. The
nent of 4(y) is nonzero and is positive/negative so adBA left-greedy path is a concatenation of segments for
to point fromp to q. which robots maintain almost-constant acceleration ah eac
(2) If ¢ € Hy(y), then thek! component ofy(y) is zero; segment.
(3) All components ofy(y) are maximized with respect to A BV left-greedy path is a canonical representative of a
the speed constraints of 1 and the obstacle constrainf3areto optimal path [11], [10]. An IBA left-greedy path istno
In [11], [10] it was shown that left-greedy paths form aPareto optimal in general. The difference is that whenever
canonical representative of the unique Pareto-optimai pagome robot restarts from a rest position it consumes more
class between fixed endpoints on a simply-connected cylifime than the robot which follows the Pareto optimal path,
drical coordination space. For non-simply-connecteddisor i-€. the velocity at this instant is submaximal. We call this
nation spaces, one can restrict attentiohamotopy classes Point the Off-Contact (OC) point (see Fig. 2). We generate
of paths (the universal cover is simply-connected). a Pareto optimal path by modifying velocities at OC points.
Unfortunately, left-greedy paths are not of bounded accelhe next algorithm computes the path that has maximum or
eration: condition (3) certainly violates the bounded mee Minimum velocities at OC points.
ation constraint. Therefore we need to put more conditions _
to (3) say that all components 6fy) are maximized with B. Critical paths for two robots
respect to the speed constraints, the acceleration comsira For the remainder of this section we assume tkiais a
and the obstacle constraints. We will define an equivaletwo-dimensional coordination space.
‘smoothed’ version. 1) Algorithms: Roughly speaking, OC points are points
In a manufacturing/automation situation, there is a sharhat can have better velocities on an IBA left-greedy path.
distinction between acceleration and deceleration phakesWe can detect OC points by checking the velocity profile.
motion: it is easier to stop than to go. For example, &he velocity profileV () is a vector valued functiof’ (t) =
standard factory AGV weighs more than a human andVi(t), Va(t)). At the OC point, one of the functiori§ must
barring the presence of an uncommonly large and energstart increasing or decreasing its velocity fromTherefore
draining engine, fast accelerations are difficult. Howgvere need to insert the line that detects OC points in Algorithm
quick decelerations (especially when the terminal vejocitl. Suppose:; = (z(1),2(2)) is an OC point.
is reasonably low) are much easier, being obtainable at theWe sayi is an unsaturated direction for x; if V;(t) is
expense of heat generation and wear (friction on brakes) ohanged from zero to nonzero — the other direction is called
mechanical means (bumpers). the saturated direction [6]. Let X be the critical point if
For the remainder of this note we therefore assume dhe next OC point has the different saturated direction.
initial acceleration bound: there is a fixed upper bound on Let X; be a first critical point and; be a time from the
positive acceleration, but not for deceleration. initial point to X;. The timet; only depends on the saturated



Algorithm 2 CRITICAL PATH

1: Let yo be the initial point andj = 1.

2: Start algorithm 1.

3: Stop the algorithm when; is an OC point. Ley; = ;.

4: If the saturated direction is not changed frgm.; then
let zo = z;, increment; and goto Step 2 otherwise
compute the maximum velocity gt_,, store the critical
point and velocity profile corresponding to the maximum
velocity.

5: Let zo = y;—1, incrementj, and goto Step 2.

Fig. 3. The thick line is the patly and the thin line is the patf3.

direction. Replacé/ (t,) by V (¢1) such that (1) there exists

a admissible path from the initial point 6, with a velocity coordination space. Supposeis a critical path and3 is

V (t1); (2) the velocity of unsaturated direction is maximizedanother path which is homotopic tpin X. Then the cost

or minimized among all paths satisfying (1). Thus we haveector(y) of v is less than or equal to the cost vectqs)

a new velocityV at X;. Once it hits the one of the goal of 3: i.e,, any critical pathy is a Pareto optimal path.
position we are now in the one-dimensional space therefore Proof: Supposes3 is any path with the same endpoints
the next goal time only depends on the velocity at this goals +. Without a loss of generality, we may assurfieis
position which already is maximized. We also consider ththe concatenation of optimal segments (since, if not, we can
goal positions are critical points. Finally we get path whic replace with optimal segments at no increase in cost vector)
is a concatenation of optimal segments connecting critical Supposes passes through all critical points of If the
points. We call this new path the critical path. The critical velocities at each critical point are also the same then by
path is not unique in general but they share the same criticaptimality 7(v) = 7(5). Suppose then that does not pass
points and goal times. So we can form a equivalence claigough all critical points ofy and v(tg) = ag is the last

of critical paths. critical point before two paths break down.

2) Pareto optimality:We now prove that the critical path  Supposey(t,) = a = (a1,a2) is the next critical point
~ is actually a canonical Pareto-optimal path. F&f(a) be of 4. Then8 must pass through a hyperplafg (a). Say
the hyperplane such th&t;(a) = {x € X' : v1 = as, where a; = a, is a saturated direction. Suppose- t, — to. Let
as is a saturated directignand H,(a) be the hyperplane b = 3(t;) = (b1, b2) be the point ors(a). Lett’ = ¢, — ¢,
such thatH,(a) = {z € X : #; = a,, Wherea, is an andt = ¢, — to. Supposet’ is less thent. Whether the
unsaturated directign[6]. saturated direction gf at b is the same toy or not the only

Lemma 3.2:Supposeay is a critical point ony anda;  way to reduce the time is by increasing the velocity: aif
is the next critical point which is not the goal position such3, contradicting the assumption. Therefate> t.
that v(to) = ap andy(t1) = a;. Supposeb is any point Case 1. Supposé =t and letb be the point of3 which
on Hs(a;) and there exists an optimal path which is lies on H,(a). By Lemma 3.2,as = b; and a; = bs.
homotopic (fixing endpoints) tey such thatg(tp) = ag, Therefore the only difference is in an unsaturated directio
ﬁ(io) = dp, andB(t1) = b. If the velocity ofb,, is less then or equal to the velocity of

Then (1)bs = a1, andb, = ars. (2) If by > a, then there a, then, since the position @f, is always equal or behind of
existsto > t; such thaty(te) = B(t2) and~(t2) = B(t2) ay, the total time fromb to the next critical point must be
otherwisey and 3 never meet at the same time. greater or equal to the total time fraarto a. Therefores can

Proof: Let ay be (ais,a1,). (1) Trivially bs = a;s  not have the better cost vector in this case. If the velodity o
sinceb € Hy(a1). Also t; totally depends om;s anday, if b, iS greater tham, then by Lemma 3.2 will have either
be # a1, thenb ¢ Hq(aq). the same cost vector tp or bigger cost vector.

(2) Assumer,, < vVimq. Otherwise it is trivial. The maximal Case 2. Suppogé > t. Suppose thdlt, , is the component
(or minimum) velocity ata, depends onAz, which is of b which correspond to the unsaturated directionaof
the distance that robot traveled in the unsaturated dinecti Assume the velocityb,, is greater than the velocity,
and At = t; — ty. Sinceb, is greater thand;, if we otherwiseg can not catch upy to the next critical point.
continuously change the velocity, to b, then eitherAt Therefore assume, < 1.
or Az must be changed by maximality. Sing is fixed If 8 hit a on Hs(a), then to maintain optimality the
by the assumption we can only chande. The difference velocity increase ob,, depends on additional time that
la,, — by| is proportional to the difference of a distance: segets:t, = ¢’ — ¢. Let v,, be the maximal velocity. Then we
3. m can compute time,, which we need to achieve, from a,.

The following is the first principal result of this note: in If ¢, < t,, then there exists a pat}i passing through with
dimension two, Pareto-optima obey a finiteness result evéme velocityv,, and has a shorter time thap. 8’ always
in the case of (initial) bounded acceleration. has better or equal cost vector comparingstoTherefore

Theorem 3.3:SupposeX’ is a 2-dimensional roadmap we only considet,, < t,,. Assumeg has the best possible
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Fig. 5. IBA left-greedy path on théz,y) plane [left] and(z, z) plane

Fig. 4. There are two connected obstacle sets in the 3-d icmtieh  [right].
space which are in different projections and intersect edhbr.

velocity atb corresponding to the additional tintg. But
also takeg,, for the unsaturated direction to reach the same
velocity 5 has at and saturated direction must be changed at
the next critical point. Thug can not arrive in concurrence
with ~ at the next critical point ofy.

So we only need to consider the case they never meet again
before the goal position. But, trivially, the time expendedrig. 6. The dotted line on the right indicates a collisionhpahe thin line
on the saturated direction is increased and the best that flénodified to avoid the collision by modifying the robot oretb-axis.
unsaturated direction can do is arriving at the goal pasitio
at the same time ag, i.e., aftert, the unsaturated direction
reaches its goal position. Therefore the cost vectoB &  Thenll(t, s0) gives a one-parameter family of Pareto optimal

greater than the cost vector of _ _ ® paths, the cost vectors of which afe k — h,l+ h) where
Corollary 3.4: Any other Pareto-optimal path i which ¢ k1 are constant ané > 0. This continuum of paths is

is homotopic to a critical path is Pareto equivalent to aaait therefore pairwise inequivalent. [

path. The difference between the bounded and unbounded ac-

_Proof: Supposey is a critical path and; is a Pareto- celeration cases is how obstacle sets are defined in the phase
optimal path which is homotopic (fixing the endpointshito  gpace. In the case of unbounded acceleration, a configuratio
Sincer(y) < 7(7) by Theorem 3.37(y) must be equal to gpace and a phase space have the same kind of obstacle set;
7(7) and the only path that shares the same cost vector ig,8in are cylindrical. But if we add the bounded acceleration
path that passes through every critical pointyodr case (2) constraint the obstacle set in a phase space becomes much
in Lemma 3.2. ®  more complicated. Obstacles are comprised of: 1) cylindri-
cal obstacles (from collisions); 2) the region of inevitabl
collisions that depends on the speed; and 3) time-limited

A cylindrical coordinate spac& can be described by a setunreachable sets. Unlike types 1) and 2) type 3) depends on
of 2-d projections. Therefore when we only have a boundegie path end points (initial and goal points) crucially.
velocity constraint we can easily extrapolate algorithrosf
the 2-d case. Unfortunately, the argument fails in the cése M
bounded acceleration.

Theorem 4.1:SupposeY is a cylindrical coordinate space
and admissible paths are paths that have bounded (or initial
bounded) acceleration. Then there is no finite bound on t
number of globally Pareto optimal classes in general.

Proof: We show this by example. Suppose there ar
3 robots in the workspace, as in Fig. 4. Thahis a 3-
dimensional cylindrical coordinate space. Supp@sis an
IBA left-greedy path. Letr = (zo,y0,20) be the unique
critical point of § with the velocity i = (1,0,1). The 0- 4) Bounded acceleration cas&he above result fails in
velocity in the second component is due to the obstacle fe bounded acceleration case.
(z,y)-plane: see Fig. 5. Suppose the maximal admissible Now we must consider the region of inevitable colli-
velocity of z is (1,v9, 1) which means that there is a path sion, denoted byX,,.. X,;. iS a set containing points
such thaty(tg) = « and4(to) = (1,v0,1). Clearlyvy < 1  in obstacle sets and also points which can not avoid the
because of the obstacle in the y)-plane. If we slow down future colision[14]. For example, suppo#eis 2-dimensional
along thez-direction, thenvy can be increased: see Fig. 6.space. For (z,y,1,1) € X, there exista’ vy, v,
So we can define a md(¢, s) such thatlI(¢p,0) = v(¢0), and v, such that(z’,y,1,1), (z,v’,1,1), (z,y,vs, 1), and
I(to, 1) = (z0,¥0,21),21 < 20, and H(to,l) = (1,1,1). (z,y,1,vy) are not inX,;.: see Figure 7. Therefore there

IV. N-DEGREES OF FREEDOM

3) Unbounded acceleration casalMe first demonstrate
at unbounded acceleration leads to a cylindrical coordi-
nation phase space.

SupposeX = [[¥, T; and O is a obstacle set which is
lindrical. Let PX’ denote the phase spadé x X where
= {(v1, ..., vn) | ||villo < 1}. Let us check the possible
gbstacles iPX. Suppose: x & € PX andz € O thenx x &
clearly is in the obstacle gP X which is cylindrical. Also if
x x & € O thenz must be inO. Therefore a configuration
spacePX — PO is a cylindrical coordinate space.



(2]

(3]

(4]
(5]
(6]
(7]

Fig. 7.

Only the dotted arrow is iX,.;.

. — (8]
exist noncylindrical obstacle se'ts.

V. CONCLUSION

The bounded velocity assumption on paths used in earlie[r9
works [11], [10] yields a very clean mathematical theory fof10]
classifying Pareto-optimal paths for multi-robot cooution.

This note gives the first results for the bounded acceleratigy 1)
case. We restrict to the case of initial bounded acceleratio
to respect the physical differences between acceleratidn a9
deceleration in robotics. The two principal results are as
follows.

(1) In the case of two robots, initial bounded acceleratiot;l3
does not alter the finiteness results for Pareto-optimdl pa
classes.

(2) In the case of three or more robots which are suﬁg}
ficiently ‘entangled’ — which come close enough to each
other to have obstacles in the coordination space which are
not well-separated — the acceleration bounds force mulite]
parameter continua of distinct Pareto-optimal path cksse

In addition, we have observed that the cylindrical conk7]
straints on the appropriate coordination space (notedlh [1
to be of fundamental importance to the finiteness resules) ar
satisfied for IBA phase spaces in the 2-d case and are violatiédl
in higher dimensions. This lends credence to the propaositio
that cylindricity (and nonpositive curvature associatethw [19]
it) is a fundamental reason for the (surprising) finiteness
results. 20]

Future work consists of determining bounds on obstacl[e
separation to ensure a finiteness result in general multi-
robot coordination problems. In addition, one can addiess t[?
problem of terminal acceleration bounds to determine what,
if any, effect these have on Pareto-optima. More broadl{22]
the general problem of computing the topological type of,.
the space of Pareto-optimal paths in robot coordination
problems where the agents are unconstrained is both open
and challenging. 24

REFERENCES [25]
[1] S. Akella and S. Hutchinson. Coordinating the motionsnafltiple
robots with specified trajectories. Proc. IEEE Int. Conf. on Robot. 26
and Autom. pages 624-631, 2002. 26]
lindeed, from the perspective of [11], there is a discretenfof positive
curvature associated to these coordination phase spaces. [®sitive
curvature is the culprit in destroying the finiteness resfdt Pareto-optima.

M. D. Ardema and J. M. Skowronski. Dynamic game applied to
coordination control of two arm robotic system. In R. P. H#@men
and H. K. Ehtamo, editorsDifferential Games - Developments in
Modelling and Computatignpages 118-130. Springer-Verlag, Berlin,
1991.

J. Barraquand and J.-C. Latombe. Robot motion planniagdis-
tributed representation approacht. J. Robot. Res.10(6):628-649,
December 1991.

Z. Bien and J. Lee. A minimum-time trajectory planning thmed for
two robots. IEEE Trans. Robot. & Autom8(3):414-418, June 1992.
S. J. Buckley. Fast motion planning for multiple movingpbots. In
IEEE Int. Conf. Robot. & Autompages 322-326, 1989.

J. Canny, A. Rege and J. Reif, An exact algorithm for kiyreamic
planning in the plane, ifProc. Symp. on Comp. Geo@71-280, 1990.
C. Chang, M. J. Chung, and B. H. Lee. Collision avoidantewm
robot manipulators by minimum delay timé&EEE Trans. Syst., Man,
Cybern, 24(3), 517-522, 1994.

H. Chitsaz, J. M. O’Kane, and S. M. LaValle. Pareto opfiroeor-
dination of two translating polygonal robots on an acychadmap.
In Proc. |IEEE International Conference on Robotics and Autibona
2004.

] M. Erdmann and T. Lozano-Perez. On multiple moving otgiedn

IEEE Int. Conf. Robot. & Autompages 1419-1424, 1986.

R. Ghrist, J. M. O’Kane, and S. M. Lavalle, Computing &aroptimal
coordinations on roadmap#tl. J. Robotics Researcti2(11), 997—
1010, 2005.

R. Ghrist and S. M. Lavalle, Nonpositive curvature arae®o-optimal
coordination of robotsSIAM J. Control & Opt, 45(5), 1697-1713,
2006.

H. Hu, M. Brady, and P. Probert. Coping with uncertainty
control and planning for a mobile robot. IEEE/RSJ Int. Workshop
on Intelligent Robots and Systenpgages 1025-1030, Osaka, Japan,
November 1991.

] K. Kant and S. W. Zucker. Toward efficient trajectory miéng: the

path-velocity decompositionintl. J. Robotics Research(3), 72—89,
1986.

S. M. Lavalle, Planning AlgorithmsCambridge Univ. Press2006.

S. M. LaValle and S. A. Hutchinson. Path selection andrdmation
of multiple robots via Nash equilibria. IRroc. 1994 IEEE Int'| Conf.
Robot. & and Autom.pages 1847-1852, May 1994.

S. M. LaVvalle and S. A. Hutchinson. Optimal motion plamm for
multiple robots having independent goaliEEE Trans. on Robotics
and Automation14(6):912-925, December 1998.

J. Miura and Y. Shirai. Planning of vision and motion farmobile
robot using a probabilistic model of uncertainty. IBEE/RSJ Int.
Workshop on Intelligent Robots and Systepeges 403-408, Osaka,
Japan, May 1991.

P. A. O'Donnell and T. Lozano-Pérez. Deadlock-freel aollision-
free coordination of two robot manipulators. IEEE Int. Conf. Robot.
& Autom, pages 484-489, 1989.

L. E. Parker. Cooperative motion control for multigat observation.
In IEEE/RSJ Int. Conf. on Intelligent Robots & Systepmges 1591—
1598, 1998.

J. Peng and S. Akella. Coordinating multiple robotshwiinody-
namic constraints along specified paths.Algorithmic Foundations
of Robotics V, STAR, Bpringer-Verlag, 221-237, 2004.

1] J. Reif and H. Wang, Nonuniform discretization for kitymamic

motion planning and its application§IAM J. Comput30(1), 161—
190, 2000.

Y. Sawaragi, H. Nakayama, and T. Taninbheory of Multiobjective
Optimization Academic Press, New York, NY, 1985.

] J. T. Schwartz and M. Sharir. On the piano movers’ prabléll.

Coordinating the motion of several independent bodies.J. Robot.
Res, 2(3):97-140, 1983.

] T.Simeon, S. Leroy, and J.-P. Laumond. Path coordindtr multiple

mobile robots: a resolution complete algorithiEEE Trans. Robot.
& Autom, 18(1), February 2002.

S.-H. Suh and K. G. Shin. A variational dynamic prograimgm
approach to robot-path planning with a distance-safetgrion. IEEE

Trans. Robot. & Autom4(3):334-349, June 1988.

P. Svestka and M. H. Overmars. Coordinated motion ptenrior

multiple car-like robots using probabilistic roadmaps. |IEEE Int.

Conf. Robot. & Autom.1631-1636, 1995.



