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In [4], R. Hamilton has proved that if a compact manifold M of dimension three admits
a C* Riemannian metric gy with positive Ricci curvature, then it also admits a metric g
with constant positive sectional curvature, and is thus a quotient of the sphere S3. In fact,
he shows that the original metric can be deformed into the constant-curvature metric by
requiring that, for t > 0, z € M and g = ¢(t, x),

dg 2

E = grtg - 2Ric(g), g<07$) = gO(SL’), (1>

where Ric(g) is the Ricci curvature of g on M at time ¢, and r; is the average scalar
curvature of the metric g, = g(t,z) over M, i.e.,
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Hamilton’s proof has two parts. In the first part, he proves local-in-time existence for the
initial-value problem (IVP) (1), which is equivalent to proving local existence for the IVP

dg

o = —2Ric(g).  9(0,2) = qulx) (2)

(see [2, §3]). This part of the proof is valid for all dimensions n > 3. In the second part,
which is specific to three dimensions, he proves that, as t approaches co, ¢(t, z) approaches
g(z) and that the Ricci curvature of g remains positive throughout the deformation.

To do the first (local) part of the proof, Hamilton uses a deep and powerful theorem from
analysis: the Nash-Moser implicit-function theorem. (Some special technique is required
because the IVP (2) is almost, but not strictly parabolic.) The purpose of this note is to
prove local-in-time existence for (2) without recourse to the Nash-Moser theorem. In fact,
our only analytic tools will be the “classical” existence and uniqueness theorems for initial-
value problems for quasilinear parabolic systems and for systems of ordinary differential
equations. The author gratefully acknowledges Philippe Delanoe, who organized a seminar
at the Mathematical Sciences Research Institute in Berkeley in 1983, where this proof was
discovered and presented.



THEOREM. For some ¢ > 0, the initial value problem

dg

5 = “2Riclg),  9(0,2) = go(2) (2)

has a unique solution for x € M and t € [0,¢).

The idea of our proof is simple: we show that (2) is equivalent to an IVP for a parabolic
system, modulo the action of the diffeomorphism group of M. In other words, we replace
(2) by a parabolic IVP, and produce solutions g; of the new system. Then, we find a
one-parameter family of diffeomorphisms ¢, of M having the property that the family of
metrics g; = ¢;(g:) is a solution of (2). Conceptually, this proof is like the proof of local
existence of metrics with prescribed Ricci curvature given in Chapter 5 of [1], and thus
replaces the more unwieldy computational version given in [3].

We use the notation of [1] and [2]. In particular, Ric(g) denotes the Ricci tensor of the
metric g, and with respect to the metric g (that will be clear from context), we define for
any symmetric tensor T € ST (M),

1
tr(T) = ¢"' T, G(T)ij =Ty — 5(“@))9@»

§(T)i = —g"" Ty

Note that § maps S?T™ to T, and so its L? adjoint 6* maps T to S?T™* as follows: for
veT*,

1
5 (v)y; = §(Ui|j + vj1i)-

The IVP (2) is not parabolic because the right-hand side —2 Ric(g) is not an elliptic
operator. The linearization of the Ricci operator is

Ric'(g)h — %ALh 5 (5G(h))

where Ay is the Lichnerowicz Laplacian, and the other term in the linearization is such
that symmetric squares of one-forms are in the kernel of the symbol of the entire operator.
This is demonstrated in [2], where it is also shown that, for any fixed invertible symmetric
tensor field T € S?T™, it is the case that the expression:

5 (T~'5G(T))
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considered as a second-order quasilinear operator on the metric g, has precisely the same
symbol as the second term in the symbol of the Ricci operator. Therefore the operator

Q(g9) = Ric(g) — 6(T~'6G(T))
has the same symbol as the Laplacian, and so is elliptic. Therefore the IVP

dg

5 = —2Q(g),  9(0) = go (3)

is a parabolic IVP (once a tensor 7" has been fixed — a reasonable choice for T" would be
to let T' = gg). Because it is a quasilinear parabolic IVP, (3) has a solution for small time
by the standard parabolc existence theorems.

To show how to get solutions of (2) from those of (3), we need the following two lemmas:

LEMMA 1. Letv(y,t), (y € M, t € ) be a time-varying vector field on M. Then for small
t, there exists a unique family of diffeomorphisms ¢.: M — M such that

a¢t($)
ot

= U((ﬁt (.CL’), t)
for all x € M and with ¢ equal to the identity diffeomorphism.

Proof. The standard proof when v does not depend on t still applies, via the existence and
uniqueness theorem for ordinary differential equations, see e.g., [5].

LEMMA 2. Let g;;(y,t) (y € M, t € T) be a time-varying Riemannian metric on M, and
¢ be the family of diffeomorphisms from Lemma 1. Then:

W () = g (%wt(x») +29 (0" (@n())))

where the §* and b (map from vector fields to one-forms) operations are those of g(y,t).

Proof. In local coordinates,

. Do 9P
i (9)i = aﬁi %gaﬁ(ﬁbt(@a t)
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Proof of the Theorem. To get solutions of (2) from those of (3), let g be the solution of
(3), and let v be the vector field associated via g to the one-form

v’ = —T7Y6G(T))

obtained using 7" and ¢g. Finally, let ¢; be the family of diffeomorphisms obtained by
integrating v using Lemma 1. Then:

P gt () + 2t )

= ¢ (—2Q(9)) + 26 (5*(—=T7'3G(T)))

= ¢ (2(Ric(g) — (T 715G(T)))) + 207 (5" (~T"6G(T)))

= —2Ric(¢] (9)) — 26, (5 (~T716G(T))) + 20 (6*(~T'6G(T)))
= —2Ric(¢; (9))

Thus ¢/ (g) satisfies the initial-value problem (2), which was to be shown.
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