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In [4], R. Hamilton has proved that if a compact manifold M of dimension three admits
a C∞ Riemannian metric g0 with positive Ricci curvature, then it also admits a metric g

with constant positive sectional curvature, and is thus a quotient of the sphere S3. In fact,
he shows that the original metric can be deformed into the constant-curvature metric by
requiring that, for t ≥ 0, x ∈ M and g = g(t, x),

∂g

∂t
=

2

3
rtg − 2 Ric(g), g(0, x) = g0(x), (1)

where Ric(g) is the Ricci curvature of g on M at time t, and rt is the average scalar
curvature of the metric gt = g(t, x) over M , i.e.,

rt =
1

Volgt
(M)

∫

M
Scal(gt)dVgt

.

Hamilton’s proof has two parts. In the first part, he proves local-in-time existence for the
initial-value problem (IVP) (1), which is equivalent to proving local existence for the IVP

∂g

∂t
= −2 Ric(g), g(0, x) = g0(x) (2)

(see [2, §3]). This part of the proof is valid for all dimensions n ≥ 3. In the second part,
which is specific to three dimensions, he proves that, as t approaches ∞, g(t, x) approaches
g(x) and that the Ricci curvature of g remains positive throughout the deformation.

To do the first (local) part of the proof, Hamilton uses a deep and powerful theorem from
analysis: the Nash-Moser implicit-function theorem. (Some special technique is required
because the IVP (2) is almost, but not strictly parabolic.) The purpose of this note is to
prove local-in-time existence for (2) without recourse to the Nash-Moser theorem. In fact,
our only analytic tools will be the “classical” existence and uniqueness theorems for initial-
value problems for quasilinear parabolic systems and for systems of ordinary differential
equations. The author gratefully acknowledges Philippe Delanoe, who organized a seminar
at the Mathematical Sciences Research Institute in Berkeley in 1983, where this proof was
discovered and presented.
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Theorem. For some ε > 0, the initial value problem

∂g

∂t
= −2 Ric(g), g(0, x) = g0(x) (2)

has a unique solution for x ∈ M and t ∈ [0, ε).

The idea of our proof is simple: we show that (2) is equivalent to an IVP for a parabolic
system, modulo the action of the diffeomorphism group of M . In other words, we replace
(2) by a parabolic IVP, and produce solutions g̃t of the new system. Then, we find a
one-parameter family of diffeomorphisms φt of M having the property that the family of
metrics gt = φ∗t (g̃t) is a solution of (2). Conceptually, this proof is like the proof of local
existence of metrics with prescribed Ricci curvature given in Chapter 5 of [1], and thus
replaces the more unwieldy computational version given in [3].

We use the notation of [1] and [2]. In particular, Ric(g) denotes the Ricci tensor of the
metric g, and with respect to the metric g (that will be clear from context), we define for
any symmetric tensor T ∈ S2T∗(M),

tr(T ) = gklTkl, G(T )ij = Tij −
1

2
(tr(T ))gij,

δ(T )i = −gjkTij|k

Note that δ maps S2T∗ to T∗, and so its L2 adjoint δ∗ maps T∗ to S2T∗ as follows: for
v ∈ T∗,

δ∗(v)ij =
1

2
(vi|j + vj|i).

The IVP (2) is not parabolic because the right-hand side −2 Ric(g) is not an elliptic
operator. The linearization of the Ricci operator is

Ric′(g)h =
1

2
∆Lh − δ∗(δG(h))

where ∆L is the Lichnerowicz Laplacian, and the other term in the linearization is such
that symmetric squares of one-forms are in the kernel of the symbol of the entire operator.
This is demonstrated in [2], where it is also shown that, for any fixed invertible symmetric
tensor field T ∈ S2T∗, it is the case that the expression:

δ∗(T−1δG(T ))
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considered as a second-order quasilinear operator on the metric g, has precisely the same
symbol as the second term in the symbol of the Ricci operator. Therefore the operator

Q(g) = Ric(g) − δ∗(T−1δG(T ))

has the same symbol as the Laplacian, and so is elliptic. Therefore the IVP

∂g

∂t
= −2Q(g), g(0) = g0 (3)

is a parabolic IVP (once a tensor T has been fixed — a reasonable choice for T would be
to let T = g0). Because it is a quasilinear parabolic IVP, (3) has a solution for small time
by the standard parabolc existence theorems.

To show how to get solutions of (2) from those of (3), we need the following two lemmas:

Lemma 1. Let v(y, t), (y ∈ M , t ∈ +) be a time-varying vector field on M . Then for small
t, there exists a unique family of diffeomorphisms φt: M → M such that

∂φt(x)

∂t
= v(φt(x), t)

for all x ∈ M and with φ0 equal to the identity diffeomorphism.

Proof. The standard proof when v does not depend on t still applies, via the existence and
uniqueness theorem for ordinary differential equations, see e.g., [5].

Lemma 2. Let gij(y, t) (y ∈ M , t ∈ +) be a time-varying Riemannian metric on M , and
φt be the family of diffeomorphisms from Lemma 1. Then:

∂φ∗t (g)

∂t
(x) = φ∗t

(

∂g

∂t
(φt(x))

)

+ 2φ∗t
(

δ∗(v[(φt(x)))
)

where the δ∗ and [ (map from vector fields to one-forms) operations are those of g(y, t).

Proof. In local coordinates,

φ∗t (g)ij =
∂φα

∂xi

∂φβ

∂xj
gαβ(φt(x), t)
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therefore

∂φ∗t (g)

∂t
=

∂φα

∂xi

∂φβ

∂xj

∂gαβ

∂t
+

∂vα

∂xi

∂φβ

∂xj
gαβ +

∂φα

∂xi

∂vβ

∂xj
gαβ +

∂φα

∂xi

∂φβ

∂xj

∂gαβ

∂φk
vk

= φ∗t

(

∂g

∂t

)

+
∂φα

∂xi

∂φβ

∂xj

[

∂vγ

∂φα
gγβ +

∂vγ

∂φβ
gγα +

∂gαβ

∂φγ
vγ

]

= φ∗t

(

∂g

∂t

)

+ 2φ∗t (δ∗(v[)).

Proof of the Theorem. To get solutions of (2) from those of (3), let g be the solution of
(3), and let v be the vector field associated via g to the one-form

v[ = −T−1(δG(T ))

obtained using T and g. Finally, let φt be the family of diffeomorphisms obtained by
integrating v using Lemma 1. Then:

∂φ∗t (g)

∂t
= φ∗t

(

∂g

∂t

)

+ 2φ∗t (δ∗(v[))

= φ∗t (−2Q(g)) + 2φ∗t
(

δ∗(−T−1δG(T ))
)

= φ∗t

(

−2(Ric(g) − δ∗(T−1δG(T )))
)

+ 2φ∗t
(

δ∗(−T−1δG(T ))
)

= −2 Ric(φ∗t (g)) − 2φ∗t
(

δ∗(−T−1δG(T ))
)

+ 2φ∗t
(

δ∗(−T−1δG(T ))
)

= −2 Ric(φ∗t (g))

Thus φ∗t (g) satisfies the initial-value problem (2), which was to be shown.
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