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The helicity of a smooth vector field defined on a domain in 3-space is
the standard measure of the extent to which the field lines wrap and coil
around one another; it plays important roles in fluid mechanics, magnetohy-
drodynamics and plasma physics. In this report we show how the relation
between energy and helicity of a vector field is influenced by the geome-
try and topology of the domain on which it is defined. In particular, we
will see that the standard model for the magnetic field in the Crab Nebula
(equivalently, the spheromak field of plasma physics) is the unique energy-
minimizing divergence-free vector field of given nonzero helicity, defined on
and tangent to the boundary of a round ball, and that the essential features
of this energy-minimizing field persist even as the domain changes topological
type. We will also see that when volume-preserving deformation of domain
is permitted, the spheromak field is not the absolute energy-minimizing field
with given helicity; instead, the round ball on which it is defined can be dim-
pled in at the poles and expanded out at the equator to further decrease the
field energy while preserving helicity. Our numerical computations suggest
that this volume-preserving, helicity-preserving, energy-decreasing deforma-
tion of domain and field converges to a singular domain, in which the north
and south poles have been pressed together at the center, along with a cor-
responding singular field.

1. Two fundamental problems

We organize this report by focusing on two funda-
mental problems:

1. Minimize energy among all divergence-free vec-
tor fields of given nonzero helicity, defined on and
tangent to the boundary of a given domain.

2. Find the above minimum over all domains of given
volume.

Such energy-minimizing vector fields provide models for
stable force-free magnetic fields in gaseous nebulae and
laboratory plasmas, while the search for them seems to
bring out some of the deepest and most useful mathe-
matics connected with helicity.

2. Helicity and writhing number

The helicity H(V ) of a smooth (meaning C∞) vec-
tor field V on the domain Ω in 3-space, defined by the
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formula

H(V ) =
1
4π

∫
Ω×Ω

V (x)× V (y) · x− y
|x− y|3 d volx d voly,

is the standard measure of the extent to which the field
lines wrap and coil around one another. It was intro-
duced in [Woltjer, 1958] and named in [Moffatt, 1969].

The writhing number Wr(K) of a smooth, arc-length-
parametrized curve K in 3-space, defined by the formula

Wr(K) =
1
4π

∫
K×K

dx

ds
× dy

dt
· x− y
|x− y|3 ds dt,

is the standard measure of the extent to which the
curve wraps and coils around itself. It was introduced
in [Călugăreanu, 1959-61] and named in [Fuller, 1971],
and has proved its importance for molecular biologists
in the study of knotted duplex DNA, and of the enzymes
which affect it.

Clearly, writhing number for knots is the analogue
of helicity for vector fields. Both formulas above are
variants of the integral formula of [Gauss, 1833] for the
linking number of two disjoint closed space curves.

3. Relation between helicity

and writhing number

A useful formula connecting the helicity of vector
fields to the writhing of knots appears in [Berger and
Field, 1984].

Let V be a vector field defined in a tube about a knot
K, orthogonal to the cross-sectional disks, with length
depending only on distance from K. Such a vector field
is always divergence-free.

Then
H(V ) = Flux(V )2 Wr(K).

Here, Flux(V ) denotes the flux of V through any of the
cross-sectional disks. We also refer the reader to the two
papers of [Moffatt and Ricca, 1992] for related results.

4. How the geometry of the domain

influences helicity

All the numbered theorems in this report are due
to the authors, and may be found, together with their
proofs in the papers cited.
THEOREM 1. Let V be a smooth vector field defined
on the compact domain Ω with smooth boundary. Then
the helicity H(V ) of V is bounded by

| H(V )| ≤ R(Ω) E(V ),
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where R(Ω) is the radius of a ball with the same volume
as Ω and E(V ) =

∫
Ω
V · V d vol is the energy of V .

This upper bound is not sharp, but it is the right
order of magnitude. For example, the model for the
magnetic field in the Crab Nebula is a vector field V
on a round ball Ω with helicity greater than one-fifth of
the asserted upper bound. Sharp upper bounds will be
obtained by the spectral methods discussed below.
THEOREM 2. The helicity of a unit vector field V
defined on the compact domain Ω is bounded by

| H(V )| ≤ 1
2

vol(Ω)4/3.

This theorem, together with the formula of Berger
and Field given above, yields an upper bound for the
writhing of a DNA strand in terms of its length L and
thickness 2R:
THEOREM 3.

|Wr(K)| ≤ 1
4

(
L

R

)4/3

.

Similar bounds have been obtained independently
in [Buck and Simon, 1998], and also in [Freedman and
He, 1991].

5. Magnetic fields and helicity

Start with a vector field V on the domain Ω, regard it
as a current distribution, and use the Biot-Savart Law
to compute its magnetic field:

BS(V )(y) =
1
4π

∫
Ω

V (x)× y − x
|y − x|3 d volx .

The helicity of V can then be expressed as the inte-
grated dot product of V with its magnetic field BS(V ):

H(V ) =
1
4π

∫
Ω×Ω

V (x) × V (y) · x− y
|x− y|3 d volx d voly

=
∫

Ω

V (y) · 1
4π

∫
Ω

V (x)× y − x
|y− x|3 d volx d voly

=
∫

Ω

V · BS(V ) d vol .

6. A general point of view

Let Ω be a compact domain in 3-space with smooth
boundary. Let VF(Ω) denote the set of all smooth vec-
tor fields V on Ω. Then VF(Ω) is itself an infinite-
dimensional vector space.
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Define an inner product on VF(Ω) by the formula

〈V,W 〉 =
∫

Ω

V ·W d vol .

Although the magnetic field BS(V ) is well-defined
throughout all of 3-space, we will restrict it to Ω; thus
the Biot-Savart Law provides an operator

BS : VF(Ω)→ VF(Ω).

Using the above inner product notation, our formula for
the helicity of V can be written

H(V ) = 〈V,BS(V )〉.

7. The Modified Biot-Savart Operator

Let K(Ω) denote the subspace of VF(Ω) consisting
of all smooth divergence-free vector fields defined on Ω
and tangent to its boundary.

Start with a vector field V in K(Ω) and compute its
magnetic field, BS(V ). Restrict BS(V ) to Ω and sub-
tract a gradient vector field so as to keep it divergence-
free while making it tangent to ∂Ω . Call the resulting
vector field BS′(V ). The Hodge Decomposition Theo-
rem in the Appendix tells us that the gradient vector
fields on Ω form the orthogonal complement of K(Ω);
hence BS′(V ) can be viewed as the orthogonal projec-
tion of BS(V ) back into K(Ω) .

The modified Biot-Savart operator

BS′ : K(Ω)→ K(Ω),

will play a leading role in our story.
The helicity of a vector field V in K(Ω) is given by

H(V ) =
〈
V,BS′(V )

〉
,

since BS(V ) and BS′(V ) differ by a gradient vector field,
which as we just noted is orthogonal in the inner prod-
uct structure of VF(Ω) to any vector field V in K(Ω).

8. Spectral methods

From now on, we focus on vector fields which are
divergence-free and tangent to the boundary of their
domain, that is, on the subspace K(Ω) of VF(Ω), and on
the modified Biot-Savart operator BS′ : K(Ω)→ K(Ω).
A standard functional analysis argument yields
THEOREM 4. The modified Biot-Savart operator BS′

is a bounded operator, and hence extends to a bounded
operator on the L2 completion of its domain; there it is
both compact and self-adjoint.
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The Spectral Theorem then promises that BS′ be-
haves like a real self-adjoint matrix: the L2 completion
of its domain admits an orthonormal basis of eigen-
fields, in terms of which the operator is “diagonaliz-
able”. The eigenfields corresponding to the eigenvalues
λ(Ω) of maximum absolute value have maximum he-
licity for given energy, and we obtain the sharp upper
bound

| H(V )| ≤ |λ(Ω)| E(V ),

for all V in K(Ω).
This approach to the study of helicity was initiated

in [Arnold, 1974] for the setting of closed orientable
3-manifolds. For a corresponding approach via the curl
operator on domains in Euclidean space, see [Yoshida
and Giga, 1990] and [Laurence and Avellaneda, 1991].

9. Connection with the curl operator

If the vector field V is divergence-free and tangent to
the boundary of its domain Ω, that is, if V is in K(Ω),
then

∇× BS(V ) = V.

Since BS(V ) and BS′(V ) differ by a gradient vector
field, we also have

∇×BS′(V ) = V.

If V is an eigenfield of BS′,

BS′(V ) = λV,

then
∇× V =

1
λ
V.

Thus the eigenvalue problem for BS′ can be converted
to an eigenvalue problem for curl on the image of BS′,
which means to a system of partial differential equa-
tions. Even though we extended BS′ to the L2 com-
pletion of K(Ω) in order to apply the spectral theo-
rem, the eigenfields are smooth vector fields in K(Ω);
this follows, thanks to elliptic regularity, because on
divergence-free vector fields, the square of the curl is
the negative of the Laplacian. Hence these vector fields
can be (and are) discovered by solving the above system
of PDEs.

10. Explicit computation of

energy-minimizing vector fields

We solve ∇ × V = (1/λ)V on the flat solid torus
D2(a)×S1, where D2(a) is a disk of radius a and S1 is
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a circle of any length; see [Cantarella et al, 1997a]. Al-
though this is not a subdomain of 3-space, the solution
here is so clear-cut and instructive as to be irresistible.

The eigenvalues of BS′ of largest absolute value are

λ(D2(a) × S1) = ± a

2.405...
,

where the denominator is the first positive zero of the
Bessel function J0, and the corresponding eigenfields,
discovered in [Lundquist, 1951], are

Vλ = J1(r/λ) ϕ̂ + J0(r/λ) ẑ,

expressed in terms of cylindrical coordinates (r, ϕ, z)
and the Bessel functions J0 and J1.

It follows that for any V in K(D2(a)× S1),

| H(V )| ≤ a

2.405..
E(V ),

with equality for the eigenfield Vλ.
We solve ∇ × V = (1/λ)V on the round ball B3(a)

of radius a in terms of spherical Bessel functions in
[Cantarella et al, 1998b].

The eigenvalues of BS′ of largest absolute value are

λ(B3(a)) = ± a

4.4934...
,

where the denominator is the first positive zero of the
function (sinx)/x−cos x. The corresponding eigenfields
Vλ are Woltjer’s models for the magnetic field in the
Crab Nebula. In spherical coordinates (r, θ, ϕ) on a ball
of radius a = 1,

Vλ(r, θ, ϕ) = u(r, θ) r̂ + v(r, θ) θ̂ + w(r, θ) ϕ̂,

where

u(r, θ) =
2λ
r2

(
sin(r/λ)
r/λ

− cos(r/λ)
)

cos θ,

v(r, θ) = −1
r

(
cos(r/λ)
r/λ

− sin(r/λ)
(r/λ)2

+ sin(r/λ)
)

sin θ,

w(r, θ) =
1
r

(
sin(r/λ)
r/λ

− cos(r/λ)
)

sin θ.

The values λ = ±1/4.4934... make both u(r, θ) and
w(r, θ) vanish when r=1, that is, at the boundary of
the ball. As a consequence, the vector field Vλ is tan-
gent to the boundary of the ball, and directed there
along the meridians of longitude.

It follows that for any V in K(B3(a)),

| H(V )| ≤ a

4.4934...
E(V ),
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with equality for the eigenfield Vλ.
Compare this with the rough upper bound from The-

orem 1:
| H(V )| ≤ a E(V ).

11. The isoperimetric problem

We focus now on our second fundamental problem, a
special case of which was considered in [Chui and Mof-
fatt, 1995]:
Minimize energy among all divergence-free vector fields
of given nonzero helicity, defined on and tangent to the
boundary of all domains of given volume in 3-space.

When the domain Ω is fixed, the largest eigenvalue
λ(Ω) of the modified Biot-Savart operator BS′ is the
largest possible value of the Rayleigh quotient:

λ(Ω) = max
V

H(V )
E(V )

= max
V

〈V,BS′(V )〉
〈V, V 〉 .

To maximize λ(Ω) among all domains of given volume,
we want to take the “first derivative” of this quotient as
the domain varies and set it equal to zero. This leads us
to seek first variation formulas for helicity and energy.

12. First Variation Formulas

Suppose the domain Ω is subject to a smooth volume-
preserving deformation ht : Ω → Ωt, with h0 the iden-
tity, and initial velocity the divergence-free vector field
W defined by W (x) = d

dt |t=0 ht(x).
Choose a vector field V in K(Ω), and let Vt = (ht)∗V

be its push-forward to a vector field on the domain Ωt.
In other words, let Vt be frozen into the domain Ωt as
it deforms.
THEOREM 5. The helicity H(Vt) is independent of t.

THEOREM 6. The first variation of the energy of Vt,
calculated at t = 0, is given by

δE(V ) = 2〈V × (∇× V ),W 〉 −
∫
∂Ω

|V |2 (W · n) d area .

THEOREM 7. The first variation of the largest eigen-
value λ(Ωt) of BS′ on Ωt, calculated at t = 0, satisfies
the inequality

δλ(Ω) ≥ λ(Ω)

∫
∂Ω
|Vλ|2 (W · n) d area∫

Ω
|Vλ|2 d vol

.

where Vλ is a corresponding eigenfield.

The inequality appears only in the case that the
largest eigenvalue has multiplicity > 1. This can cer-
tainly happen: when Ω is a round ball the largest eigen-
value has multiplicity 3. When this eigenvalue is simple,
the inequality can be replaced by an equality.
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13. Constraints on any optimal domain

The first variation formula in Theorem 7 leads in turn
to
THEOREM 8. Suppose the vector field V defined on
the compact, smoothly bounded domain Ω minimizes
energy among all divergence-free vector fields of given
nonzero helicity, defined on and tangent to the bound-
ary of all such domains of given volume in 3-space. Then

1. |V | is a nonzero constant on ∂Ω.

2. All the components of ∂Ω are tori.

3. The orbits of V are geodesics on ∂Ω.

Thus, no smooth simply connected domain is opti-
mal in the above sense. In principle, one could have
a smooth optimal domain in the shape, say, of a solid
torus. But we believe that there are no smooth optimal
domains at all, regardless of topological type, and that
the true optimizer looks like the singular domain shown
in the next section.

14. The search for optimal domains

Suppose we begin with the spheromak field Vλ which
minimizes energy for given nonzero helicity on a round
ball Ω, as discussed and pictured in section 10.

We seek a volume-preserving deformation of Ω which
increases λ(Ω), guided by our inequality

δλ(Ω) ≥ λ(Ω)

∫
∂Ω
|Vλ|2(W · n) d area∫

Ω
|Vλ|2 d vol

.

We maximize the right hand side by choosing

W · n = |Vλ|2 − average value of |Vλ|2 on ∂Ω.

Then we imagine a volume-preserving deformation of
Ω whose initial velocity field W has this preassigned
normal component along the boundary. The deforma-
tion begins by dimpling Ω inwards near the poles and
bulging it outwards near the equator, making the ball
look somewhat like an apple.

At each stage Ωt of the deformation, consider a vector
field Vt which minimizes energy for given helicity on
Ωt, with V0 = Vλ, and which determines the normal
component Wt · n of the deformation velocity field Wt

along the boundary in the same way as at the beginning:

Wt · n = |Vt|2 − average value of |Vt|2 on ∂Ωt.

Such a deformation tries to follow a path of steepest
ascent for the largest eigenvalue λ(Ωt) of the modified
Biot-Savart operator.
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We believe that this procedure will continue to dim-
ple the apple inwards at the poles and bulge it outwards
at the equator, until it reaches roughly the shape pic-
tured below, which then maximizes the largest eigen-
value λ(Ω) of the modified Biot-Savart operator among
all domains of given volume. We can think of this sin-
gular domain either as an extreme apple, in which the
north and south poles have been pressed together, or
as an extreme solid torus, in which the hole has been
shrunk to a point. We also show in the sketch the
expected appearance of the energy-minimizing vector
field. The domain curiously resembles the NSTX (Na-
tional Spherical Torus Experiment) containment device
currently under construction at the Princeton Plasma
Physics Laboratory.

Comparison of this picture with those of the energy-
minimizers on the flat solid torus and on the round ball,
given earlier, shows that we expect the common under-
lying pattern to persist even as the domain becomes
singular, with the field in each case tangent to a family
of nested tori with a single core curve.

A computational search for this singular optimal do-
main and the energy-minimizing vector field on it is at
present under way, guided by a discrete version of the
evolution described above.

APPENDIX. THE HODGE DECOMPOSITION

THEOREM

How Domain Topology Influences

Vector Calculus

In a multivariable calculus course, we are taught that
the topology of the underlying domain affects the calcu-
lus of vector fields defined on it. For example, we learn
that to test whether a vector field is the gradient of a
function, we must take its curl and see if it is zero. If
the curl is not zero, then the vector field is certainly not
a gradient. If the curl is zero and the domain is simply
connected, we learn that the vector field is a gradient.
But if the curl is zero and the domain is not simply con-
nected, then we learn that the vector field may or may
not be a gradient, and that further tests are required.

The Hodge Decomposition Theorem for vector fields
on domains in 3-space provides a more sophisticated
level of control over this same subject.

The following two questions help to set the mood.
Question 1. Is there a nonzero vector field V on the
domain which is divergence-free, curl-free and tangent
to the boundary?

Question 2. Is there a nonzero gradient vector field V
on the domain which is divergence-free and orthogonal
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to the boundary?

Domain Answers to Question
1 2

Ball No No
Solid torus Yes No
Spherical shell No Yes
Toroidal shell Yes Yes

The Hodge Decomposition Theorem

Let Ω be a compact domain with smooth boundary
in 3-space.

The following is arguably the single most useful ex-
pression of the interplay between the topology of the
domain Ω, the traditional calculus of vector fields de-
fined on this domain, and the inner product struc-
ture on VF(Ω) defined in section 6 by the formula
〈V,W 〉 =

∫
Ω
V ·Wd vol .

[Blank-Friedrichs-Grad,1957] and [Schwarz, 1995] are
good references; a detailed treatment and proof of this
theorem in the form given below appears in our paper
[Cantarella et al, 1997b].
HODGE DECOMPOSITION THEOREM. We have a
direct sum decomposition of VF(Ω) into five mutually
orthogonal subspaces,

VF(Ω) = FK ⊕ HK ⊕ CG ⊕ HG ⊕ GG,
with

ker curl = HK ⊕ CG ⊕ HG ⊕ GG
imagegrad = CG ⊕ HG ⊕ GG
imagecurl = FK ⊕ HK ⊕ CG

ker div = FK ⊕ HK ⊕ CG ⊕ HG
where

FK = {∇ · V = 0, V · n = 0, all interior fluxes = 0},
HK = {∇ · V = 0,∇× V = 0, V · n = 0},
CG = {V = ∇ϕ,∇ · V = 0, all boundary fluxes = 0},
HG = {V = ∇ϕ,∇ · V = 0, ϕ loc. constant on ∂Ω},
GG = {V = ∇ϕ, ϕ|∂Ω = 0},

and furthermore,

HK ∼= H1(Ω; R) ∼= H2(Ω, ∂Ω; R)
∼= Rgenus of ∂Ω.

HG ∼= H2(Ω; R) ∼= H1(Ω, ∂Ω; R)
∼= R(# components of ∂Ω)−(# components of Ω).

We need to explain the meanings of the conditions
which appear in the statement of this theorem.

The outward pointing unit vector field orthogonal to
∂Ω is denoted by n, so the condition V ·n = 0 indicates
that V is tangent to the boundary of Ω.



11

Let Σ stand generically for any smooth surface in Ω
with ∂Σ ⊂ ∂Ω. Orient Σ by picking one of its two unit
normal vector fields n. Then, for any vector field V on
Ω, the flux of V through Σ is the value of the integral
Φ =

∫
Σ
V · n d area.

If V is divergence-free and tangent to ∂Ω, then the
value of this flux depends only on the homology class
of Σ in the relative homology group H2(Ω, ∂Ω; R). For
example, if Ω is an n-holed solid torus, then there are
disjoint oriented cross-sectional disks Σ1, . . . ,Σn, posi-
tioned so that cutting Ω along these disks will produce
a simply-connected region. The fluxes Φ1, . . . ,Φn of V
through these disks determine the flux of V through any
other cross-sectional surface.

If the flux of V through every smooth surface Σ in Ω
with ∂Σ ⊂ ∂Ω vanishes, we say all interior fluxes = 0.
Thus the subspace of vector fields V in VF(Ω) which
have

∇ · V = 0, V · n = 0, and all interior fluxes = 0,

is called the subspace FK of fluxless knots.
The subspace HK of vector fields V in VF(Ω) with

∇ · V = 0, ∇× V = 0, V · n = 0,

called harmonic knots, is isomorphic to the absolute
homology group H1(Ω; R) and also by Poincaré duality
to the relative homology group H2(Ω, ∂Ω; R). It is thus
a finite-dimensional vector space, with dimension equal
to the (total) genus of ∂Ω.

The orthogonal direct sum of these two subspaces,

K(Ω) = FK⊕HK,

is the subspace of VF(Ω) mentioned earlier, consisting
of all divergence-free vector fields defined on Ω and tan-
gent to its boundary.

If V is a vector field defined on Ω, we will say that all
boundary fluxes of V are zero if the flux of V through
each component of ∂Ω is zero. The subspace of V in
VF(Ω) with

V = ∇ϕ, ∇ · V = 0, all boundary fluxes = 0

is called the subspace CG of curly gradients, because
these are the only gradients which lie in the image of
curl.

The subspace HG of harmonic gradients consists of
all V in VF(Ω) such that

V = ∇ϕ, ∇ · V = 0, ϕ locally constant on ∂Ω,

meaning that ϕ is constant on each component of ∂Ω.
This subspace is isomorphic to the absolute homology
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group H2(Ω; R) and also, via Poincaré duality, to the
relative homology group H1(Ω, ∂Ω; R), and is hence a
finite-dimensional vector space, with dimension equal
to the number of components of ∂Ω minus the number
of components of Ω.

The definition of the subspace GG of grounded gradi-
ents, which consists of all V in VF(Ω) such that

V = ∇ϕ, ϕ|∂Ω = 0,

is self-explanatory.
We refer the reader to [Cantarella et al, 1997b] for a

thorough treatment of the Hodge Decomposition The-
orem and a variety of applications to boundary value
problems for vector fields.
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Călugăreanu, G., Sur les enlacements tridimensionnels des
courbes fermees, Comm. Acad. R.P. Romine 11, 829-832,
1961.

Cantarella, J., DeTurck, D., and Gluck, H., Upper bounds
for the writhing of knots and the helicity of vector fields,
preprint, 1997a.

Cantarella, J, DeTurck, D., and Gluck, H., Hodge decom-
position of vector fields on bounded domains in 3-space,
preprint, 1997b.

Cantarella, J., DeTurck, D., and Gluck, H., The Biot-Savart
operator for application to knot theory, fluid dynamics
and plasma physics, preprint, 1997c.

Cantarella, J., DeTurck, D., Gluck, H., and Teytel, M.,
Isoperimetric problems for the helicity of vector fields and
the Biot-Savart and curl operators, preprint, 1998a.

Cantarella, J., DeTurck, D., Gluck, H., and Teytel, M.,
Eigenvalues and eigenfields of the Biot-Savart operator
on spherically symmetric domains, preprint, 1998b.

Chui, A.Y.K., and Moffat, H.K., The energy and helicity of
knotted magnetic flux tubes, Proc. R. Soc. Lond. A, 451,
609-629, 1995.

Freedman, M., and He, Z.-X., Divergence-free fields: Energy
and asymptotic crossing number, Annals of Math. 134,
189-229, 1991.

Fuller, F.B., The writhing number of a space curve, Proc.
Nat. Acad. Sci. USA 68(4), 815-819, 1971.



13

Gauss, C.F., Integral formula for linking number, in Zur
mathematischen theorie der electrodynamische wirkungen,
Collected Works, Vol. 5, Königlichen Gesellschaft des Wis-
senschaften, Göttingen, 2nd edition, 605, 1833.

Laurence, P., and Avellaneda, M., On Woltjer’s variational
principle for force-free fields, J. Math Phys. 32(5), 1240-
1253, 1991.

Lundquist, S. Magneto-hydrostatic fields, Arkiv Fysik, 2
(35), 361-365, 1951.

Moffatt, H.K., The degree of knottedness of tangled vortex
lines, J. Fluid Mech. 35, 117-129 and 159, 359-378, 1969.

Moffatt, H.K., and Ricca, R., Helicity and the Călugăreanu
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