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Abstract

A classical theorem of Honda and Tate asserts that for every Weil q-number π, there
exists an abelian variety over the finite field Fq, unique up to Fq-isogeny. The standard
proof (of the existence part in the Honda-Weil theorem) uses the the fact that for a given
CM field L and a given CM type Φ for L, there exists a CM abelian variety with CM type
(L,Φ) over a field of characteristic 0. The usual proof of the last statement uses complex
uniformization of (the set of C-points of) abelian varieties over C. In this short note we
provide an algebraic proof of the existence of a CM abelian variety over an integral domain
of characteristic 0 with a given CM type, resulting in an algebraic proof of the existence
part of the Honda-Tate theorem which does not use complex uniformization.

Dedicated to the memory of Taira Honda.

Introduction. Throughout this note p is a fixed prime number, and the symbol q stands
for some positive power of p, i.e. q ∈ pN>0 . Recall that an algebraic integer π is a said to
be a Weil q-number if |ψ(π)| = √q for every complex embedding ψ : Q(π) ↪→ C.

A celebrated theorem of A. Weil (which was the starting point of new developments in
arithmetic algebraic geometry) states that for any abelian variety A over the finite field
Fq its associated q-Frobenius morphism πA = FrA,q : A → A(q) = A is a Weil q-number,
in the sense that πA is a root of a monic irreducible polynomial in Z[T ] all of whose roots
are Weil q-numbers; see [21, p. 70], [20, p. 138] and [11, Th. 4, p. 206]. T. Honda and J.
Tate went further; they proved that the map A 7→ πA defines a bijection1

{simple abelian variety over Fq}/(mod Fq-isogeny)
∼−→ {Weil q-numbers}/ ∼

from the set of isogeny classes of simple abelian varieties over Fq to the set of Weil q-
numbers up to equivalence, where two Weil numbers π and π′ are said to be equivalent
(or conjugate) if there exists a field isomorphism Q(π) ∼= Q(π′) which sends π to π′. The
purpose of this note is to provide a new/algebraic proof of the surjectivity of the above
displayed map, formulated below.

Theorem I. For any Weil q-number π there exists a simple abelian variety A over Fq
(unique up to Fq-isogeny) such that π is conjugate to πA.2

aPartially supported by NSF grant DMS-1200271
bThe Institute of Mathematics of Academia Sinica is gratefully acknowledged for excellent working conditions

and for hospitality during a visit of the second-named author in November / December 2012.
1This map is well-defined because of the above theorem of Weil, and because isogenous abelian varieties

have conjugate Frobenius endomorphisms. The injectivity was proved by Tate in [18], and the surjectivity was
proved by Honda [6] and Tate [19].

2In [19] a Weil q-number is said to effective if it is conjugate to the q-Frobenius of an abelian variety over
Fq. Theorem I asserts that every Weil number is effective.
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Remarks. (a) In the course of the proof of Theorem I we will show, in Theorem II in Step
5, that every CM type for a CM field 3 L is realized by an abelian variety of dimension
[L : Q]/2 with complex multiplication by L in characteristic zero.

(b) Proofs of these theorems were given by constructing a CM abelian variety over C (us-
ing complex uniformization and GAGA) with properties which ensure that the reduction
modulo p of this CM abelian variety gives a Weil number which is a power of πA. We
construct such a CM abelian variety by algebraic methods, without using complex uni-
formization. The remark in Step 8 gives this proof in the special case when g = 1; that
proof is a guideline for the proof below for arbitrary g. In a sense this algebraic proof
answers a question posed in [15, 22.4].

The rest of this article is devoted to the proof of theorems I and II, separated into a
number of steps. We will follow the general strategy in [19]. Only steps 3–5 are new,
where complex uniformization is replaced by algebraic methods in the construction of CM
abelian varieties with a given CM type (Theorem II). Steps 1 and 2 are preparatory in
nature, recalling some general facts and set of notations for the rest of the proof. Steps
6-8, already in [19], are included for the convenience of the readers.

Step 1. Notations.
A Weil q-number π has exactly one of the following three properties:

• (Q) It can happen that ψ(π) ∈ Q. In this case q = pn = p2m and π = ±√q = ±pm.

• (R) It can happen that ψ(π) 6∈ Q and ψ(π) ∈ R. In this case q = pn = p2m+1 and
π = ±√q = ±pm·√p. In this case every embedding of Q(π) into C lands into R.

• ( 6∈ R) If there is one embedding ψ′ : Q(π) ↪→ C such that ψ′(π) 6∈ R then for every
embedding ψ : Q(π) ↪→ C we have ψ(π) 6∈ R and in this case Q(π) is a CM field.

As we know from [19], page 97 Example (a) that every real Weil q-number comes from an
abelian variety over Fq, so the first two cases have been taken care of. Therefore in order
to prove Theorem I, we may and do assume that we are in the third case, i.e. π 6∈ R.

Following [19, Th. 1, p. 96], let M be a finite dimensional central division algebra over
Q(π),4 uniquely determined (up to non-unique isomorphism) by the following local condi-
tions:

(i) M is ramified at all real places of Q(π),

(ii) M split at all finite places of W(π) which are prime to p, and

(iii) For every place ν of Q(π) above p, the arithmetically normalized local Brauer invari-
ant of M at ν is

invν(M) ≡ ν(π)

ν(q)
[Q(π)ν : Qp] (mod Z).

Let g := [Q(π) : Q]·
√

[M : Q(π)]/2, a positive integer. According to § 3, Lemme 2 on p. 100
of [19] there exists a CM field L with Q(π) ⊂ L ⊂ M and [L : Q] = 2g. Let L0 be the
maximal totally real subfield of L.

Step 2. Choosing a CM type for L. We follow [19, pp. 103–105]; however our notation
will be slightly different. A prime above p in Q(π) will be denoted by u. A prime in L0

above p will be denoted by w and a prime in L above p will be denoted by v. We write ρ

3A number field L is a CM field a subfield L0 ⊂ L with [L : L0] = 2 such that L0 is totally real (every
embedding of L0 into C lands into R) L is totally complex (no embedding of L into C lands into R).

4This central division algebra M was denoted by E in [19]. If we can find an abelian variety A over Fq with
πA ∼ π then we would have End0(A) ∼= M and dim(A) = g = [Q(π) : Q]·

√
[M : Q(π)]/2.
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for the involution of the quadratic extension L/L0 (which “is” the complex conjugation).
Following Tate we write

Hv = Hom(Lv,Cp), Hom(L,Cp) =
∐
v|p

Hv,

where Cp is the p-adic completion of an algebraic closure of Qp. Let

nv :=
v(π)

v(q))
·#(Hv) ∈ N

for each place v of L above p. Using properties of π we choose a suitable p-adic CM type
for L by choosing a subset

∐
v|wΦv ⊂

∐
v|wHv for each place w of L0 above p, as follows.

• [v = ρ(v)] For any v with v = ρ(v) the map ρ gives a fixed point free involution on
Hv; in this case (once π and L are fixed and v is chosen) we choose a subset Φv ⊂ Hv

with
#(Φv) = (1/2) ·#(Hv).

Note that v(π) = (1/2)v(q) in this case and we have

nv = (1/2) ·#(Hv) = (v(π)/v(q)) ·#(Hv).

• [v 6= ρ(v)] For any pair v1, v1 above a place w of L0 dividing p with v1 6= ρ(v1) = v2,
the complex conjugation ρ defines a bijective map ? ◦ ρ : Hv1 → Hv2 . We choose a
subset Φv1 ⊂ Hv1 with

#(Φv1) = nv1 and we define Φv2 := Hv2 − Φv1 ◦ρ.

Observe that indeed nvi + nρ(vi) = [Lv : Qp] = #(Hvi) for i = 1, 2. We could as well
have chosen first Φv2 of the right size and then define Φv1 as Φv1 := Hv1 − Φv2 ◦ρ.

Define a CM type Φp ⊂ Hom(L,Cp) =
∐
v|pHv by Φp =

∐
v|p Φv. By construction we

have
Φp ∩ (Φp◦ρ) = ∅, Φp ∪ (Φp◦ρ) = Hom(L,Cp);

i.e. Φp is a p-adic CM type for the CM field L. Let jp : Q ↪→ Cp be the algebraic closure
of Q in Cp. The injection jp induces a bijection

jp◦?: Hom(L,Q)
∼−→ Hom(L,Cp).

The subset Φ := (jp◦?)−1(Φp) ⊂ Hom(L,Q) is a CM type in the usual sense, i.e. Φ∩(Φ◦ρ) =
∅ and Φ ∪ (Φ◦ρ) = Hom(L,Q).

We fix the notation Φp ⊂ Hom(L,Cp) for the p-adic CM type constructed above, and
the corresponding CM type Φ ⊂ Hom(L,Q).

Step 3. Choosing a prime number r.
Proposition A. For a given CM field L there exists a rational prime number r unramified
in L such that r splits completely in L0 and every place of L0 above r is inert in L/L0.

Proof. Let N be the smallest Galois extension of Q containing L, and let G = Gal(N/Q).
Note that the element ρ ∈ G induced by complex conjugation is a central element of order
2. By Chebotarev’s theorem the set of rational primes unramified in N whose Frobenius
conjugacy class in G is ρ has Dirichlet density 1/[G : 1] > 0; see [9, VIII.4, Th. 10]. Any
prime number r in this subset satisfies the required properties.

Step 4. Construct a supersingular abelian variety with an action by L.
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We know that for every prime number (r in our case) there exists a supersingular elliptic
curve E in characteristic r. When r > 2 we know that that there exist values of the
parameter λ such that corresponding elliptic curves over Fr in the Legendre family Y 2 =
X(X − 1)(X − λ) are supersingular; see see [4, 4.4.2]. In characteristic 2 the elliptic curve
given by the cubic equation Y 2 + Y = X3 is supersingular.5

Let E be a supersingular elliptic curve over the base field κ := Fr; we know that End(E)
is non-commutative. Its endomorphism algebra End0(E) is the quaternion division algebra
Qr,∞ over Q in the notation of [2], which is ramified exactly at r and ∞. Let B1 := Eg

and let D := End0(B1) = Mg(Qr,∞).

Proposition B. Let L′ be a totally imaginary quadratic extension of a totally real number
field L′0 such [L′v : Qr] is even for every place v of L′ above r. Let g′ = [L′0 : Q]. There
exists a positive involution τ on the central simple algebra EndQ(L′0)⊗QQr,∞ ∼= Mg′(Qr,∞)
over Q and a ring homomorphism ι : E ↪→ EndQ(L′0)⊗QQr,∞ such that ι(L′) is stable under
the involution τ and τ induces the complex conjugation on L′.

Proof. Let EndQ(L′0) ∼= Mg′(Q) be the algebra of all endomorphisms of the Q-vector space
underlying L′0. The trace form (x, y) 7→ TrL′

0/Q(x · y) for x, y ∈ L′0 is a positive definite
quadratic form on (the Q-vector space underlying) L′0, so its associated involution τ1 on
EndQ(L′0) is positive. Multiplication defines a natural embedding L′0 ↪→ EndQ(L′0), and
every element of L′0 is fixed by τ1.

Let τ2 be the canonical involution on Qr,∞. The involution τ1⊗τ2 on EndQ(L′0)⊗QQr,∞
is clearly positive because τ2 is. It is also clear that the subalgebra B := L′0 ⊗Q Qr,∞
of EndQ(L′0) ⊗Q Qr,∞ is stable under τ . Moreover B is a positive definite quaternion
division algebra over L′0, so the restriction to B of the positive involution τ is the canonical
involution on B.

The assumptions on L′ imply that there exists an L′0-linear embedding L′ ↪→ B. From
the elementary fact that every R-linear embedding of C in the Hamiltonian quaternions H is
stable under the canonical involution on H, we deduce that the subalgebra L′⊗QR ⊂ B⊗QR
is stable under the canonical involution of B ⊗Q R, which implies that L′ is stable under
τ .

Corollary C. (i) There exists a polarization µ1 : B1 → Bt1 and an embedding L ↪→
End0(B1) = D such that the image of L in D = End0(B1) is stable under the Rosati
involution attached to µ1.

(ii) There exists an isogeny α : B1 → B0 over Fr such that the embedding L ↪→ End0(B1) =
End0(B0) factors through an action

ι0 : OL ↪→ End(B0)

of OL on B0, where OL is the ring of all algebraic integers in L.

(iii) There exists a positive integer m such that the isogeny

µ0 := m · (αt)−1 ◦ µ1 ◦ α−1 : B0 → Bt0

is a polarization on B0 and the Rosati involution τµ0
attached to µ0 induces the complex

conjugation on the image of L in End0(B0).

Proof. The statements (ii) and (iii) follow from (i). For the proof statement (i), recall
first from [11, §21 pp. 208–210] that after one fixed an ample invertible OB1

-module L
on the abelian variety B1 := Eg, say the tensor product of pullbacks of OE(oE) via the
g projections pri : B1 → E, where oE is the zero section of E, the Néron-Severi group
NS0(B1) = NS(B1) ⊗ Q is identified with the subgroup of End0(B1) fixed under the

5This cubic equation defines an elliptic curve with CM by Z[µ3], and 2 is inert in Q(µ3).
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Rosati involution ∗L and the classes of ample line bundles in NS(B1)⊗Q are exactly the
totally positive elements in the formally real Jordan algebra NS(B1). The Jordan algebra
structure here is defined using the class of the ample line bundle L .

On the other hand, one knows from the Noether-Skolem theorem and basic properties
of positive involutions on semisimple algebras that for every positive involution ∗′ on
End0(B1) there exists an element c ∈ End0(B1)× such that ∗′(c) = c = ∗L (c) and
∗′(x) = c−1 · ∗L · c for all x ∈ End0(B1); see for instance [8, Lemma 2.11]. Moreover
the element c in the previous sentence is either totally positive or totally negative because
the center of the simple algebra End0(B1) is Q.

Apply Proposition B to the case when L′ = L. From the facts recalled in the preceding
paragraphs we see that the positive involution τ constructed in Proposition B has the
form τ = Ad(c)−1 ◦ ∗L , and c can be taken to be a totally positive element in NS(B1). In
other words τ is the Rosati involution attached to the polarization φL ◦ c, where φL is
the polarization on B1 defined by the ample line bundle L .

From now on we fix (L,Φ) as in Step 1, with r as in Proposition A, and

(B0, ι0 : OL ↪→ End(B0), µ0 : B0 → Bt0)

as in Corollary C. We fix an algebraic closure Qr of Qr, an embedding jr : Q ↪→ Qr, and
an embedding ir,ur : W (Fr)[1/p] ↪→ Qr. We have bijections

Hom(L,Cp) Hom(L,Q)
jp◦?
∼
oo jr◦?

∼
// Hom(L,Qr) Hom(L,W (Fr)[1/r])∼

ir◦?oo

The last arrow

Hom(L,Qr) Hom(L,W (Fr)[1/r])∼
ir◦?oo

is a bijection because r is unramified in L. We regard the p-adic CM type Φp as an r-adic
CM type Φr ⊂ Hom(L,W (Fr)[1/r]) via the bijection (jr◦?) ◦ (jp◦?)−1, i.e.

Φr := (jr◦?) ◦ (jp◦?)−1(Φp) = (jr◦?)(Φ).

For each place w of L0 above r, the w-adic completion Lw := L ⊗L0 L0,w of L is an
unramified quadratic extension field of the w-adic completion L0,w

∼= Qr of L0, and the
intersection Φw := Φr ∩Hom(Lw,W (Fr)[1/r]) is a singleton.

Step 5. Lifting to a CM abelian variety in characteristic zero.
Theorem II. Let (B0, ι0 : OL ↪→ End(B), µ0 : B0 → Bt0) be an ([L : Q]/2)-dimensional
polarized supersingular abelian variety with an action by OL such that the subring OL ⊂
End0(B0) is stable under the Rosati involution τµ0 as in Corollary C. There exists a lifting
(B, ι, µ) of the triple (B, ι0, µ0) to the ring W (Fr) of r-adic Witt vectors with entries in Fr,
where B is an abelian scheme over W (Fr) whose closed fiber is B, and ι : OL → End(B)
is an action of OL on B which extends ι0 and µ : B → Bt is a polarization of B which
extends µ0, such that the generic fiber Bη is an abelian variety whose r-adic CM type is
equal to Φr.

Proof. The prime number r was chosen so that for every place w of the totally real subfield
L0 ⊂ L, the ring of local integers OL0,w of the w-adic completion of L0 is Zp, and OL,w :=
OL⊗OL0

OL0,w
∼= W (Fr2). We have a product decomposition

OL⊗ZZp ∼=
∏
w

OL⊗OL0
OL0,w

∼=
∏
w

OL,w,
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where w runs over the g places of L0 above r. The g idempotents associated to the above
decomposition of OL⊗ZZp define a decomposition

B0[r∞] ∼=
∏
w

B0[w∞]

of the r-divisible group B0[r∞] into a product of g factors, where each factor B0[wr] is a
height 2 r-divisible group with an action by Ow. Similarly we have a decomposition

Bt0[r∞] ∼=
∏
w

Bt0[w∞]

of the r-divisible group attached to the dual Bt0 of B0. The action of OL on B0 induces an
action ofOL on Bt0 by y 7→ (ι0(ρ(y)))t for every y ∈ OL, so that the polarization µ0 : B0 →
Bt0 is OL-linear. The polarization µ0 on the abelian variety B0 induces a polarization6

µ0[r∞] : B0[r∞] → Bt0[r∞] on the r-divisible group µ0[r∞], which decomposes into a
product of polarizations µ0[w∞] : B0[w∞]→ Bt0[r∞] on the OL,w-linear r-divisible groups
B0[w∞] of height 2.

It suffices to show that for each place w of L0 above r, the OL,w-linearly polarized
r-divisible group (B0[w∞], ι0[w∞], µ0[w∞]) over Fr can be lifted to W (Fr) with r-adic
CM type Φw. For then the Serre-Tate theorem of deformation of abelian schemes tells us
that (B0, ι0, µ0) can be lifted over W (Fr) to a formal abelian scheme B with an action
ι̂ : OL → End(B) whose r-adic CM type is Φr, together with an OL-linear symmetric
isogeny µ̂ : B → Bt from the formal abelian scheme B to its dual whose closed fiber is
the polarization µ0 on B0; see either [7] or Thm. 2.3 on p. 166 of [10] for the Serre-Tate
theorem. The pull-back by

(idB, µ̂) : B→ B×Spec(W (Fr))
Bt

of the Poincaré line bundle on B ×Spec(W (Fr)
Bt is an invertible OB-module on the for-

mal scheme B whose restriction to the closed fiber B0 is ample. The existence of an
ample invertible OB-module on B implies, by Grothendieck’s algebraization theorem [3,
III §5.4, pp. 156–158], that the formal abelian scheme B comes from a unique abelian
scheme B over W (Fr), and the CM structure (B, ι̂) on the formal abelian scheme B
descends uniquely to a CM structure (B, ι) on the abelian scheme B over W (Fr) with
r-adic CM type Φr.

For any r-adic place w among the g places of L0 above r, the existence of a CM
lifting to W (Fr) of the OL,w-linear polarized r-divisible group (B0[w∞], ι0[w∞], µ0[w∞])
of height 2 goes back to Deuring who proved that a supersingular elliptic curve with a
given endomorphism can be lifted to characteristic zero, see [2, p. 259] and the proof on
pp. 259-263; the case we need here is [13, 14.7]. Below is a proof using Lubin-Tate formal
groups.

By [12, Th. 1], there exists a one-dimensional formal p-divisible group X of height 2,
over W (Fr) plus an action β : OL,w → End(X) of OL,w on X whose r-adic CM type is
Φw. Let

(X0, β0 : OL,w → End(X0)) := (X,β)×Spec(W (Fr))
Spec(Fr)

6In this article a polarization of a p-divisible group Y =(Yn)n≥1 → S over a base scheme S is, by definition,
an isogeny ν : Y → Y t over S from Y to its Serre dual Y t which is symmetric in the sense that νt = ν. Recall
that the Serre dual Y t of Y is the p-divisible group (Y t

n)n≥1 whose pn-torsion subgroup is the Cartier dual Y t
n

of Yn = Y [pn]’s; see [10, Ch. I (2.4.4)]. The double dual (Y t)t of Y is canonically isomorphic to Y , so the dual
νt of an S-homomorphism ν : Y → Y t is again an S-homomorphism from Y to Y t.

In the literature the terminology “quasi-polarization” is often used, to distinguish it from the notion of
polarizations of abelian schemes. Here we have dropped the prefix “quasi”, to avoid possible association with
the notion of “quasi-isogeny”.
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be the closed fiber of (X,β). It is well-known that the OL,w-linear p-divisible group
(X0, β0) over Fr is isomorphic to (B0[w∞], ι0[w∞]).7

We choose and fix an isomorphism between (B0[w∞], ι0[w∞]) with (X0, β0), and use
this chosen isomorphism to identify these two p-divisible groups over Fr with their CM
structures. The Serre dual Xt of X, with the OL,w-action defined by γ : b 7→ (β(ρ(b)))t

∀ b ∈ OL,w, also has CM type Φw. Let (Xt
0, γ0) be the closed fiber of (Xt, γ). The natural

map
ξ : Hom

(
(X,β), (Xt, γ)

)
−→ Hom

(
(X0, β0), (Xt

0, γ0)
)

defined by reduction modulo r is a bijection: [12, Thm. 1] implies that (Xt, γ) is isomorphic
to (X,β), and after identifying them via a chosen isomorphism both the source and the
target of ξ are isomorphic to OL,w so that ξ is an OL,w-linear isomorphism.

Under the identification of (X0, β0) with (B0[w∞], ι0[w∞]) specified above, the polar-
ization µ0[w∞] on B0[w∞] is identified with a polarization ν0 on X0. The polarization
ν0 : X0 → Xt

0 extends over W (κL,w) to a polarization ν : X → Xt because ξ is a bijection.
We have shown that the triple (B0[w∞], ι0[w∞], µ0[w∞]) can be lifted over W (Fr).

Remark. One can also prove the existence of a lifting of (B0[w∞], ι0[w∞], µ0[w∞]) to
W (Fr) using the Grothendieck-Messing deformation theory for abelian schemes, as doc-
umented in Ch. V, Theorems (1.6) and (2.3) of [10]. The point is that the deformation
functor for (B0[w∞], ι0[w∞]) is represented by Spf(W (Fr)) because OL,w is unramified
over Zp.

We fix the generic fiber (Bη, µ, ι) of a lifting as in Theorem II over the fraction field
W (Fr)[1/r] of W (Fr) with an OL-linear action ι : OL ↪→ End(Bη), whose r-adic CM type
is Φr.

Step 6. Change to a number field and reduce modulo p .
We have arrived at a situation where we have an abelian variety Bη over a field of char-
acteristic zero with an action OL ↪→ End(Bη) by OL, whose r-adic CM type with respect
to an embedding of the base field in Qr is equal to the r-adic CM type Φr constructed at
the end of Step 4.

We know that any CM abelian variety in characteristic 0 can be defined over a number
field K, see e.g. [17, Prop. 26, p. 109] or [1, Prop. 1.5.4.1]. By [16, Th. 6] we may assume,
after passing to a suitable finite extension of K, that this CM abelian variety has good
reduction at every place of K above p. Again we may pass to a finite extension of K, if
necessary, to ensure that K has a place with residue field δ of characteristic p with Fq ⊂ δ.
We have arrive at the following situation.

We have a CM abelian variety (C,L ↪→ End0(C)) of dimension g = [L : Q]/2
over a number field K, of p-adic CM type Φp with respect to an embedding
K ↪→ Cp such that C has good reduction C0 at a p-adic place of K induced by
the embedding K ↪→ Cp and the residue class field of that place contains Fq

Step 7. Some power of π is effective.

7We sketch a proof based on the structure of the quaternion division algebra End0(X0) over Qp. Both X0

and B0[w∞] are p-divisible groups of height two and slope 1/2, hence they are isomorphic. After we identify X0

with B0[w∞], the CM structure ι0[w∞] on B0[w∞] is identified with a homomorphism β′0 : OL,w → End(X0),
and we know that End(X0) is the ring of integral elements in End0(X0). According to the Noether-Skolem
theorem, there exists an element u ∈ End0(X0)× such that β′0(a) = u · β0(a) · u−1 for every a ∈ OL,w. Because
the two CM structures β′0 and β0 have the same CM type, the normalized valuation of u in End0(X0) is even.
In other words u is of the form u = pm · u1 with m ∈ Z and u1 ∈ End(X0)×, so the automorphism u1 of X0

defines an isomorphism between the two OL,w-linear p-divisible groups (X0, ι0) and (X0, ι
′
0).
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Let i ∈ Z>0 such that δ = Fqi . We have C0 over δ and πi, πC0 ∈ L. We know that

• πi and πC0
are units at all places of L not dividing p.

• We know that these two algebraic numbers have the same absolute value under every
embedding into C.

• By the construction of Φ in Step 2 and by [19], Lemme 5 on page 103, we know
that πi and πC0

have the same valuation at every place above p. As remarked in [19,
p. 103/104], the essence of this step is the “factorization of a Frobenius endomorphism
into a product of prime ideals” in [17].

This shows that πi/πC0 is a unit locally everywhere and has absolute value equal to one
at all infinite places. This implies, by standard finiteness properties for algebraic number
fields, that πi/πC0

is a root of unity in OL. See for instance [5, §34 Hilfsatz a)] or [22,
Ch. IV §4 Thm. 8]. We conclude that there exists a positive integer j ∈ Z>0 such that
πij = (πC0

)j .

Step 8. End of the proof.
The previous step shows that πij is effective, because it is (conjugate to) the qij-Frobenius
of the base change of C0 to Fqij . By [19, Lemma 1, p. 100] this implies that π is effective,
and this ends the proof of the theorem in the introduction. 2

Remark. When g = 1 the proof of Theorem I is easier. This simple proof, sketched
below, was the starting point of this note.

Suppose that π is a Weil q-number and L = Q(π) is an imaginary quadratic field such
that the positive integer g, defined by p-adic properties of π, is equal to 1. This means
(the first case) either that there is an i ∈ Z>0 with πi ∈ Q, or (the second case) that for
every i we have L = Q(πi), with p split in L/Q and at one place v above p in L we have
v(π)/v(q) = 1 while at the other place v′ above p we have v′(π)/v′(q) = 0. If πi ∈ Q we
know that π is the q-Frobenius of a supersingular elliptic curve over Fq, see Step 1, and π
is effective. If the second case occurs, we choose a prime number r which is inert in L/Q,
then choose a supersingular elliptic curve in characteristic r, lift it to characteristic zero
together with an action of (an order in) L; the reduction modulo p (over some extension
of Fp) gives an elliptic curves whose Frobenius is a power of π; by [19, Lemme 1] on page
100 we conclude π is effective.

Th scheme of the proof of the general case is the same as the proof described in the
previous paragraph when g = 1, except that (as we do in steps 2, 4 and 5) we have to
specify the CM type in order to keep control of the p-adic properties of the abelian variety
eventually constructed. Note that the CM lifting problem treated in the proof of Theorem
II is exactly the same as in the g = 1 case (in view of the Serre-Tate theorem).

Acknowledgement. We would like to thank the referee for several suggestions.
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