An algebraic construction of an abelian variety with a given Weil number

Ching-Li Chai ${ }^{\text {a }}$ \& Frans Oort ${ }^{\text {b }}$

version 10, April 20, 2015

Abstract

A classical theorem of Honda and Tate asserts that for every Weil q-number π, there exists an abelian variety over the finite field \mathbb{F}_{q}, unique up to \mathbb{F}_{q}-isogeny. The standard proof (of the existence part in the Honda-Weil theorem) uses the the fact that for a given CM field L and a given CM type Φ for L, there exists a CM abelian variety with CM type (L, Φ) over a field of characteristic 0 . The usual proof of the last statement uses complex uniformization of (the set of \mathbb{C}-points of) abelian varieties over \mathbb{C}. In this short note we provide an algebraic proof of the existence of a CM abelian variety over an integral domain of characteristic 0 with a given CM type, resulting in an algebraic proof of the existence part of the Honda-Tate theorem which does not use complex uniformization.

Dedicated to the memory of Taira Honda.

Introduction. Throughout this note p is a fixed prime number, and the symbol q stands for some positive power of p, i.e. $q \in p^{\mathbb{N}>0}$. Recall that an algebraic integer π is a said to be a Weil q-number if $|\psi(\pi)|=\sqrt{q}$ for every complex embedding $\psi: \mathbb{Q}(\pi) \hookrightarrow \mathbb{C}$.

A celebrated theorem of A. Weil (which was the starting point of new developments in arithmetic algebraic geometry) states that for any abelian variety A over the finite field \mathbb{F}_{q} its associated q-Frobenius morphism $\pi_{A}=\mathrm{Fr}_{A, q}: A \rightarrow A^{(q)}=A$ is a Weil q-number, in the sense that π_{A} is a root of a monic irreducible polynomial in $\mathbb{Z}[T]$ all of whose roots are Weil q-numbers; see [21, p. 70], [20, p. 138] and [11, Th.4, p. 206]. T. Honda and J. Tate went further; they proved that the map $A \mapsto \pi_{A}$ defines a bijection ${ }^{1}$

$$
\left\{\text { simple abelian variety over } \mathbb{F}_{q}\right\} /\left(\bmod \mathbb{F}_{q} \text {-isogeny }\right) \xrightarrow{\sim}\{\text { Weil } q \text {-numbers }\} / \sim
$$

from the set of isogeny classes of simple abelian varieties over \mathbb{F}_{q} to the set of Weil q numbers up to equivalence, where two Weil numbers π and π^{\prime} are said to be equivalent (or conjugate) if there exists a field isomorphism $\mathbb{Q}(\pi) \cong \mathbb{Q}\left(\pi^{\prime}\right)$ which sends π to π^{\prime}. The purpose of this note is to provide a new/algebraic proof of the surjectivity of the above displayed map, formulated below.

Theorem I. For any Weil q-number π there exists a simple abelian variety A over \mathbb{F}_{q} (unique up to \mathbb{F}_{q}-isogeny) such that π is conjugate to $\pi_{A} .^{2}$

[^0]Remarks. (a) In the course of the proof of Theorem I we will show, in Theorem II in Step 5, that every CM type for a CM field ${ }^{3} L$ is realized by an abelian variety of dimension $[L: \mathbb{Q}] / 2$ with complex multiplication by L in characteristic zero.
(b) Proofs of these theorems were given by constructing a CM abelian variety over \mathbb{C} (using complex uniformization and GAGA) with properties which ensure that the reduction modulo p of this CM abelian variety gives a Weil number which is a power of π_{A}. We construct such a CM abelian variety by algebraic methods, without using complex uniformization. The remark in Step 8 gives this proof in the special case when $g=1$; that proof is a guideline for the proof below for arbitrary g. In a sense this algebraic proof answers a question posed in [15, 22.4].

The rest of this article is devoted to the proof of theorems I and II, separated into a number of steps. We will follow the general strategy in [19]. Only steps $3-5$ are new, where complex uniformization is replaced by algebraic methods in the construction of CM abelian varieties with a given CM type (Theorem II). Steps 1 and 2 are preparatory in nature, recalling some general facts and set of notations for the rest of the proof. Steps $6-8$, already in [19], are included for the convenience of the readers.

Step 1. Notations.

A Weil q-number π has exactly one of the following three properties:

- (\mathbb{Q}) It can happen that $\psi(\pi) \in \mathbb{Q}$. In this case $q=p^{n}=p^{2 m}$ and $\pi= \pm \sqrt{q}= \pm p^{m}$.
- (\mathbb{R}) It can happen that $\psi(\pi) \notin \mathbb{Q}$ and $\psi(\pi) \in \mathbb{R}$. In this case $q=p^{n}=p^{2 m+1}$ and $\pi= \pm \sqrt{q}= \pm p^{m} \cdot \sqrt{p}$. In this case every embedding of $\mathbb{Q}(\pi)$ into \mathbb{C} lands into \mathbb{R}.
- $(\notin \mathbb{R})$ If there is one embedding $\psi^{\prime}: \mathbb{Q}(\pi) \hookrightarrow \mathbb{C}$ such that $\psi^{\prime}(\pi) \notin \mathbb{R}$ then for every embedding $\psi: \mathbb{Q}(\pi) \hookrightarrow \mathbb{C}$ we have $\psi(\pi) \notin \mathbb{R}$ and in this case $\mathbb{Q}(\pi)$ is a CM field.
As we know from [19], page 97 Example (a) that every real Weil q-number comes from an abelian variety over \mathbb{F}_{q}, so the first two cases have been taken care of. Therefore in order to prove Theorem I, we may and do assume that we are in the third case, i.e. $\pi \notin \mathbb{R}$.

Following [19, Th. 1, p. 96], let M be a finite dimensional central division algebra over $\mathbb{Q}(\pi),{ }^{4}$ uniquely determined (up to non-unique isomorphism) by the following local conditions:
(i) M is ramified at all real places of $\mathbb{Q}(\pi)$,
(ii) M split at all finite places of $\mathbb{W}(\pi)$ which are prime to p, and
(iii) For every place ν of $\mathbb{Q}(\pi)$ above p, the arithmetically normalized local Brauer invariant of M at ν is

$$
\operatorname{inv}_{\nu}(M) \equiv \frac{\nu(\pi)}{\nu(q)}\left[\mathbb{Q}(\pi)_{\nu}: \mathbb{Q}_{p}\right] \quad(\bmod \mathbb{Z})
$$

Let $g:=[\mathbb{Q}(\pi): \mathbb{Q}] \cdot \sqrt{[M: \mathbb{Q}(\pi)}] / 2$, a positive integer. According to $\S 3$, Lemme 2 on p. 100 of [19] there exists a CM field L with $\mathbb{Q}(\pi) \subset L \subset M$ and $[L: \mathbb{Q}]=2 g$. Let L_{0} be the maximal totally real subfield of L.

Step 2. Choosing a CM type for L. We follow [19, pp. 103-105]; however our notation will be slightly different. A prime above p in $\mathbb{Q}(\pi)$ will be denoted by u. A prime in L_{0} above p will be denoted by w and a prime in L above p will be denoted by v. We write ρ

[^1]for the involution of the quadratic extension L / L_{0} (which "is" the complex conjugation). Following Tate we write
$$
H_{v}=\operatorname{Hom}\left(L_{v}, \mathbb{C}_{p}\right), \quad \operatorname{Hom}\left(L, \mathbb{C}_{p}\right)=\coprod_{v \mid p} H_{v}
$$
where \mathbb{C}_{p} is the p-adic completion of an algebraic closure of \mathbb{Q}_{p}. Let
$$
n_{v}:=\frac{v(\pi)}{v(q))} \cdot \#\left(H_{v}\right) \in \mathbb{N}
$$
for each place v of L above p. Using properties of π we choose a suitable p-adic CM type for L by choosing a subset $\coprod_{v \mid w} \Phi_{v} \subset \coprod_{v \mid w} H_{v}$ for each place w of L_{0} above p, as follows.

- $[v=\rho(v)]$ For any v with $v=\rho(v)$ the map ρ gives a fixed point free involution on H_{v}; in this case (once π and L are fixed and v is chosen) we choose a subset $\Phi_{v} \subset H_{v}$ with

$$
\#\left(\Phi_{v}\right)=(1 / 2) \cdot \#\left(H_{v}\right)
$$

Note that $v(\pi)=(1 / 2) v(q)$ in this case and we have

$$
n_{v}=(1 / 2) \cdot \#\left(H_{v}\right)=(v(\pi) / v(q)) \cdot \#\left(H_{v}\right)
$$

- $[v \neq \rho(v)]$ For any pair v_{1}, v_{1} above a place w of L_{0} dividing p with $v_{1} \neq \rho\left(v_{1}\right)=v_{2}$, the complex conjugation ρ defines a bijective map ? $\circ \rho: H_{v_{1}} \rightarrow H_{v_{2}}$. We choose a subset $\Phi_{v_{1}} \subset H_{v_{1}}$ with

$$
\#\left(\Phi_{v_{1}}\right)=n_{v_{1}} \text { and we define } \Phi_{v_{2}}:=H_{v_{2}}-\Phi_{v_{1}} \circ \rho .
$$

Observe that indeed $n_{v_{i}}+n_{\rho\left(v_{i}\right)}=\left[L_{v}: \mathbb{Q}_{p}\right]=\#\left(H_{v_{i}}\right)$ for $i=1,2$. We could as well have chosen first $\Phi_{v_{2}}$ of the right size and then define $\Phi_{v_{1}}$ as $\Phi_{v_{1}}:=H_{v_{1}}-\Phi_{v_{2}} \circ \rho$.

Define a CM type $\Phi_{p} \subset \operatorname{Hom}\left(L, \mathbb{C}_{p}\right)=\coprod_{v \mid p} H_{v}$ by $\Phi_{p}=\coprod_{v \mid p} \Phi_{v}$. By construction we have

$$
\Phi_{p} \cap\left(\Phi_{p} \circ \rho\right)=\emptyset, \quad \Phi_{p} \cup\left(\Phi_{p} \circ \rho\right)=\operatorname{Hom}\left(L, \mathbb{C}_{p}\right)
$$

i.e. Φ_{p} is a p-adic CM type for the CM field L. Let $j_{p}: \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_{p}$ be the algebraic closure of \mathbb{Q} in \mathbb{C}_{p}. The injection j_{p} induces a bijection

$$
j_{p} \circ ?: \operatorname{Hom}(L, \overline{\mathbb{Q}}) \xrightarrow{\sim} \operatorname{Hom}\left(L, \mathbb{C}_{p}\right)
$$

The subset $\Phi:=\left(j_{p} \circ ?\right)^{-1}\left(\Phi_{p}\right) \subset \operatorname{Hom}(L, \overline{\mathbb{Q}})$ is a CM type in the usual sense, i.e. $\Phi \cap(\Phi \circ \rho)=$ \emptyset and $\Phi \cup(\Phi \circ \rho)=\operatorname{Hom}(L, \overline{\mathbb{Q}})$.

We fix the notation $\Phi_{p} \subset \operatorname{Hom}\left(L, \mathbb{C}_{p}\right)$ for the p-adic CM type constructed above, and the corresponding CM type $\Phi \subset \operatorname{Hom}(L, \overline{\mathbb{Q}})$.

Step 3. Choosing a prime number r.

Proposition A. For a given CM field L there exists a rational prime number r unramified in L such that r splits completely in L_{0} and every place of L_{0} above r is inert in L / L_{0}.

Proof. Let N be the smallest Galois extension of \mathbb{Q} containing L, and let $G=\operatorname{Gal}(N / \mathbb{Q})$. Note that the element $\rho \in G$ induced by complex conjugation is a central element of order 2. By Chebotarev's theorem the set of rational primes unramified in N whose Frobenius conjugacy class in G is ρ has Dirichlet density $1 /[G: 1]>0$; see [9, VIII.4, Th. 10]. Any prime number r in this subset satisfies the required properties.

Step 4. Construct a supersingular abelian variety with an action by L.

We know that for every prime number (r in our case) there exists a supersingular elliptic curve E in characteristic r. When $r>2$ we know that that there exist values of the parameter λ such that corresponding elliptic curves over $\overline{\mathbb{F}}_{r}$ in the Legendre family $Y^{2}=$ $X(X-1)(X-\lambda)$ are supersingular; see see [4, 4.4.2]. In characteristic 2 the elliptic curve given by the cubic equation $Y^{2}+Y=X^{3}$ is supersingular. ${ }^{5}$

Let E be a supersingular elliptic curve over the base field $\kappa:=\overline{\mathbb{F}}_{r}$; we know that $\operatorname{End}(E)$ is non-commutative. Its endomorphism algebra $\operatorname{End}^{0}(E)$ is the quaternion division algebra $\mathbb{Q}_{r, \infty}$ over \mathbb{Q} in the notation of [2], which is ramified exactly at r and ∞. Let $B_{1}:=E^{g}$ and let $D:=\operatorname{End}^{0}\left(B_{1}\right)=\mathrm{M}_{g}\left(\mathbb{Q}_{r, \infty}\right)$.

Proposition B. Let L^{\prime} be a totally imaginary quadratic extension of a totally real number field L_{0}^{\prime} such $\left[L_{v}^{\prime}: \mathbb{Q}_{r}\right]$ is even for every place v of L^{\prime} above r. Let $g^{\prime}=\left[L_{0}^{\prime}: \mathbb{Q}\right]$. There exists a positive involution τ on the central simple algebra $\operatorname{End}_{\mathbb{Q}}\left(L_{0}^{\prime}\right) \otimes_{\mathbb{Q}} \mathbb{Q}_{r, \infty} \cong \mathrm{M}_{g^{\prime}}\left(\mathbb{Q}_{r, \infty}\right)$ over \mathbb{Q} and a ring homomorphism $\iota: E \hookrightarrow \operatorname{End}_{\mathbb{Q}}\left(L_{0}^{\prime}\right) \otimes_{\mathbb{Q}} \mathbb{Q}_{r, \infty}$ such that $\iota\left(L^{\prime}\right)$ is stable under the involution τ and τ induces the complex conjugation on L^{\prime}.

Proof. Let $\operatorname{End}_{\mathbb{Q}}\left(L_{0}^{\prime}\right) \cong \mathrm{M}_{g^{\prime}}(\mathbb{Q})$ be the algebra of all endomorphisms of the \mathbb{Q}-vector space underlying L_{0}^{\prime}. The trace form $(x, y) \mapsto \operatorname{Tr}_{L_{0}^{\prime} / \mathbb{Q}}(x \cdot y)$ for $x, y \in L_{0}^{\prime}$ is a positive definite quadratic form on (the \mathbb{Q}-vector space underlying) L_{0}^{\prime}, so its associated involution τ_{1} on $\operatorname{End}_{\mathbb{Q}}\left(L_{0}^{\prime}\right)$ is positive. Multiplication defines a natural embedding $L_{0}^{\prime} \hookrightarrow \operatorname{End}_{\mathbb{Q}}\left(L_{0}^{\prime}\right)$, and every element of L_{0}^{\prime} is fixed by τ_{1}.

Let τ_{2} be the canonical involution on $\mathbb{Q}_{r, \infty}$. The involution $\tau_{1} \otimes \tau_{2}$ on $\operatorname{End}_{\mathbb{Q}}\left(L_{0}^{\prime}\right) \otimes_{\mathbb{Q}} \mathbb{Q}_{r, \infty}$ is clearly positive because τ_{2} is. It is also clear that the subalgebra $B:=L_{0}^{\prime} \otimes_{\mathbb{Q}} \mathbb{Q}_{r, \infty}$ of $\operatorname{End}_{\mathbb{Q}}\left(L_{0}^{\prime}\right) \otimes_{\mathbb{Q}} \mathbb{Q}_{r, \infty}$ is stable under τ. Moreover B is a positive definite quaternion division algebra over L_{0}^{\prime}, so the restriction to B of the positive involution τ is the canonical involution on B.

The assumptions on L^{\prime} imply that there exists an L_{0}^{\prime}-linear embedding $L^{\prime} \hookrightarrow B$. From the elementary fact that every \mathbb{R}-linear embedding of \mathbb{C} in the Hamiltonian quaternions \mathbb{H} is stable under the canonical involution on \mathbb{H}, we deduce that the subalgebra $L^{\prime} \otimes_{\mathbb{Q}} \mathbb{R} \subset B \otimes_{\mathbb{Q}} \mathbb{R}$ is stable under the canonical involution of $B \otimes_{\mathbb{Q}} \mathbb{R}$, which implies that L^{\prime} is stable under τ.

Corollary C. (i) There exists a polarization $\mu_{1}: B_{1} \rightarrow B_{1}^{t}$ and an embedding $L \hookrightarrow$ $\operatorname{End}^{0}\left(B_{1}\right)=D$ such that the image of L in $D=\operatorname{End}^{0}\left(B_{1}\right)$ is stable under the Rosati involution attached to μ_{1}.
(ii) There exists an isogeny $\alpha: B_{1} \rightarrow B_{0}$ over $\overline{\mathbb{F}}_{r}$ such that the embedding $L \hookrightarrow \operatorname{End}^{0}\left(B_{1}\right)=$ End ${ }^{0}\left(B_{0}\right)$ factors through an action

$$
\iota_{0}: \mathcal{O}_{L} \hookrightarrow \operatorname{End}\left(B_{0}\right)
$$

of \mathcal{O}_{L} on B_{0}, where \mathcal{O}_{L} is the ring of all algebraic integers in L.
(iii) There exists a positive integer m such that the isogeny

$$
\mu_{0}:=m \cdot\left(\alpha^{t}\right)^{-1} \circ \mu_{1} \circ \alpha^{-1}: B_{0} \rightarrow B_{0}^{t}
$$

is a polarization on B_{0} and the Rosati involution $\tau_{\mu_{0}}$ attached to μ_{0} induces the complex conjugation on the image of L in $\operatorname{End}^{0}\left(B_{0}\right)$.

Proof. The statements (ii) and (iii) follow from (i). For the proof statement (i), recall first from [11, §21 pp. 208-210] that after one fixed an ample invertible $\mathcal{O}_{B_{1}}$-module \mathscr{L} on the abelian variety $B_{1}:=E^{g}$, say the tensor product of pullbacks of $\mathcal{O}_{E}\left(o_{E}\right)$ via the g projections $\operatorname{pr}_{i}: B_{1} \rightarrow E$, where o_{E} is the zero section of E, the Néron-Severi group $\mathrm{NS}^{0}\left(B_{1}\right)=\mathrm{NS}\left(B_{1}\right) \otimes \mathbb{Q}$ is identified with the subgroup of $\operatorname{End}^{0}\left(B_{1}\right)$ fixed under the

[^2]Rosati involution $* \mathscr{L}$ and the classes of ample line bundles in $\mathrm{NS}\left(B_{1}\right) \otimes \mathbb{Q}$ are exactly the totally positive elements in the formally real Jordan algebra $\operatorname{NS}\left(B_{1}\right)$. The Jordan algebra structure here is defined using the class of the ample line bundle \mathscr{L}.

On the other hand, one knows from the Noether-Skolem theorem and basic properties of positive involutions on semisimple algebras that for every positive involution $*^{\prime}$ on $\operatorname{End}^{0}\left(B_{1}\right)$ there exists an element $c \in \operatorname{End}^{0}\left(B_{1}\right)^{\times}$such that $*^{\prime}(c)=c=*_{\mathscr{L}}(c)$ and $*^{\prime}(x)=c^{-1} \cdot * \mathscr{L} \cdot c$ for all $x \in \operatorname{End}^{0}\left(B_{1}\right)$; see for instance [8, Lemma 2.11]. Moreover the element c in the previous sentence is either totally positive or totally negative because the center of the simple algebra $\operatorname{End}^{0}\left(B_{1}\right)$ is \mathbb{Q}.

Apply Proposition B to the case when $L^{\prime}=L$. From the facts recalled in the preceding paragraphs we see that the positive involution τ constructed in Proposition B has the form $\tau=\operatorname{Ad}(c)^{-1} \circ * \mathscr{L}$, and c can be taken to be a totally positive element in $\mathrm{NS}\left(B_{1}\right)$. In other words τ is the Rosati involution attached to the polarization $\phi_{\mathscr{L}} \circ c$, where $\phi_{\mathscr{L}}$ is the polarization on B_{1} defined by the ample line bundle \mathscr{L}.

From now on we fix (L, Φ) as in Step 1, with r as in Proposition A, and

$$
\left(B_{0}, \quad \iota_{0}: \mathcal{O}_{L} \hookrightarrow \operatorname{End}\left(B_{0}\right), \quad \mu_{0}: B_{0} \rightarrow B_{0}^{t}\right)
$$

as in Corollary C. We fix an algebraic closure $\overline{\mathbb{Q}}_{r}$ of \mathbb{Q}_{r}, an embedding $j_{r}: \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{r}$, and an embedding $i_{r, \text { ur }}: W\left(\overline{\mathbb{F}}_{r}\right)[1 / p] \hookrightarrow \overline{\mathbb{Q}}_{r}$. We have bijections

$$
\operatorname{Hom}\left(L, \mathbb{C}_{p}\right) \stackrel{j_{p} \circ ?}{\sim} \operatorname{Hom}(L, \overline{\mathbb{Q}}) \xrightarrow[\sim]{j_{r} \circ ?} \operatorname{Hom}\left(L, \overline{\mathbb{Q}}_{r}\right) \stackrel{i_{r} \circ ?}{\sim} \operatorname{Hom}\left(L, W\left(\overline{\mathbb{F}}_{r}\right)[1 / r]\right)
$$

The last arrow

$$
\operatorname{Hom}\left(L, \overline{\mathbb{Q}}_{r}\right) \stackrel{i_{r} \circ ?}{\sim} \operatorname{Hom}\left(L, W\left(\overline{\mathbb{F}}_{r}\right)[1 / r]\right)
$$

is a bijection because r is unramified in L. We regard the p-adic CM type Φ_{p} as an r-adic CM type $\Phi_{r} \subset \operatorname{Hom}\left(L, W\left(\overline{\mathbb{F}}_{r}\right)[1 / r]\right)$ via the bijection $\left(j_{r} \circ\right.$? $) \circ\left(j_{p} \circ \text { ? }\right)^{-1}$, i.e.

$$
\Phi_{r}:=\left(j_{r} \circ ?\right) \circ\left(j_{p} \circ ?\right)^{-1}\left(\Phi_{p}\right)=\left(j_{r} \circ ?\right)(\Phi)
$$

For each place \mathfrak{w} of L_{0} above r, the \mathfrak{w}-adic completion $L_{\mathfrak{w}}:=L \otimes_{L_{0}} L_{0, \mathfrak{w}}$ of L is an unramified quadratic extension field of the \mathfrak{w}-adic completion $L_{0, \mathfrak{w}} \cong \mathbb{Q}_{r}$ of L_{0}, and the intersection $\Phi_{\mathfrak{w}}:=\Phi_{r} \cap \operatorname{Hom}\left(L_{\mathfrak{w}}, W\left(\overline{\mathbb{F}}_{r}\right)[1 / r]\right)$ is a singleton.

Step 5. Lifting to a CM abelian variety in characteristic zero.

Theorem II. Let $\left(B_{0}, \iota_{0}: \mathcal{O}_{L} \hookrightarrow \operatorname{End}(B), \mu_{0}: B_{0} \rightarrow B_{0}^{t}\right)$ be an $([L: \mathbb{Q}] / 2)$-dimensional polarized supersingular abelian variety with an action by \mathcal{O}_{L} such that the subring $\mathcal{O}_{L} \subset$ End $^{0}\left(B_{0}\right)$ is stable under the Rosati involution $\tau_{\mu_{0}}$ as in Corollary C. There exists a lifting $(\mathcal{B}, \iota, \mu)$ of the triple $\left(B, \iota_{0}, \mu_{0}\right)$ to the ring $W\left(\overline{\mathbb{F}}_{r}\right)$ of r-adic Witt vectors with entries in $\overline{\mathbb{F}_{r}}$, where \mathcal{B} is an abelian scheme over $W\left(\overline{\mathbb{F}}_{r}\right)$ whose closed fiber is B, and $\iota: \mathcal{O}_{L} \rightarrow \operatorname{End}(\mathcal{B})$ is an action of \mathcal{O}_{L} on \mathcal{B} which extends ι_{0} and $\mu: \mathcal{B} \rightarrow \mathcal{B}^{t}$ is a polarization of \mathcal{B} which extends μ_{0}, such that the generic fiber \mathcal{B}_{η} is an abelian variety whose r-adic CM type is equal to Φ_{r}.

Proof. The prime number r was chosen so that for every place \mathfrak{w} of the totally real subfield $L_{0} \subset L$, the ring of local integers $\mathcal{O}_{L_{0}, w}$ of the \mathfrak{w}-adic completion of L_{0} is \mathbb{Z}_{p}, and $\mathcal{O}_{L, \mathfrak{w}}:=$ $\mathcal{O}_{L} \otimes_{\mathcal{O}_{L_{0}}} \mathcal{O}_{L_{0}, \mathfrak{w}} \cong W\left(\mathbb{F}_{r^{2}}\right)$. We have a product decomposition

$$
\mathcal{O}_{L} \otimes_{\mathbb{Z}} \mathbb{Z}_{p} \cong \prod_{\mathfrak{w}} \mathcal{O}_{L} \otimes_{\mathcal{O}_{L_{0}}} \mathcal{O}_{L_{0}, \mathfrak{w}} \cong \prod_{\mathfrak{w}} \mathcal{O}_{L, \mathfrak{w}}
$$

where \mathfrak{w} runs over the g places of L_{0} above r. The g idempotents associated to the above decomposition of $\mathcal{O}_{L} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$ define a decomposition

$$
B_{0}\left[r^{\infty}\right] \cong \prod_{\mathfrak{w}} B_{0}\left[\mathfrak{w}^{\infty}\right]
$$

of the r-divisible group $B_{0}\left[r^{\infty}\right]$ into a product of g factors, where each factor $B_{0}\left[\mathfrak{w}^{r}\right]$ is a height $2 r$-divisible group with an action by $\mathcal{O}_{\mathfrak{w}}$. Similarly we have a decomposition

$$
B_{0}^{t}\left[r^{\infty}\right] \cong \prod_{\mathfrak{w}} B_{0}^{t}\left[\mathfrak{w}^{\infty}\right]
$$

of the r-divisible group attached to the dual B_{0}^{t} of B_{0}. The action of \mathcal{O}_{L} on B_{0} induces an action of \mathcal{O}_{L} on B_{0}^{t} by $y \mapsto\left(\iota_{0}(\rho(y))\right)^{t}$ for every $y \in \mathcal{O}_{L}$, so that the polarization $\mu_{0}: B_{0} \rightarrow$ B_{0}^{t} is \mathcal{O}_{L}-linear. The polarization μ_{0} on the abelian variety B_{0} induces a polarization ${ }^{6}$ $\mu_{0}\left[r^{\infty}\right]: B_{0}\left[r^{\infty}\right] \rightarrow B_{0}^{t}\left[r^{\infty}\right]$ on the r-divisible group $\mu_{0}\left[r^{\infty}\right]$, which decomposes into a product of polarizations $\mu_{0}\left[w^{\infty}\right]: B_{0}\left[\mathfrak{w}^{\infty}\right] \rightarrow B_{0}^{t}\left[r^{\infty}\right]$ on the $\mathcal{O}_{L, \mathfrak{w}}$-linear r-divisible groups $B_{0}\left[\mathfrak{w}^{\infty}\right]$ of height 2.

It suffices to show that for each place \mathfrak{w} of L_{0} above r, the $\mathcal{O}_{L, \mathfrak{w}}$-linearly polarized r-divisible group $\left(B_{0}\left[\mathfrak{w}^{\infty}\right], \iota_{0}\left[\mathfrak{w}^{\infty}\right], \mu_{0}\left[\mathfrak{w}^{\infty}\right]\right)$ over $\overline{\mathbb{F}}_{r}$ can be lifted to $W\left(\overline{\mathbb{F}}_{r}\right)$ with r-adic CM type $\Phi_{\mathfrak{w}}$. For then the Serre-Tate theorem of deformation of abelian schemes tells us that $\left(B_{0}, \iota_{0}, \mu_{0}\right)$ can be lifted over $W\left(\overline{\mathbb{F}}_{r}\right)$ to a formal abelian scheme \mathfrak{B} with an action $\hat{\imath}: \mathcal{O}_{L} \rightarrow \operatorname{End}(\mathfrak{B})$ whose r-adic $C M$ type is Φ_{r}, together with an \mathcal{O}_{L}-linear symmetric isogeny $\hat{\mu}: \mathfrak{B} \rightarrow \mathfrak{B}^{t}$ from the formal abelian scheme \mathfrak{B} to its dual whose closed fiber is the polarization μ_{0} on B_{0}; see either [7] or Thm. 2.3 on p. 166 of [10] for the Serre-Tate theorem. The pull-back by

$$
\left(\operatorname{id}_{\mathfrak{B}}, \hat{\mu}\right): \mathfrak{B} \rightarrow \mathfrak{B} \times_{\operatorname{Spec}\left(W\left(\overline{\mathbb{F}}_{r}\right)\right)} \mathfrak{B}^{t}
$$

of the Poincaré line bundle on $\mathfrak{B} \times_{\operatorname{Spec}\left(W\left(\overline{\mathbb{F}}_{r}\right)\right.} \mathfrak{B}^{t}$ is an invertible $\mathcal{O}_{\mathfrak{B}}$-module on the formal scheme \mathfrak{B} whose restriction to the closed fiber B_{0} is ample. The existence of an ample invertible $\mathcal{O}_{\mathfrak{B}}$-module on \mathfrak{B} implies, by Grothendieck's algebraization theorem [3, III §5.4, pp. 156-158], that the formal abelian scheme \mathfrak{B} comes from a unique abelian scheme \mathcal{B} over $W\left(\overline{\mathbb{F}}_{r}\right)$, and the CM structure $(\mathfrak{B}, \hat{\iota})$ on the formal abelian scheme \mathfrak{B} descends uniquely to a CM structure (\mathcal{B}, ι) on the abelian scheme \mathcal{B} over $W\left(\overline{\mathbb{F}}_{r}\right)$ with r-adic CM type Φ_{r}.

For any r-adic place \mathfrak{w} among the g places of L_{0} above r, the existence of a CM lifting to $W\left(\overline{\mathbb{F}}_{r}\right)$ of the $\mathcal{O}_{L, \mathfrak{w}}$-linear polarized r-divisible group ($B_{0}\left[\mathfrak{w}^{\infty}\right], \iota_{0}\left[\mathfrak{w}^{\infty}\right], \mu_{0}\left[\mathfrak{w}^{\infty}\right]$) of height 2 goes back to Deuring who proved that a supersingular elliptic curve with a given endomorphism can be lifted to characteristic zero, see [2, p. 259] and the proof on pp. 259-263; the case we need here is [13, 14.7]. Below is a proof using Lubin-Tate formal groups.

By [12, Th. 1], there exists a one-dimensional formal p-divisible group X of height 2, over $W\left(\overline{\mathbb{F}}_{r}\right)$ plus an action $\beta: \mathcal{O}_{L, \mathfrak{w}} \rightarrow \operatorname{End}(X)$ of $\mathcal{O}_{L, \mathfrak{w}}$ on X whose r-adic CM type is $\Phi_{\mathfrak{w}}$. Let

$$
\left(X_{0}, \beta_{0}: \mathcal{O}_{L, \mathfrak{w}} \rightarrow \operatorname{End}\left(X_{0}\right)\right):=(X, \beta) \times_{\operatorname{Spec}\left(W\left(\overline{\mathbb{F}}_{r}\right)\right)} \operatorname{Spec}\left(\overline{\mathbb{F}}_{r}\right)
$$

[^3]be the closed fiber of (X, β). It is well-known that the $\mathcal{O}_{L, \mathfrak{w}}$-linear p-divisible group $\left(X_{0}, \beta_{0}\right)$ over $\overline{\mathbb{F}}_{r}$ is isomorphic to $\left(B_{0}\left[\mathfrak{w}^{\infty}\right], \iota_{0}\left[\mathfrak{w}^{\infty}\right]\right) .{ }^{7}$

We choose and fix an isomorphism between $\left(B_{0}\left[\mathfrak{w}^{\infty}\right], \iota_{0}\left[\mathfrak{w}^{\infty}\right]\right)$ with $\left(X_{0}, \beta_{0}\right)$, and use this chosen isomorphism to identify these two p-divisible groups over $\overline{\mathbb{F}}_{r}$ with their CM structures. The Serre dual X^{t} of X, with the $\mathcal{O}_{L, \mathfrak{w}}$-action defined by $\gamma: b \mapsto(\beta(\rho(b)))^{t}$ $\forall b \in \mathcal{O}_{L, \mathfrak{w}}$, also has CM type $\Phi_{\mathfrak{w}}$. Let $\left(X_{0}^{t}, \gamma_{0}\right)$ be the closed fiber of $\left(X^{t}, \gamma\right)$. The natural map

$$
\xi: \operatorname{Hom}\left((X, \beta),\left(X^{t}, \gamma\right)\right) \longrightarrow \operatorname{Hom}\left(\left(X_{0}, \beta_{0}\right),\left(X_{0}^{t}, \gamma_{0}\right)\right)
$$

defined by reduction modulo r is a bijection: [12, Thm. 1] implies that $\left(X^{t}, \gamma\right)$ is isomorphic to (X, β), and after identifying them via a chosen isomorphism both the source and the target of ξ are isomorphic to $\mathcal{O}_{L, \mathfrak{w}}$ so that ξ is an $\mathcal{O}_{L, \mathfrak{w}}$-linear isomorphism.

Under the identification of $\left(X_{0}, \beta_{0}\right)$ with $\left(B_{0}\left[\mathfrak{w}^{\infty}\right], \iota_{0}\left[\mathfrak{w}^{\infty}\right]\right)$ specified above, the polarization $\mu_{0}\left[\mathfrak{w}^{\infty}\right]$ on $B_{0}\left[\mathfrak{w}^{\infty}\right]$ is identified with a polarization ν_{0} on X_{0}. The polarization $\nu_{0}: X_{0} \rightarrow X_{0}^{t}$ extends over $W\left(\kappa_{L, \mathfrak{w}}\right)$ to a polarization $\nu: X \rightarrow X^{t}$ because ξ is a bijection. We have shown that the triple $\left(B_{0}\left[\mathfrak{w}^{\infty}\right], \iota_{0}\left[\mathfrak{w}^{\infty}\right], \mu_{0}\left[\mathfrak{w}^{\infty}\right]\right)$ can be lifted over $W\left(\overline{\mathbb{F}}_{r}\right)$.

Remark. One can also prove the existence of a lifting of ($\left.B_{0}\left[\mathfrak{w}^{\infty}\right], \iota_{0}\left[\mathfrak{w}^{\infty}\right], \mu_{0}\left[\mathfrak{w}^{\infty}\right]\right)$ to $W\left(\overline{\mathbb{F}}_{r}\right)$ using the Grothendieck-Messing deformation theory for abelian schemes, as documented in Ch. V, Theorems (1.6) and (2.3) of [10]. The point is that the deformation functor for $\left(B_{0}\left[\mathfrak{w}^{\infty}\right], \iota_{0}\left[\mathfrak{w}^{\infty}\right]\right)$ is represented by $\operatorname{Spf}\left(W\left(\overline{\mathbb{F}}_{r}\right)\right)$ because $\mathcal{O}_{L, \mathfrak{w}}$ is unramified over \mathbb{Z}_{p}.

We fix the generic fiber $\left(\mathcal{B}_{\eta}, \mu, \iota\right)$ of a lifting as in Theorem II over the fraction field $W\left(\overline{\mathbb{F}}_{r}\right)[1 / r]$ of $W\left(\overline{\mathbb{F}}_{r}\right)$ with an \mathcal{O}_{L}-linear action $\iota: \mathcal{O}_{L} \hookrightarrow \operatorname{End}\left(\mathcal{B}_{\eta}\right)$, whose r-adic CM type is Φ_{r}.

Step 6. Change to a number field and reduce modulo p.

We have arrived at a situation where we have an abelian variety \mathcal{B}_{η} over a field of characteristic zero with an action $\mathcal{O}_{L} \hookrightarrow \operatorname{End}\left(\mathcal{B}_{\eta}\right)$ by \mathcal{O}_{L}, whose r-adic CM type with respect to an embedding of the base field in $\overline{\mathbb{Q}}_{r}$ is equal to the r-adic CM type Φ_{r} constructed at the end of Step 4.

We know that any CM abelian variety in characteristic 0 can be defined over a number field K, see e.g. [17, Prop. 26, p. 109] or [1, Prop. 1.5.4.1]. By [16, Th. 6] we may assume, after passing to a suitable finite extension of K, that this CM abelian variety has good reduction at every place of K above p. Again we may pass to a finite extension of K, if necessary, to ensure that K has a place with residue field δ of characteristic p with $\mathbb{F}_{q} \subset \delta$. We have arrive at the following situation.

We have a CM abelian variety $\left(C, L \hookrightarrow \operatorname{End}^{0}(C)\right)$ of dimension $g=[L: \mathbb{Q}] / 2$ over a number field K, of p-adic CM type Φ_{p} with respect to an embedding $K \hookrightarrow \mathbb{C}_{p}$ such that C has good reduction C_{0} at a p-adic place of K induced by the embedding $K \hookrightarrow \mathbb{C}_{p}$ and the residue class field of that place contains \mathbb{F}_{q}

Step 7. Some power of π is effective.

[^4]Let $i \in \mathbb{Z}_{>0}$ such that $\delta=\mathbb{F}_{q^{i}}$. We have C_{0} over δ and $\pi^{i}, \pi_{C_{0}} \in L$. We know that

- π^{i} and $\pi_{C_{0}}$ are units at all places of L not dividing p.
- We know that these two algebraic numbers have the same absolute value under every embedding into \mathbb{C}.
- By the construction of Φ in Step 2 and by [19], Lemme 5 on page 103, we know that π^{i} and $\pi_{C_{0}}$ have the same valuation at every place above p. As remarked in [19, p. 103/104], the essence of this step is the "factorization of a Frobenius endomorphism into a product of prime ideals" in [17].
This shows that $\pi^{i} / \pi_{C_{0}}$ is a unit locally everywhere and has absolute value equal to one at all infinite places. This implies, by standard finiteness properties for algebraic number fields, that $\pi^{i} / \pi_{C_{0}}$ is a root of unity in \mathcal{O}_{L}. See for instance [$5, \S 34$ Hilfsatz a)] or [22, Ch. IV $\S 4$ Thm. 8]. We conclude that there exists a positive integer $j \in \mathbb{Z}_{>0}$ such that $\pi^{i j}=\left(\pi_{C_{0}}\right)^{j}$.

Step 8. End of the proof.

The previous step shows that $\pi^{i j}$ is effective, because it is (conjugate to) the $q^{i j}$-Frobenius of the base change of C_{0} to $\mathbb{F}_{q^{i j}}$. By [19, Lemma 1, p. 100] this implies that π is effective, and this ends the proof of the theorem in the introduction.

Remark. When $g=1$ the proof of Theorem I is easier. This simple proof, sketched below, was the starting point of this note.

Suppose that π is a Weil q-number and $L=\mathbb{Q}(\pi)$ is an imaginary quadratic field such that the positive integer g, defined by p-adic properties of π, is equal to 1 . This means (the first case) either that there is an $i \in \mathbb{Z}_{>0}$ with $\pi^{i} \in \mathbb{Q}$, or (the second case) that for every i we have $L=\mathbb{Q}\left(\pi^{i}\right)$, with p split in L / Q and at one place v above p in L we have $v(\pi) / v(q)=1$ while at the other place v^{\prime} above p we have $v^{\prime}(\pi) / v^{\prime}(q)=0$. If $\pi^{i} \in \mathbb{Q}$ we know that π is the q-Frobenius of a supersingular elliptic curve over \mathbb{F}_{q}, see Step 1 , and π is effective. If the second case occurs, we choose a prime number r which is inert in L / \mathbb{Q}, then choose a supersingular elliptic curve in characteristic r, lift it to characteristic zero together with an action of (an order in) L; the reduction modulo p (over some extension of \mathbb{F}_{p}) gives an elliptic curves whose Frobenius is a power of π; by $[19$, Lemme 1$]$ on page 100 we conclude π is effective.

Th scheme of the proof of the general case is the same as the proof described in the previous paragraph when $g=1$, except that (as we do in steps 2,4 and 5) we have to specify the CM type in order to keep control of the p-adic properties of the abelian variety eventually constructed. Note that the CM lifting problem treated in the proof of Theorem II is exactly the same as in the $g=1$ case (in view of the Serre-Tate theorem).

Acknowledgement. We would like to thank the referee for several suggestions.

References

[1] C.-L. Chai, B. Conrad \& F. Oort - Complex multiplication and lifting problems. Math. Surveys and Monographs 195, Amer. Math. Soc., 2014.
[2] M. Deuring - Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hamburg, 14 (1941), 197-272.
[3] A. Grothendieck \& J. Dieudonné - Élements de géométrie algébriue, III^{1}. Étude cohomologique des faisceaux cohérents. Publ. Math. IHES 11, 1961.
[4] R. Hartshorne - Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
[5] E. Hecke - Vorlesungen über die Theorie der algebraischen Zahlen. Akademische Verlagsgesellschaft, Leipzig, 1923.
[6] T. Honda - Isogeny classes of abelian varieties over finite fields. J. Math. Soc. Japan, 20 (1968), 83-95.
[7] N. Katz - Appendix to Exposé V: Cristaux ordinaires et coordonnées canoniques. Algebraic surfaces (Orsay, 1976-78), Lecture Notes in Mathematics, vol. 868, SpringerVerlag, Berlin, 1981, Appendix to an article of P. Deligne, pp. 127-137.
[8] R. Kottwitz - Points of some Shimura varieties over finite fields. J. Amer. Math. Soc. 5 (1992), 373-444.
[9] S. Lang - Algebraic number theory. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont. 1970.
[10] W. Messing - The crystals associated to Barsotti-Tate groups: with applications to abelian schemes. Lecture Notes in Mathematics, vol. 264, Springer-Verlag, Berlin, 1972.
[11] D. Mumford - Abelian varieties. Tata Institute of Fundamental Research Studies in Math. 5, Oxford University Press, London, 1970.
[12] J. Lubin \& J. Tate - Formal complex multiplication Ann. of Math. 81 (1965), 380-387.
[13] F. Oort - Lifting algebraic curves, abelian varieties, and their endomorphisms to characteristic zero. Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Part 2, pp. 165-195, Amer. Math. Soc., Providence, RI, 1987.
[14] F. Oort - Moduli of abelian varieties in mixed and in positive characteristic. The Handbook of Moduli (G. Farkas, I, Morrison, editors), Vol. III, pp. 75-134. Adv. Lect. Math. (ALM) 26, Int. Press, Somerville, MA, 2013.
[15] F. Oort - Abelian varieties over finite fields. Summer School on "Varieties over finite fields", Göttingen, 25-VI - 6-VII-2007. Higher-dimensional geometry over finite fields. Proceedings of the NATO Advanced Study Institute 2007 (Editors: Dmitry Kaledin, Yuri Tschinkel). IOS Press, 2008, 123-188.
[16] J-P. Serre \& J. Tate - Good reduction of abelian varieties. Ann. of Math. 88 (1968). 492-517.
[17] G. Shimura \& Y. Taniyama - Complex multiplication of abelian varieties and its applications to number theory. Publications of the Mathematical Society of Japan, Vol. 6. The Mathematical Society of Japan, Tokyo 1961.
[18] J. Tate - Endomorphisms of abelian varieties over finite fields. Invent. Math. 2 (1966), 134-144.
[19] J. Tate - Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda). Séminaire Bourbaki, 1968/69, no. 352. Lecture Notes Mathematics 179, Springer-Verlag, 1971, 95-110.
[20] W. Waterhouse \& J. Milne - Abelian varieties over finite fields. 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), 53-64.
[21] A. Weil - Sur les courbes algébriques et les variétés qui s'en déduisent. Act. Sci. Ind., no. 1041, Publ. Inst. Math. Univ. Strasbourg 7 (1945). Hermann et Cie., Paris, 1948.
[22] A. Weil - Basis number theory. Springer-Verlag, 1971.

Ching-Li Chai
Department of Mathematics
University of Pennsylvania
Philadelphia, PA 19104-6395
USA
chai@math.upenn.edu
chai@math.upenn.edu/~chai/

Frans Oort
Mathematical Institute
Pincetonplein 5
3584 CC Utrecht NL
The Netherlands
f.oort@uu.nl
www.staff.science.uu.nl/~oort0109/

[^0]: ${ }^{\text {a }}$ Partially supported by NSF grant DMS-1200271
 ${ }^{\mathrm{b}}$ The Institute of Mathematics of Academia Sinica is gratefully acknowledged for excellent working conditions and for hospitality during a visit of the second-named author in November / December 2012.
 ${ }^{1}$ This map is well-defined because of the above theorem of Weil, and because isogenous abelian varieties have conjugate Frobenius endomorphisms. The injectivity was proved by Tate in [18], and the surjectivity was proved by Honda [6] and Tate [19].
 ${ }^{2}$ In [19] a Weil q-number is said to effective if it is conjugate to the q-Frobenius of an abelian variety over \mathbb{F}_{q}. Theorem I asserts that every Weil number is effective.

[^1]: ${ }^{3}$ A number field L is a $C M$ field a subfield $L_{0} \subset L$ with $\left[L: L_{0}\right]=2$ such that L_{0} is totally real (every embedding of L_{0} into \mathbb{C} lands into \mathbb{R}) L is totally complex (no embedding of L into \mathbb{C} lands into \mathbb{R}).
 ${ }^{4}$ This central division algebra M was denoted by E in [19]. If we can find an abelian variety A over \mathbb{F}_{q} with $\pi_{A} \sim \pi$ then we would have $\operatorname{End}^{0}(A) \cong M$ and $\operatorname{dim}(A)=g=[\mathbb{Q}(\pi): \mathbb{Q}] \cdot \sqrt{[M: \mathbb{Q}(\pi)]} / 2$.

[^2]: ${ }^{5}$ This cubic equation defines an elliptic curve with CM by $\mathbb{Z}\left[\mu_{3}\right]$, and 2 is inert in $\mathbb{Q}\left(\mu_{3}\right)$.

[^3]: ${ }^{6}$ In this article a polarization of a p-divisible group $Y=\left(Y_{n}\right)_{n \geq 1} \rightarrow S$ over a base scheme S is, by definition, an isogeny $\nu: Y \rightarrow Y^{t}$ over S from Y to its Serre dual Y^{t} which is symmetric in the sense that $\nu^{t}=\nu$. Recall that the Serre dual Y^{t} of Y is the p-divisible group $\left(Y_{n}^{t}\right)_{n \geq 1}$ whose p^{n}-torsion subgroup is the Cartier dual Y_{n}^{t} of $Y_{n}=Y\left[p^{n}\right]^{\prime}$; see [10, Ch. I (2.4.4)]. The double dual $\left(Y^{t}\right)^{t}$ of Y is canonically isomorphic to Y, so the dual ν^{t} of an S-homomorphism $\nu: Y \rightarrow Y^{t}$ is again an S-homomorphism from Y to Y^{t}.

 In the literature the terminology "quasi-polarization" is often used, to distinguish it from the notion of polarizations of abelian schemes. Here we have dropped the prefix "quasi", to avoid possible association with the notion of "quasi-isogeny".

[^4]: ${ }^{7}$ We sketch a proof based on the structure of the quaternion division algebra $\operatorname{End}^{0}\left(X_{0}\right)$ over \mathbb{Q}_{p}. Both X_{0} and $B_{0}\left[\mathfrak{w}^{\infty}\right]$ are p-divisible groups of height two and slope $1 / 2$, hence they are isomorphic. After we identify X_{0} with $B_{0}\left[\mathfrak{w}^{\infty}\right]$, the CM structure $\iota_{0}\left[\mathfrak{w}^{\infty}\right]$ on $B_{0}\left[\mathfrak{w}^{\infty}\right]$ is identified with a homomorphism $\beta_{0}^{\prime}: \mathcal{O}_{L, \mathfrak{w}} \rightarrow \operatorname{End}\left(X_{0}\right)$, and we know that $\operatorname{End}\left(X_{0}\right)$ is the ring of integral elements in $\operatorname{End}^{0}\left(X_{0}\right)$. According to the Noether-Skolem theorem, there exists an element $u \in \operatorname{End}^{0}\left(X_{0}\right)^{\times}$such that $\beta_{0}^{\prime}(a)=u \cdot \beta_{0}(a) \cdot u^{-1}$ for every $a \in \mathcal{O}_{L, \mathfrak{w}}$. Because the two CM structures β_{0}^{\prime} and β_{0} have the same CM type, the normalized valuation of u in $\operatorname{End}^{0}\left(X_{0}\right)$ is even. In other words u is of the form $u=p^{m} \cdot u_{1}$ with $m \in \mathbb{Z}$ and $u_{1} \in \operatorname{End}\left(X_{0}\right)^{\times}$, so the automorphism u_{1} of X_{0} defines an isomorphism between the two $\mathcal{O}_{L, \mathfrak{w}}$-linear p-divisible groups $\left(X_{0}, \iota_{0}\right)$ and $\left(X_{0}, \iota_{0}^{\prime}\right)$.

