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Abstract. We explain a concept of sustained p-divisible groups, discovered in
collaboration with Frans Oort and motivated by the Hecke orbit problem. This
concept leads to a scheme-theoretic definition of central leaves in moduli spaces
of abelian varieties in characteristic p > 0. We also formulate a notion of strongly
Tate-linear formal subschemes of the sustained deformation space Def sus(Y0) of
a p-divisible group Y0, and a local rigidity question on whether every reduced
and irreducible closed formal subscheme of Def sus(Y0) stable under a strongly
non-trivial action of a p-adic Lie group is strongly Tate-linear.

1. Introduction

This article is a survey of the notion of sustained p-divisible groups. This notion
enunciates a fundamental feature of the family of p-divisible groups over a central
leaf in a PEL moduli space in characteristic p, which is obvious from the original
definition of central leaves. Local structure of central leaves are unveiled when
one examines the space of sustained deformations of polarized p-divisible groups.
A pleasant feature of this theory is that p-divisible groups appear serendipitously
in a number of contexts, including stabilized Hom schemes and stabilized Isom
schemes of p-divisible groups, sustained deformations of p-divisible groups, and
formal completions of central leaves in PEL moduli spaces.

Proofs are omitted as a rule. The only exception is a sketch of the smoothness
of the sustained deformation functors. We refer to chapter 5 of [11] for more
information and complete proofs.

1.1. The notion of sustained p-divisible groups is motivated by the search of a
scheme-theoretic definition of central leaves on a PEL modular variety M over
Fp. The original definition of central leaves relies on the notion of geometrically
fiberwise constant (gfc) p-divisible groups”. The latter is a “point-wise” notion—it
was unclear what a gfc p-divisible group over an Artinian local ring should be.

The sought-after answer is formulated below as a property the universal polar-
ized p-divisible groups over central leaves which is stronger than gfc.

(Schematic definition of central leaves in PEL modular varieties)
Let z0 = [(A0, λ0, µ0)] ∈M (Fp) be an Fp-point of M , corresponding to an abelian

variety A0 over Fp with prescribed endomorphisms λ0 : OE → End(A0) and a
polarization µ0 compatible with λ0, where OE is a maximal order of a central
simple algebra of finite dimension over Q.
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The central leaf in M passing through z0 is the largest locally closed
subscheme C(z0) of M such that the restriction to C(z0) of the
universal p-divisible group (A,λ,µ)[p∞] with PE structure over
M has the following property.

For every n ≥ 0, there exists a morphism Tn → C(z0) which is
faithfully flat and of finite presentation, and an isomorphism

(A0, λ0, µ0)[pn]×Spec(Fp)Tn
∼−→ (A,λ,µ)[pn]×M Tn.

of polarized p-divisible groups over Tn.

Here (A,λ,µ) is the universal abelian scheme with PE structure over M , and
λ0[p∞] : OE ⊗Z Zp → End(A0[p∞]) and µ0[p∞] : A0[p∞] → A0[p∞]t are the
endomorphism structure and polarization on the p-divisible group A0[p∞] induced
by λ0 and µ0 respectively. The notion of sustained p-divisible groups is defined in
such a way that the above property of (A,λ,µ) is shortened to

(A,λ,µ) is strongly Fp-sustained modeled on (A0[p∞], µ0[p∞], λ0[p∞]).

The rest of this long introductory section offers a more leisurely tour. We recall
in 1.2 and 1.3 Oort’s idea on the foliation structures of a PEL modular variety
[25] in positive characteristic p. I will take a shortcut and discuss only the notion
of strongly sustained p-divisible group. The notion of sustained p-divisible groups
is suppressed, to achieve a sharper focus. For the same reason, we consider only
strongly sustained p-divisible groups and strongly sustained polarized p-divisible
group. We will see in 4.5 that the definition of central leaves in Siegel modular
varieties Ag,d in terms of sustained polarized p-divisible groups coincides with the
original definition, which is reviewed in 1.2.

It is possible to extend our discussion to the case of p-divisible groups with
prescribed endomorphism and polarization structure, and also the more general
case of p-divisible groups with prescribed Tate-cycles. These generalizations are
left to ambitious readers.

1.2. A foliation of Ag in characteristic p > 0.

The notion of foliation on the moduli space Ag,d of g-dimensional principally
polarized abelian varieties in characteristic p > 0, due to Frans Oort, was an-
nounced in the conference Moduli of Abelian Varieties, Texel ’99 ; see [25] for the
published version. For any self-dual Newton polygon ξ of height 2g, two foliations
for the Newton stratum Wξ(Ag,d) in Ag associated to ξ are defined in [25], called
the central foliation and the isogeny foliation of Wξ(Ag,d) respectively. Below is
a list of their salient features.

(a) (foliation property) For every algebraically closed field k ⊇ Fp and ev-
ery geometric point x0 ∈ Wξ(Ag,d)(k), there is a unique central leaf
C(x0) = CAg,d(x0) passing through x0 and a finite number of isogeny leaves
I(x0)1, . . . , I(x0)m(x0) passing through x0. The central leaf C(x0) and the
isogeny leaves I(x0)j are reduced closed subschemes of the Newton stra-
tumWξ(Ag,1)×Spec(Fp) Spec(k), and each isogeny leaf I(x0)j is irreducible

by definition.
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(b) Every central leaf C(x0) as in (a) is smooth over k and all irreducible
components of C(x0) have the same dimension.

(c) Any two central leaves C(x1), C(x2) in Wξ(Ag,1) in the same Newton poly-
gon stratum Wξ(Ag,d) have the same dimension. The common dimension
of central leaves in Wξ(Ag,d) depends only on the Newton polygon ξ and
not on the polarization degree d.

(d) (product structure) For every algebraically closed field k ⊇ Fp, every posi-
tive integer d ≥ 1, every symmetric Newton polygon ξ of height 2g, every
irreducible component W ′ of Wξ(Ag,d), there exist a finite surjective k-
morphism

f : C̃ ×Spec(k) Ĩ → W ′

such that f({z}×Ĩ) is an isogeny leaf inAg,d and f(C̃×{t}) is an irreducible
component of a central leaf in Ag,d, for every algebraically closed extension

field K of k, every z ∈ C̃(K) and every t ∈ Ĩ(K).

Remark. (i) The Newton stratum Wξ(Ag,d) consists of all points of Ag,1 whose
Newton polygon is equal to ξ; it is denoted by Wξ(Ag,d)0 in [25] and called the
“open Newton polygon in Ag,1 indexed by ξ”. It is known that every Newton stra-
tum Wξ(Ag,1) in Ag,1 is irreducible if ξ is not the supersingular Newton polygon,
and every central leaf in Ag,d not contained in the supersingular Newton stratum
is irreducible. See [7].

(ii) The definition of central leaves is given in 1.3.2, using the notion of geo-
metrically fiberwise constant p-divisible groups. See also 2.10 for an “upgraded”
definition of C(x0) in terms of sustained polarized p-divisible groups.

(iii) The relation “being in the same isogeny leaf”, denoted by ∼isleaf, is not tran-
sitive, because each isogeny leaves is irreducible by definition. Let ∼isleaf be the
equivalence relation generated by the relation ∼isleaf, so that two points x, y ∈
Ag,d,n are equivalent under ∼isleaf if and only if there exist elements x0, x1, . . . , xm
in Ag,d,n with x0 = x, xm = y, and xi ∼isleaf xi+1 for i = 0, 1, . . . ,m− 1. Then the
equivalence class in Ag,d,n for the relation ∼isleaf which contains a given geometric
point x0 = (A0, µ0, ζ0) ∈ Ag,d,n(k) consists of all points y = (Ay, µy, ζy) ∈ Ag,d,n
such that there exists an isogeny correspondence

(A0, µ0)×Spec(k) Spec(K) (A1, µ1)
αoo β // (Ay, µy)×Spec(κ(y1))Spec(K)

over a field K containing both k and κ(y), which respects the polarizations µ0, µy
and the kernels of the isogenies α, β are both of local-local type; see [25, §4]. This
notion can be explained in terms of Rapoport–Zink spaces; see [8, 4.7.4].

Our attention in this article is focused on the central foliation. The isogeny
leaves will not appear in the rest of this article.

1.3. Central leaves in moduli spaces of abelian varieties.
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1.3.1. Geometrically fiberwise constant p-divisible groups.

We fix a prime number p in this paper. Let k be an algebraically closed field
of characteristic p and let S be a scheme over k. Recall that a p-divisible group
X over S, or respectively a polarized p-divisible group (X,λ : X → Xt) over S, is
said to be geometrically fiberwise constant (abbreviated as gfc) relative to k if for
any two (not necessarily closed) points s1, s2 ∈ S, there exist

- an algebraically closed field L containing k,
- k-morphisms ι1 : Spec(L)→ s1, ι2 : Spec(L)→ s2, and
- an L-isomorphism

ψ : Xs1 ×(s1, ι1) Spec(L)
∼−→ Xs2 ×(s2, ι2) Spec(L),

or respectively an L-isomorphism

ψ : (Xs1 , λs1)×(s1, ι1) Spec(L)
∼−→ (Xs2 , λs2)×(s2, ι2) Spec(L).

1.3.2. Central leaves, the original definition.

Let d ≥ 1 be a positive integer. Let n ≥ 3 be a positive integer prime to
p · d. Denote by Ag,d,n the moduli scheme classifying all g-dimensional polarized

abelian schemes (A → S, λ : A → At) over Fp of polarization degree d, together
with a symplectic level-n structure ζ.

For any geometric point x0 = [(A0, λ0, ζ0)] ∈ Ag,d,n(Fp) of the moduli space

Ag,d,n over Fp, the central leaf C(x0) = CAg,d,n(x0) in Ag,d,n passing through x0 is
defined in [25] as the largest reduced subscheme of Ag,d,n ×Spec(Fp) Spec(k) such

that the principally polarized p-divisible group attached to the restriction to C(x0)
of the universal principally polarized abelian scheme is geometrically fiberwise
constant.

Equivalently, as proved in [25], C(x0) = CAg,d,n(x0) is the reduced subscheme of
Ag,d,n ×Spec(Fp) Spec(k) whose k-points are given by

C(x0)(k) =
{
y ∈ Ag,d,n(k)

∣∣ (Ay[p∞], λy[p
∞]) ∼= (A0[p∞], λ0[p∞])

}
.

The central leaf C(x0) is a closed subscheme of the reduced locally closed sub-
scheme Wξ

(
CAg,d,n×Spec(Fp)Spec(k)

)
.

Remark. (a) Clearly every central leaf C(x0) in Ag,d,n is stable under all prime-
to-p Hecke correspondences on Ag,d,n.

(b) We know from the Serre-Tate theorem that the deformation theory for any
two closed points of a central leaf are isomorphic, so every central leaf is “ho-
mogeneous” in this weak sense. It follows quickly from this property that every
central leaf C(x0) is a smooth locally closed subscheme of the moduli scheme
Ag,d,n ×Spec(Fp) Spec(k).

(c) In view of the weak homogeneity property of central leaves, it seems quite
appropriate to consider central leaves as “Shimura varieties in characteristic p”.
In contrast, generally the reduction modulo p of a Shimura variety is not homoge-
nous in any sense. This is already the case in the case of modular curves: the
deformation theory at points corresponding to superpersingular elliptic curves are
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quite different from the deformation theory at points corresponding to ordinary
elliptic curves.

1.4. Motivation and definition of sustained p-divisible groups.
The above definition of central leaves suffers from an obvious deficiency of the
definition of C(x0) in the previous paragraph because of the “point-wise” nature
of the notion of gfc: it does not tell us how to characterise the set C(x0)(S) of
all S-points of a central leaf C(x0), for non-reduced k-schemes S. This defect is
rectified through the notion of strongly sustained polarized p-divisible groups, first
discovered in December 2012 when F. Oort visited the author in Taipei.

1.4.1. In a nutshell, given a scheme S ove a field κ ⊇ Fp and a polarized p-
divisible group (Y0, ν0) over κ, a p-divisible group (X,µ) over S, is said to be
strongly κ-sustained modeled on Y0 if

for every natural number n, the pair (X[pn], µ[pn]) is locally in the
flat topology of S isomorphic to (Y0[pn], ν0[pn]).

More precisely,

for every n, there exists a faithfully flat morphism Tn → S and an
isomorphism from (Y0[pn], ν0[pn])×Spec(κ)Tn to (X[pn], µ[pn])×STn
over Tn.

Here X[pn] := Ker([pn]X) is the kernel of the endomorphism “multiplication by
pn” of X, and µ[pn] : X[pn] → Xt[pn] is the homomorphism induced by the
polarization µ : X → Xt. Strongly sustained p-divisible groups are defined in a
similar way. See §2 for details.

1.4.2. The definition of sustained p-divisible groups is partly based on the fol-
lowing properties of central leaves. Let C(x0) be a central leaf in Ag,d,n at-

tached to an Fp-point x0 = [(A0, µ0, ζ0)] ∈ Ag,d,n(k) as defined in 1.3.2. Let(
AC(x0),µC(x0)

)
→ C(x0) be the restriction to C(x0) of the universal polarized

abelian scheme.

(a) The p-divisible group AC(x0)[p
∞] attached to AC(x0) admits a slope filtra-

tion, i.e. there exists a filtration 0 = X0 $X1 $ · · · $Xm = AC(x0)[p
∞],

where Xi is a p-divisible group over C and the p-divisible group Xi+1/Xi

is isoclinic with slope si for i = 1, . . . ,m, and the slopes satisfy the in-
equalities s1 > s2 > · · · > sm.

(b) The polarized p-divisible group
(
A[p∞],µ[p∞]

)
C(x0)

over C(x0) is strongly

Fp-sustained modeled on (A0[p∞], µ0[p∞]).

The above properties (a), (b) were observed in 2004 and 2012 respectively;
neither is obvious from the original definition of central leaves. For instance since
the universal p-divisible group over C(x0) has constant Newton polygon and C(x0)
is smooth, results in [30] and [27] implies that there exists an isogeny from a p-
divisible group Y over C(x0) to AC(x0)[p

∞] such that Y admits a slope filtration.

But in general a p-divisible group with constant Newton polygon over an Fp-scheme
does not admit a slope filtration.
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We will see in 2.5 that (a) is an easy consequence of (b). On the other
hand one of the main results in [17] shows that (b) implies that for every geo-
metric point x̄ of C(x0), the polarized p-divisible groups (Ax̄[p∞], µx̄[p∞]) and
(A0[p∞], µ0[p∞])×Spec(Fp) x̄ are isomorphic over x̄. So the property (b) encapsu-

lates all prominent features of central leaves.

1.4.3. With the notion of sustained p-divisible groups at hand, it is natural to
define the scheme-theoretic central leaf C(x0)sus to be the largest locally closed sub-
scheme of Ag,d,n such that the polarized p-divisible group attached to the polarized

abelian scheme (A,µ)C(x0)sus is strongly Fp-sustained modeled on (A0[p∞], λ0[p∞]).
This updated definition is adopted in 2.10, where we use the notion C(x0) instead
of C(x0)sus. The original definition of central leaves will not be used after this
section.

Property (b) implies that the topological space underlying C(x0)sus coincides
with the central leaf C(x0) defined in 1.3.2. We will see in 4.5 that

(c) The scheme-theoretically defined central leaf C(x0)sus is smooth over k, in
particular it is reduced.

Therefore the updated definition 2.10 of central leaves is fully backward compatible
with the original definition 1.3.2.

1.4.4. An example. Let Y, Z be two isoclinic p-divisible groups over a perfect
field κ ⊇ Fp such that slope(Y ) < slope(Z). Let (R,m) be an Artinian local κ-
algebra, and let ε : R → κ be a surjective κ-linear ring homomorphism. We give
an alternative description of strongly κ-sustained p-divisible groups modeled on
Y × Z.

A p-divisible group X over R is strongly κ-sustained modeled on Y ×Z if and only
if the following properties hold.

(i) X is isomorphic to an extension of Y by Z over R, i.e. there exists a
faithfully flat homomorphism

β : X → Y ×Spec(κ) Spec(R)

over R and an R-isomorphism

α : Z ×Spec(κ) Spec(R)
∼−→ Ker(β).

(ii) The extension class of Y by Z corresponding to X is p-divisible. In other

words for every positive integer n, there exists an p-divisible group X̃ over
R and a commutative diagram

0 // Z × Spec(R) //

[pn]Z
��

X̃ //

'
��

Y × Spec(R) //

1Y
��

0

0 // Z × Spec(R)
α // X

β // Y × Spec(R) // 0

with exact rows.
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Remark. (a) Suppose that Y is not etale and Z is not multiplicative, then there
exists a deformation of Y × Z which is not an extension of Y by Z if R % κ.
Moreover there exists deformations of Y by Z which are not p-divisible.

(b) The subspace of the characteristic-p deformation space Def(Y ×Z) of Y ×Z
over which the universal deformation is an extension of Y by Z has a natural
structure as a smooth formal group Def ext(Y × Z) over κ, via the Baer sum of
extensions. The statements (i) and (ii) says that the subspace Def sus(Y × Z) of
the deformation space of Y × Z corresponding to sustained deformations is the
maximal p-divisible subgroup of Def ext(Y × Z).

The formal scheme Def sus(Y ×Z) with reduced structure is the “gfc-defined cen-
tral leaf” Cgfc

(
Def(Y ×Z)

)
in the deformation space Def(Y ×Z), i.e. the largest

reduced formal subscheme of Def(Y ×Z) over which the universal p-divisible group
is geometrically fiberwise constant. The phenomenon that Cgfc

(
Def(Y × Z)

)
is

naturally isomorphic to the maximal p-divisible subgroup of the smooth formal
group Def ext(Y × Z) was first observed in 2004.

(c) In the case when Y is a one-dimensional p-divisible group of height 3 and Z is
the Serre dual of Y , we have dim(Def(Y ×Z) = 9, dim(Def ext(Y ×Z)) = 4, and
Def sus(Y ×Z) has a natural structure as a 3-dimensional isoclinic p-divisible group
with slope 1/3 and height 9. The smooth formal group dim(Def ext(Y × Z)) = 4
and has a one-dimensional unipotent smooth formal subgroup, whose intersection
with Def sus(Y ×Z) is a non-trivial finite subgroup scheme of Def sus(Y ×Z) over
κ.

1.5. Local structure of leaves—what sustained p-divisible groups are
good for. We explained in 1.4 that the notion of strongly sustained p-divisible
groups retains the essence of geometrically fiberwise constant p-divisible groups
and provides further insight on properties of central leaves.

At the same time, this scheme-theoretic notion enables one to analyse the lo-
cal structure of central leaves by deformation theory: for every p-divisible group
X0 (respectively every polarized p-divisible group (X0, µ0) over Fp, we have a lo-
cal deformation space Def sus(Y0) (respectively Def sus(Y0, µ0) which classify all
strongly Fp-sustained deformation of Y0 (respectively (Y0, µ0)) over Artinian local

Fp-algebras with residue field Fp. These deformation spaces are formally smooth

over Fp. If x0 = [(A0, λ0, ζ0)] is an Fp-point of Ag,d,n, the formal completion

C(x0)/x0 of the central leaf C(x0) in Ag,1,n is naturally isomorphic to the sustained
deformation space Def sus(A0[p∞], λ0[p∞]).

1.5.1. The notion of strongly sustained p-divisible groups allows us to take full
advantage of deformation theory, which yields the following structural information
on the formal completions C(x0)/x0 of a central leaf C(x0) over Fp as above.

(i) Every central leaf C(x0) passing through an Fp-point x0 of Ag,d,n is smooth

over Fp, for every positive integer d.

(ii) The formal completion C(x0)/x0 of C(x0)/x0 is “built-up” from p-divisible

formal groups over Fp through a family of fibrations. We say that C(x0)/x0

has a Tate-linear structure, and regard such structure as a generalization



8 CHING-LI CHAI

of the classical Serre–Tate local coordinates for deformations of ordinary
abelian varieties.

(iii) Suppose that M is a PEL modular subvariety of Ag,1,n, x0 is an Fp-point of
M , and CM (x0) is the central leaf in M passing through x0, and CAg,1,n(x0)
is the central leaf in Ag,1,n passing through x0. The general phenomenon

is that CM (x0)/x0 should be a Tate-linear formal subvariety in a suitable
sense. The idea of sustained p-divisible groups led us to a precise defini-
tion 6.2 of “strongly Tate-linear formal subvarieties” which describes this
phenomenon.

Remark. The notion of Tate-linear formal subvarieties is related to the local
rigidity property of the formal completions C(x0)/x0 as follows: every reduced

irreducible formal subvariety of C(x0)/x0 which is stable under a strongly non-
trivial action of a p-adic subgroup of Aut(A0[p∞], λ0[p∞]) is expected to be a

Tate-linear formal subvariety of C(x0)/x0 . See 6.3.

1.5.2. We illustrate the local structure of a central leaf C(x0) in a two cases, where
x0 = [(A0, λ0, ζ0)] is an Fp-point of Ag,1,n.

(a) Suppose that Ax0 [p∞] is isomorphic to a product Y1×Y2 of isoclinic p-divisible
groups of slopes s1, s2 respectively, s1 < s2 = 1 − s1. The principal polarization
λx0 on Ax0 induces a symmetric isomorphism δ : Y2

∼−→ Y t
1 from Y2 to the Serre

dual Y t
1 of Y1.

The formal completion C(x0)/x0 of C(x0) at x0 has a natural struc-
ture as an isoclinic p-divisible formal group of height g(g + 1)/2
and slope s2 − s1.

The covariant Dieudonné module of C(x0)/x0 can be described explicitly: it is
the largest W (Fp)-submodule of Homsym

W (Fp)
(D∗(Y1),D∗(Y t

1 )) which is stable un-

der the semi-linear operators F, V on Homsym

W (Fp)
(D∗(Y1),D∗(Y t

1 ))
[

1
p

]
defined in

the remark after 3.2. Here D∗(Yi) is the covariant Dieudonneé module of Yi
for i = 1, 2, and Homsym

W (Fp)
(D∗(Y1),D∗(Y t

1 )) consists of all self-dual elements of

HomW (Fp)(D∗(Y1),D∗(Y t
1 )).

(b) Suppose that Ax0 [p∞] is isomorphic to a product of three isoclinic p-divisible
groups Y1, Y0, Y3, with slopes s1, s0 = 1/2, s3 = 1− s1, 0 ≤ s1 < s2 < s3 ≤ 1, and
heights h1, h0, h2 = h1 respectively. Then there exist

• a natural faithfully flat Fp-morphism π : C(x0)/x0 → X from the smooth

formal scheme C(x0) to a p-divisible formal group X over Fp,
• a p-divisible formal group Z over Fp,
• a free action of Z×X on C(x0)/x0 over X

such that

• the p-divisible formal group Z over Fp is isoclinic of slope 1−2s1 and height
h1(h1 + 1)/2,
• the p-divisible formal group X is isoclinic of slope 1

2 − s1 and height h1h2,
and
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• the morphism π together with the action of Z on C(x0)× makes C(x0)/x0

a Z-torsor over X.

1.6. The rest of this article is organized as follows. In §2 we explain the notion
of strongly sustained p-divisible group and some of its basic properties. In §3 we
explain the stabilized Hom and Isom schemes attached to polarized p-divisible
groups, which play important roles in the theory. In §4 we explain, in broad
strokes, how to prove that central leaves in moduli spaces Ag,d,n are smooth. In
§5 we explain the local structure of a central leaf in the case when the abelian
variety involved has at most three distinct slopes. The corresponding sustained
deformation space has a strong local rigidity property; see 5.8. A question on
global rigidity is formulated in 5.10. In §6 we explain the notion of Tate-linear
formal subschemes of the sustained deformation space of a p-divisible group. This
notion is motivated by the local rigidity result 5.8 and the proof of 4.3 on the
smoothness of sustained deformation spaces, and is needed for the statement of
the local rigidity question 6.3 for sustained deformation spaces.

2. Strongly sustained p-divisible groups

2.1. Definition. Let κ ⊇ Fp be a field, let Y0 be a p-divisible group over κ, and
let S be a κ-scheme.

(1) A p-divisible group X over S is strongly κ-sustained modeled on Y0 if for
every natural number n, the Isom scheme

IsomS

(
Y0[pn]×Spec(κ) S, X[pn]

)
,

which represents the functor

T 7→ IsomT

(
Y0[pn]×Spec(κ) T, X[pn]×S T

)
∀S-scheme T

on the category of all S-schemes, is faithfully flat over S.
(2) Let µ0 : Y0 → Y t

0 be a polarization on Y0. A polarized p-divisible group
(X, ν : X → Xt) over S is strongly κ-sustained modeled on (Y0, µ0) if for
every natural number n, the Isom scheme

IsomS

(
(Y0[pn], µ0[pn])×Spec(κ) S, (X[pn], ν[pn])

)
,

is faithfully flat over S.

2.2. Remark. (a) The above definition articulates the basic idea that locally
for the fppf topology, the [pn]-kernel X[pn] of a strongly κ-sustained p-divisible
group X modeled on Y0 is isomorphic to the [pn]-kernel Y [pn] of the “constant”
p-divisible group Y0.

(b) Being “constant” is fundamentally a relative concept, which explains the ap-
pearance of the base field κ in 2.1. Note that the defintion of geometrically fiber-
wise constant p-divisible groups recalled in 1.3.1 also depends on the algebraically
closed base field k.



10 CHING-LI CHAI

(c) On the face of it, the idea of studying families p-divisible groups whose trun-
cations are locally constant in the flat topology is analogous to the familiar no-
tion of isotrivial families of algebraic varieties. However the phenomenon for sus-
tained/gfc p-divisible groups is quite different from that of, say, isotrivial families
of smooth projective curves. For instance every geometrically fiberwise constant
family of smooth projective curves over a complete discrete valuation ring with al-
gebraically closed residue field is constant, but this statement is false for p-divisible
groups. This reflects the fact that we have a coarse moduli space of smooth pro-
jective curves with a given genus, but not for polarized p-divisible groups with a
given height.

2.3. Remark. (a) It will be interesting to find a good generalization of defintion
2.1, in which the base scheme does not have to be the spectrum of a field κ ⊇ Fp,
and develop a satisfactory notion of a family of sustained p-divisible groups that
is applicable to the family central leaves in a Newton polygon stratum of a Siegel
modular variety Ag,1,n.

(b) There is a related (and slightly weaker) notion of a κ-sustained p-divisible
group over a κ-scheme S, which does not require the existence of a κ-model. More
information can be found in [11]; see also [9].

2.4. Remark. The requirement that each truncated Barsotti–Tate group X[pn]
is locally constant in the flat topology in definition 2.1 (i) can be strengthened to
equivalent conditions (1a) or (1b) below, and to (1c) if X is isoclinic.

Suppose that X → S is a strongly κ-sustained p-divisible group modeled on a
p-divisible group Y0 over κ as in 2.1.

(1a) For each n ∈ N, there exists a finite locally free morphism Tn → S and a
Tn-isomorphism

Y0[pn]×Spec(κ) Tn
∼−→ X[pn]×S Tn.

(1b) There exists a faithfully flat quasi-compact morphism T → S and a T -
isomorphism

Y0 ×Spec(κ) T
∼−→ X ×S T.

(1c) If X is isoclinic, then for each n ∈ N, there exists a finite etale morphism
Tn → S and a Tn-isomorphism

Y0[pn]×Spec(κ) Tn
∼−→ X[pn]×S Tn.

As the readers likely will expect, the obvious analogs of statements (i)–(iii) for a
strongly κ-sustained polarized p-divisible group (X → S, ν : X → Xt) hold.

2.5. Proposition (The slope filtration on sustained p-divisible groups). Let S be
a scheme over a field κ ⊇ Fp. Let X → S be a strongly κ-sustained p-divisible
group modeled on a p-divisible group Y0 over κ. Let

(0) = Fil0(Y0) $ Fil1(Y0) $ · · · $ Film(Y0) = Y0

be the slope filtration of Y0 by p-divisible subgroups Fili(Y0) over κ, i = 0, 1, . . . ,m,
such that Fili(Y0)/Fili−1(Y0) is isoclinic for i = 1, . . . ,m, and the slopes si of
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Fili(Y0)/Fili−1(Y0) satisfy

1 ≥ s1 > s2 > · · · > sm ≥ 0.

There exists a unique slope filtration

(0) = Fil0X $ Fil1X $ · · · $ FilmX = X

of X by p-divisible subgroups Fili(X) such that

(a) For each i = 1, . . . ,m, the p-divisible group Fili(Y0)/Fili−1(Y0) is isoclinic
of slope si.

(b) The p-divisible group Fili(X) over S is strongly κ-sustained modeled on
Fili(Y0) for i = 1, . . . ,m.

(c) For any i = 1, . . . ,m, the isoclinic p-divisible group Fili(X)/Fili−1(X) is
strongly κ-sustained modeled on Fili(Y0)/Fili−1(Y0).

2.6. Remark. (i) The existence of the slope filtration on a p-divisible group over
a field was proved in [30, Cor. 13].

(ii) The proof 2.5 is an exercise of flat descent, transferring the slope filtration for
the model Y0 to X via the finite locally free covers

Isomst
S

(
(Y0[pn], µ0[pn])×Spec(κ) S, (X[pn], λ[pn])

)
of S constructed in 3.6.

(iii) In general a p-divisible group Y over a base scheme S in characteristic p with
constant Newton polygons may not admit a slope filtration. All one can say is
that if the base scheme S is noetherian and normal, then Y is isogenous to a
completely slope divisible p-divisible group Z over S; see [27, Thm. 2.1]. We refer
to [27, (1.2)] for the definition of completely slope divisible p-divisible groups, and
to [11] for relations between completely slope divisible and sustained p-divisible
groups.

(iv) Assume that the base scheme S in 2.5 is the spectrum of an Artinian local
κ-algebra R with residue field κ. Then X0 := X ×S Spec(κ) is a model of the
strongly κ-sustained p-divisible group X → S in 2.5, and Fili(X)/Fili−1(X) is
canonically isomorphic to

(
Fili(X0)/Fili−1(X0)

)
×Spec(κ)S for i = 1, . . . ,m.

2.7. Remark. (i) Sometimes it is convenient to reindex the slope filtration by
the slopes themselves. In the context of 2.5, define a decreasing filtration Fil•canX
on X by

FiltcanX := Film(t)X, where m(t) =


0 if t > s1

i if si+1 < t ≤ si, i ∈ {1, . . . ,m− 1}
m if t ≤ sm

for every t ∈ R.

(ii) Suppose that X → S and Y → S are strongly κ-sustained p-divisible groups,
and φ : X → Y is an S-homomorphism of p-divisible groups. Then

φ(FiltcanX) ⊆ FiltcanY ∀ t ∈ R.
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2.8. Proposition (Backward compatibility with gfc). Let S be a reduced scheme
over a field κ ⊇ Fp. Let X → S be a p-divisible group over S and let Y0 be a
p-divisible group over κ.

(a) If Xs is strongly κ-sustained modeled on Y0 for every s ∈ S, then X → S
is strongly κ-sustained modeled on Y0.

(b) Let ν be a polarization on X and let µ0 be a polarization on Y0. If (Xs, λs)
is strongly κ-sustained modeled on (Y0, µ0) for every s ∈ S, then (X, ν) is
strongly κ-sustained modeled on (Y0, µ0).

2.9. Proposition. Let n be a positive integer such that gcd(n, p) = 1, n ≥ 3.
Let d > 0 be a positive integer. Denote by Ag,d,n the fine moduli scheme over

Fp which classifies all polarized abelian schemes (A → S, λ : A → At) of relative
dimension g with deg(λ) = d2, plus a symplectic level-n structure ζ, where S is an
Fp-scheme. Let (A,ν) be the universal polarized abelian scheme over Ag,d,n. Let

x0 = [(A0, ν0, ζ0)] be an Fp-point of Ag,d,n.

There exists a unique locally closed subscheme C(x0) = CAg,d,n(x0) of Ag,d,n with
the following property:

For every polarized abelian scheme with level-n-structure (B,µ, ψ)
over an Fp-scheme T , the modular morphism T → Ag,d,n factors
through the inclusion C(x0) ↪→ Ag,d,n if and only if the polarized p-
divisible group (B[p∞], µ[p∞]) over T is strongly κ-sustained mod-
eled on (A0[p∞], ν0[p∞])

2.10. Definition (Updated definition of central leaves). The locally closed sub-
scheme

C(x0) = CAg,d,n(x0) ⊆ Ag,d,n
in 2.9 is called the central leaf in Ag,d,n passing through x0.

Remark. As remarked at the end of 1.4, a priori it appears that the scheme-
theoretic definition 2.10 might be different from the original definition of central
leaves recalled in 1.3.2, i.e. there may exist a central leaf in Ag,d,n in the sense
of the updated definition 2.10, temporarily denoted by C(x0)sus, such that the set
underlying C(x0)sus is equal to the central leaf C(x0) defined in 2.10, but C(x0)sus

is not reduced. However 4.5 implies that every central leaf C(x0)sus in Ag,d,n is
smooth. So the new definition 2.10 is indeed fully compatible with the original
definition 1.3.2.

3. Stabilized Hom schemes for p-divisible groups

3.1. Definition (Stabilized Hom schemes for p-divisible groups). Let Y,Z be p-
divisible groups over a field κ ⊃ Fp. For each n ∈ N, we have a commutative group
scheme

Hn := Hom(Y [pn], Z[pn])

of finite type over κ, which satisfies the university property that

Hom(Y [pn], Z[pn])(S) = HomS(Y [pn]×Spec(κ) S, Z[pn]×Spec(κ) S)

for every κ-scheme S. In addition we have
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• restriction homomorphisms rn,n+i : Hn+i → Hn, and
• closed embeddings ιn+i,n : Hn ↪→ Hn+i given by (a) the epimorphism
Yn+i � Yn induced by [pi]Y [pn+i], and (b) the inclusion Z[pn] ↪→ Z[pn+i].

Note that

ιn+i,n ◦ rn,n+i = [pi]Hn+i ∀n, i ∈ N.

Define closed subgroup scheme Homst(Y,Z)n of Hn over κ by

Homst(Y,Z)n := Im(ri,n+i : Hn+i → Hn) fori� 0

It is clear from the above definition that the arrows

Hn+i
rn,n+i ,, Hnιn+i,n

mm

induce arrows

Homst(Y, Z)n+i
πn,n+i ..

Homst(Y, Z)njn+i,nnn ,

and

jn+i,n ◦ πn,n+i = [pi]Homst(Y,Z)n+i
∀n, i ∈ N.

3.2. Theorem. Let Y,Z be p-divisible groups over a field κ ⊇ Fp as in 3.1.

(a) For each n ∈ N, the commutative group scheme Homst(Y,Z)n is finite over
κ.

(b) The family

Homst(Y,Z) :=
(
Homst(Y,Z)n, jn+i,n, πn,n+i

)
n∈N

of commutative groups schemes Homst(Y, Z)n together with the homomorphisms
jn+i,n, πn,n+i is a p-divisible group over κ.

(c) Suppose that the field κ is perfect, and let D∗(Y ),D∗(Z) be the covariant
Dieudonné modules of Y and Z respectively. The covariant Dieudonné module
of Homst(Y,Z) is the largest W (κ)-submodule of HomW (κ)

(
D∗(Y ),D∗(Z)

)
=: H

which is stable under the semi-linear operators F and V .

(d) Suppose that Y,Z are isoclinic over κ, with slopes sY and sZ respectively.

• If sY > sZ , then Homst(Y,Z) = (0).
• If sY ≤ sZ , then Homst(Y,Z) is isoclinic of slope sZ − sY and height

ht(Z)· ht(Y ).

Remark. (i) In 3.2 (c), the semi-linear operators F, V on HQ are defined as fol-
lows: for every h ∈H, we have

F (h)(y) = F (h(V y)) ∈H

and

V (h)(y) = V (h(V −1y)) = p−1 · V (h(F (y))) ∈HQ

for all y ∈ D∗(Y ). So F (H) ⊆H, while V (H) ⊆HQ.
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(ii) In covariant Dieudonné theory, the operator V on the Dieudonné module
D∗(X) of a p-divisible group over a perfect field κ ⊇ Fp corresponds to the geo-
metric Frobenius operator on X.

In the situation of 3.2 (d), the assumptions on Y and Z means that asymptot-
ically, V n

D∗(Y ) is roughly pn·sY times an isomorphism and V n
D∗(Z) is roughly pn·sZ

times an isomorphism for n� 0. Therefore the recipe in 3.2 (c) for the Dieudonné
module of Homst(Y,Z) implies 3.2 (d).

3.3. Definition. Let κ ⊇ Fp be a field and let Y be a p-divisible group over κ.

(i) Define a projective system Endst(Y ) of finite ring schemes over κ by

Endst(Y ) :=
(
Endst(Y )n

)
n≥1

, Endst(Y )n := Homst(Y, Y )n.

The group of units

Autst(Y ) :=
(
Autst(Y )n

)
n≥1

, Autst(Y )n :=
(
Endst(Y )n

)×
,

in Endst(Y ) is a projective system of finite group schemes over κ.
(ii) Let µ be a polarization of Y . For each n ≥ 1, denote by Autpst(Y, µ)n

the closed subgroup scheme of Aut(Y, µ)n consisting of automorphisms of
Y [pn] which respect the homomorphism

µ[pn] = µ|Y [pn] : Y [pn]→ Y t[pn] = Y [pn]D,

where Y [pn]D is the Cartier dual of Y [pn]. Define a closed subgroup scheme
Autst(Y, µ)n of Autst(Y )n by

Autst(Y, µ)n := Im
(
Autpst(Y, µ)n+i −→ Autpst(Y, µ)n

)
, i� 0.

Denote by Autst(Y, µ) the projective system of finite group schemes

Autst(Y, µ) :=
(
Autst(Y, µ)n

)
n≥1

.

3.4. Definition. Let (Y, µ) be a p-divisible group over a field κ ⊇ Fp.
(i) Pick an isogeny ν : Y t → Y such that ν ◦ µ = [pm]Y and µ ◦ ν = [pm]Y t

for a natural number m ∈ N. Define a quasi-isogeny ιµ on the p-divisible
group Endst(Y ) by

ιµ(h) = p−m · ν ◦ ht ◦ µ h ∈ Endst(Y ).

This quasi-isogeny depends only on µ and is independent of the choice of
ν and m, and satisfies

ι2µ = id.

We call ιµ the Rosati involution on Endst(Y )
(ii) Denote by Endst(Y )ιµ=−1 the largest p-divisible subgroup of Endst(Y )

on which the Rosati involution ιµ operates as −id.

3.5. Lemma. Let Y0 be a p-divisible group over a field κ ⊇ Fp.
(i) Let X → S be a strongly κ-sustained p-divisible group modeled on Y0. For each
n ∈ N, there exists a positive integer i0 such that the schematic image

Im
(
IsomS

(
Y0[pn+i]×Spec(κ) S, X[pn+i]

)
−→ IsomS

(
Y0[pn]×Spec(κ) S, X[pn]

))
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under the restriction homomorphism is independent of i for all i ≥ i0.

(ii) The stabilized image

Isomst
S (Y0, X)n := Im

(
IsomS

(
Y0[pn+i]×Spec(κ) S, X[pn+i]

)
−→ IsomS

(
Y0[pn]×Spec(κ) S, X[pn]

))
, i� 0

has a natural structure as a right torsor for Autst(Y0)n×Spec(κ)S. Moreover the
natural projections maps

Isomst
S (Y0, X)n+i −→ Isomst

S (Y0, X)n

are faithfully flat and compatible with the projection maps

Autst(Y0)n+i×Spec(κ)S −→ Autst(Y0)n×Spec(κ)S.

(iii) Suppose that µ0 is a polarization on Y0 and (X, ν) is a strongly κ-sustained
polarized p-divisible group modeled on (Y0, µ0). The obvious analogs of (i) and
(ii) hold, and we have a projective family(

Isomst
S ((Y0, µ0), (X, ν))n

)
n≥1

of right torsors for Autst(Y0, µ0)n ×Spec(κ) S, compatible with the projections

Autst(Y0, µ0)n+i −→ Autst(Y0, µ0)n.

3.6. Lemma. Let Y0 be a p-divisible group over a field κ ⊇ Fp, and let µ0 be a
polarization on Y0. Let S be a scheme over κ.

(i) Let
(
Tn)n≥1 be a compatible family of right torsors for Autst(Y0)n ×Spec(κ) S.

For each n ≥ 1, let

Xn := Tn ∧Autst(Y0)n Y0[pn]

be the contraction product of Tn with Y0[pn] with respect to the natural action of
Autst(Y0)n on Y0[pn]. Then Xn is a BTn group over S, and the family

(
Xn

)
n≥1

together with the natural maps Xn ↪→ Xn+1 and Xn+1 � Xn is a p-divisible group
over S.

(ii) The constructions in 3.5 (i)–(ii) and 3.6 (i) define an equivalence between

(a) the category of strongly κ-sustained p-divisible groups over S modeled on
Y0, and

(b) the category of projective systems of right torsors
(
Tn
)
n≥1

for the group

schemes Autst(Y0)n×Spec(κ)S over S which are compatible with the pro-

jective system of group schemes
(
Autst(Y0)

)
n≥1

, in the sense that the

projection map Tn+1 → Tn is equivariant with respect to the projection
Autst(Y0)n+1 → Autst(Y0)n for every n.

(iii) Let µ0 be a polarization on Y0. The obvious analog of (i) holds for strongly
κ-sustained polarized p-divisible groups over S modeled on (Y0, µ0). This construc-
tion and 3.5 (iii) define an equivalence of categories between category of strongly
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κ-sustained polarized p-divisible groups over S modeled on (Y0, µ0) and the cate-
gory of projective systems of right torsors for Autst(Y0, µ0)n×Spec(κ)S which are

compatible with the projective system of group schemes
(
Autst(Y0, µ0)

)
n≥1

.

4. Smoothness of sustained deformations

Let κ ⊇ Fp be a field. Let Artκ be the category whose objects are triples

(R, i : κ→ R, ε : R� κ),

where (R, i) is an Artinian local κ-algebra, and ε is a κ-linear surjective ring
homomorphism whose kernel is the maximal ideal of R. A morphism in Artκ
from (R1, i1, ε1) to (R2, i2, ε2) is a κ-linear ring homomorphism h : R1 → R2 such
that ε2 ◦ h2 = ε1.

4.1. Definition. Let κ ⊇ Fp be a field and let Y0 be a p-divisible group over κ.

(i) The functor Def sus(Y0) of sustained deformations of Y0 is the functor from
Artκ to the category of sets which sends every object (R, i, ε) to the set of
isomorphism classes of pairs(

X → Spec(R), ψ : Y0
∼−→ X ×Spec(R) Spec(κ)

)
,

where X → Spec(R) is a strongly κ-sustained p-divisible group modeled
on Y0 and ψ is a κ-isomorphism.

Two pairs (X1 → Spec(R), ψ1), (X2 → Spec(R), ψ2) are isomorphic if
there exists an isomorphism α : X1 → X2 of p-divisible groups over R such
that

(
α×S Spec(κ)

)
◦ ψ1 = ψ2.

(ii) Let µ0 be a polarization on Y0. The functor Def sus(Y0, µ0) of sustained
deformations of Y0 is the functor from Artκ to the category of sets which
sends every object (R, i, ε) to the set of isomorphism classes of triples(
X → Spec(R), ν : X → Xt, ψ : (Y0, µ0)

∼−→ (X, ν)×Spec(R)Spec(κ)
)
,

where (X, ν) is a strongly κ-sustained p-divisible group over R modeled
on (Y0, µ0), and ψ is an isomorphism from Y0 to X×S Spec(κ) such that
ψ∗(ν ×S Spec(κ)) = µ0.

Two triples (X1 → Spec(R), ν1, ψ1), (X2 → Spec(R), ν2, ψ2) are iso-
morphic if there exists an isomorphism α : X1 → X2 over R such that
α∗(ν2) = ν1 and (

α×Spec(R) Spec(κ)
)
◦ ψ1 = ψ2.

Remark. Theorem 4.3 shows that the sustained deformation functors Def sus(Y0)
and Def sus(Y0, µ0) are representable. Each is isomorphic to the formal spectrum
of a formal power series over κ in a finite number of variables, and Def sus(Y0, µ0)
is a closed formal subscheme of Def sus(Y0).

4.2. Lemma. Let x0 = [(A0, µ0, ψ0)] be an Fp-point of Ag,d,n and let C(x0) be the

central leaf in Ag,d,n passing through x0 as in 2.10. Denote by C(x0)/x0 the formal
completion of C(x0) at x0. The natural morphism

C(x0)/x0 −→ Def sus(A0[p∞], µ0[p∞])



SUSTAINED p-DIVISIBLE GROUPS AND LEAVES ON MODULI SPACES 17

is an isomorphism.

4.3. Theorem. Let κ ⊇ Fp be a field. Let Y0 be a p-divisible group over κ and let
µ0 be a polarization of Y0.

(i) The deformation functors Def sus(Y0) and Def sus(Y0, µ0) are formally
smooth over κ.

(ii) The dimension of Def sus(Y0) is given by

dim
(
Def sus(Y0)

)
= dim

(
Endst(Y0)

)
,

the dimension of the p-divisible group Endst(Y0).
(iii) We have

dim
(
Def sus(Y0, µ0)) = dim

(
Endst(Y0)ιµ0=−id

)
,

where ιµ0 is the Rosati involution on the p-divisible group Endst(Y0) de-
fined in 3.4.

4.4. We sketch a proof of the smoothness of Def sus(Y0) and the statement 4.3 (ii).
The proofs of the smoothness of the deformation functor Def sus(Y0, µ0) and
4.3 (iii) are similar.

Let h : (R′, i′, ε′) → (R, i, ε) be a morphism in such that h : R′ → R is a
surjection and J := Ker(h) is killed by the maximal ideal m′ of R′. In other
words R′ is a small extension of R. Let S = Spec(R), let S′ = Spec(R′), and
let S0 := Spec(κ). We need to show that, given a strongly κ-sustained p-divisible

group X over R modeled on Y0 plus a rigidification ψ : Y0
∼−→ X×S S0, there exists

a lifting of the pair (X,ψ) in Def sus(Y0)(R) to a pair (X ′, ψ′) in Def sus(Y0)(R′).

Let (Tn)n≥1 be the projective family of right torsors for Autst(Y0)n ×Spec(κ) S
associated to the strongly κ-sustained p-divisible group over S as in 3.5, together
with compatible trivializations

φn : Autst(Y0)n
∼−→ Tn ×Spec(R) Spec(κ)

associated to ψ. According to 3.6 (ii), it suffices to show that the compatible
family

(
Tn, φn

)
n≥1

of rigidified right torsors for
(
Autst(Y0)n×Spec(κ)S

)
n≥1

lifts to

a compatible family
(
T ′n, φ

′
n

)
n≥1

of rigidified right torsors for
(
Autst(Y0)n×Spec(κ)

S′
)
n≥1

.

For each n ≥ 1, we have a perfect complex `Tn/S of OS-modules of ampli-
tude ⊆ [−1, 0], called the co-Lie complex of Tn/S; see [13, Ch. 7, §2.4]. By [13,
Ch. 7, Thm. 2.4.4], there is an obstruction element

o(Tn, S ↪→ S′) ∈ H2(S, `∨Tn/S ⊗
L
R J)) ∼= H2(S0, `

∨
Tn×SS0/S0

⊗κ J)

whose vanishing is the necessary and sufficient condition for the existence of a right
torsor for Autst(Y0)n ×Spec(κ) S

′ which extends Tn. Since `∨Tn×SS0/S0
is perfect of

amplitude ⊆ [0, 1] and S0 is affine,

H2(S0, `
∨
Tn×SS0/S0

⊗κ J) = (0).

Therefore Tn can be extended to a right torsor for Autst(Y0)n×Spec(κ)S
′, for every

n.
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The theorem [13, Ch. 7, Thm. 2.4.4] also tells us that the set of all liftings to S′

of Tn has a natural structure as a torsor for

H1(S0, `
∨
Tn×SS0/S0

⊗κ J) = νTn×SS0/S0
⊗κ J,

where

νTn×SS0/S0
:= H1(`∨Tn×SS0/S0

) = H1(`∨Autst(Y0)n/S0
).

The last equality holds because the torsor Tn ×S S0 over S0 = Spec(κ) is trivial.

Claim. The natural map

νTn+1×SS0/S0
⊗κ J −→ νTn×SS0/S0

⊗κ J

is an isomorphism for every n ≥ 1.

Clearly the claim implies the existence of a projective system
(
T ′n
)
n≥1

of right

torsors for
(
Autst(Y0)n ×Spec(κ) S

′)
n≥1

which extends
(
Tn
)
n≥1

. This finishes the

proof of the smoothness of Def sus(Y0). The above claim also shows that the tan-
gent space of Def sus(Y0) is naturally isomorphic to the κ-vector space νTn×SS0/S0

,
for any n ≥ 1.

The key fact for the claim is the existence of a projective system of decreasing
“slope filtration” (

FiltcanAutst(Y0)n, t ∈ [0, 1]
)
n≥1

on the projective system
(
Autst(Y0)n

)
n≥1

, where each FiltcanAutst(Y0)n is a nor-

mal subgroup scheme of Autst(Y0)n for each t ∈ [0, 1] and every n ≥ 1. This
filtration has the following properties.

(a) The subquotient

grtcanAutst(Y0)n := FiltcanAutst(Y0)n
/

Fil>tcanAutst(Y0)n

is a commutative finite group scheme for every t > 0 and ever n ≥ 1.
(b) νgr0canAutst(Y0)n/S0

= (0) for every n ≥ 1.

(c) For every t ∈ (0, 1], the projective system(
grtcanAutst(Y0)n

)
n≥1

“is” a p-divisible group, in the sense that there exist homomorphisms

grtcanAutst(Y0)n → grtcanAutst(Y0)n+1

which together with the projections make the family of commutative group
schemes

(
grtcanAutst(Y0)n

)
n≥1

a p-divisible group over κ.

Recall the fact that for any p-divisible group Z over κ, the natural map

νZ[pn+1]/κ → νZ[pn]/κ

is an isomorphism for every n ≥ 1; see [15, Prop. 2.2.1]. The Claim follows from
this fact and dévissage, using the above filtration on

(
Autst(Y0)n

)
n≥1

and the

exactness properties of co-Lie complexes of group schemes.
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Note that the above argument also shows that

dim(Def sus(Y0)) = dim(νEndst(Y0)n
) = dim(Endst(Y0)) ∀n ≥ 1.

The second equality is a general property of p-divisible groups over fields of char-
acteristic p > 0. We have finished the sketch of the proofs the smoothness of the
deformation functor Def sus(Y0) and the statement (ii).

4.5. Corollary. Let g, d, n be positive integers, with n ≥ 3 and gcd(n, p) = 1. For
every x0 ∈ Ag,d,n(Fp), the central leaf CAg,d,n(x0) as defined in 2.10 is smooth over

Fp. Moreover the dimension of a central leaf in Ag,d,n depends only on the Newton
polygon ξ of the central leaf, and is independent of the polarization degree d.

Proof. This is an immediate consequence of 4.2 and 4.3.

4.6. Remark. The moduli scheme Ag,d,n is known to be a local complete inter-
section for all d ≥ 1. On the other hand it tends to exhibit many “unpleasant”
phenomena when d is divisible by a high power of p. For instance Ag,d,n may
be non-reduced at every point, there may exist Newton strata in Ag,d,n which
have irreducible components of different dimensions, and the dimension of the su-
persingular locus in Ag,d,n can be substantially bigger than the dimension of the
supersingular locus of Ag,1,n, which is bg2/4c. Thus the fact that all central leaves
in Ag,d,n are smooth might be a surprise.

5. Local properties of central leaves with at most 3 slopes

5.1. In this section we illustrate two general phenomena of sustained deformation
spaces Def sus(Y0) and Def sus(Y0, µ0), where Y0 is a p-divisible group over an
algebraically closed field k ⊇ Fp and µ0 is a polarization on Y0:

(a) The formal schemes Def sus(Y0) and Def sus(Y0, µ0) are “built up” from
p-divisible formal groups through a family of fibrations whose fibers are
p-divisible formal groups. Formal schemes with such properties are said
to be Tate-linear.

(b) (Local rigidity of Tate-linear formal schemes) Suppose that a p-adic Lie
group G operates on a formal scheme D with a Tate-linear structure, and
the action is non-trivial in a strong sense. Then every irreducible reduced
closed formal subscheme of D which is stable under the action of an open
subgroup of G is a Tate-linear formal subscheme of D.

For simplicity we will only illustrate phenomenon (a) for Def sus(Y0) and phenom-
enon (b) for D = Def sus(Y0), both in the case when the p-divisible group Y0 has
at most three slopes. The formal schemes Def sus(Y0) and D we meet in these
examples are either p-divisible formal groups over κ, or bi-extensions of p-divisible
formal groups over κ. The precise definition of Tate-linear formal subschemes in
either case is given in 5.6.

Note that the case when Y0 is isoclinic is trivial, because Def sus(Y0) = Spf(k)
if Y0 is isoclinic.
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5.2. Lemma. Let Z1, Z2 be two isoclinic p-divisible groups over a field κ ⊇ Fp,
with slopes s1 > s1. Let Y0 := Z1 × Z2. Then Def sus(Y0) is naturally isomorphic
to the p-divisible formal group Homst(Z2, Z1).

Note that Homst(Z2, Z1) is isoclinic of slope s1−s2 and its height is ht(Z1)·ht(Z2),
according to 3.2 (d).

5.3. Remark. (i) The proof of 5.2 is an easy consequence of 3.2 plus some diagram
chasing with suitable Kummer sequences.

(ii) Usually a p-divisible group Y → S is considered as the inductive limit of its
truncations Y [pn] in the category of sheaves on the flat site Sfl of S. If we adhere
to this point of view, then the sheaf Homst(Z2, Z1) is not the “internal Hom” from
Z2 to Z1 in the category of sheaves on Sfl. Rather it is essentially the “internal
Ext1” from Z2 to Z1.

5.4. Lemma. Let Y1, Y2, Y3 be isoclinic p-divisible groups over a field κ ⊇ Fp,
with slopes s1 > s2 > s3. Let Y0 = Y1 × Y2 × Y3. Let Z21 := Homst(Z2, Z1),
let Z32 := Homst(Z3, Z2), and let Z31 := Homst(Z3, Z1). The formal scheme
Def sus(Y0) has a natural structure as a bi-extension of the p-divisible formal groups
(Z21, Z32) by the p-divisible formal group Z31.

We refer to [19] for the definition and basic properties of bi-extensioins of formal
groups.

5.5. Remark. Suppose that Y is a p-divisible group over a field κ ⊇ Fp with three
slopes. Let

(0) $ Y1 $ Y2 $ Y

be the slope filtration of Y , so that

Z1 := Y1, Z2 := Y2/Y1, Z3 := Y/Y2

are isoclinic p-divisible groups, of slopes

s1 > s2 > s3

respectively. Proposition 2.5 defines maps

π1 : Def sus(Y )→ Def sus(Y/Y1) and π1 : Def sus(Y )→ Def sus(Y2).

The maps π1 and π2 define a morphism

π : Def sus(Y ) −→ Def sus(Y/Y1)×Spec(κ) Def sus(Y2).

So far things look quite similar to 5.4. But unlike the situation in 5.4, here the
map π does not make Def sus(Y ) a bi-extension of

(
Def sus(Y/Y1),Def sus(Y2)

)
.

The troubles are two fold.

(i) To begin with, Def sus(Y/Y1) and Def sus(Y2) are torsors, not groups.
(ii) A more serious problem is that in general, the maps π1, π2 and π are not

(formally) smooth.

The reason for (ii) is that the natural epimorphisms

Endst(Y ) −→ Endst(Y/Y1)
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and

Endst(Y ) −→ Endst(Y2)

of p-divisible groups over κ may not be smooth, i.e. their kernels may not be
p-divisible groups.

The moral here is that one needs to be careful when formulating the Tate-linear
structure on the deformation spaces Def sus(Y0) and Def sus(Y0, µ0) when the p-
divisible group Y0 over κ is not isomorphic to a product of isoclinic p-divisible
groups.

5.6. Definition. Let κ ⊇ Fp be a field. Let Z,Z1, Z2, Z3 be p-divisible formal
groups over κ, and let B be a bi-extension of (Z1, Z2) by Z3.

(a) A closed formal subscheme V of Z is Tate-linear if V is a p-divisible
subgroup of Z.

(b) A closed formal subscheme V of B is Tate-linear if there exists a p-divisible
subgroup Z ′3 of Z3 and a p-divisible subgroup U of Z1×Z2, such that V is
stable under the action of Z ′3 and the projection map B → Z1×Z2 induces

an isomorphism V/Z3
∼−→ U .

5.7. Definition. (a) An action of a p-adic Lie group on a p-divisible formal
group Y over a field κ ⊇ Fp is said to be strongly non-trivial if no Jordan–Hölder

component of the representation of Lie(G) on D∗
(
Y ×Spec(κ) Spec(κalg)

)
Q is the

trivial representation of Lie(G). Here κalg denotes an algebraic closure of κ.

(b) Let Y1, Y2, Z be p-divisible formal groups over κ. An action of a p-adic Lie
groupG on a bi-extension of (Y1, Y2) by Z which respects the bi-extension structure
is said to be strongly non-trivial if the induced actions of G on Y1, Y2 and Z are
all strongly non-trivial.

5.8. Theorem (Local rigidity for p-divisible formal groups and their
bi-extensions). Let κ ⊇ Fp be an algebraically closed field and let G be a p-adic
Lie group. Let Y1, Y2, Z be p-divisible formal groups over κ.

(1) If V ⊆ Z is an irreducible closed formal subvariety of Z stable under a
strongly non-trivial action of G on Z, then V is a formal subgroups of Z.

(2) Let B be a bi-extension of Y1 × Y2 by Z. Suppose that V ⊂ B is a reduced
irreducible closed formal subscheme of B stable under a strongly non-trivial
action of G on B.
(a) The formal subscheme V of the bi-extension B is Tate-linear.
(b) Furthermore if Y1, Y2 do not have any slope in common, then V is a

sub-biextension of B.

5.9. Remark. (a) See [4] for a proof of (a) and [11] for a proof of (b).

(b) It is expected that the method for (b) is can be extended to give a general local
rigidity result for the sustained deformation space Def sus(Y0) of any p-divisible
group Y0 over an algebraically closed field κ ⊇ Fp. See 6.3 for the precise statement.

(c) Let x0 be an Fp-point of Ag,d,n such that Ax0 [p∞] is isomorphic to a product of
at most three isoclinic p-divisible groups. Let V be a reduced closed subscheme of
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a central leaf C = C(x0) in Ag,d,n which is stable under all prime-to-p Hecke cor-
respondences on Ag,d,n. Then theorem 5.8 applies to the closed formal subscheme

V /z0 ⊆ C/z, for every Fp-point z0 of V , with G being a compact open subgroup of
the group of all Qp-points of the Frobenius torus associated to the closed point z0.

One concludes that the formal completion V /z0 of V at any closed point z0 ∈ V
is a Tate-linear formal subscheme of the Tate-linear formal scheme C/z0 .

5.10. Global rigidity questions. Let C ⊆ Ag,1,n be a leaf in Ag,1,n over Fp.
Let Z ⊆ C be an irreducible closed subscheme of C. Let z ∈ Z(Fp) be a closed

point of Z. Suppose that Z/z ⊆ is stable under a strongly non-trivial action of a
p-adic Lie group G which respects the Tate-linear structure on C/z. Assume that
the abelian variety Az has at most three distinct slopes, and Az[p

∞] is isomorphic
to a product of isoclinic p-divisible groups. We formulate an expectation and a
question below.

5.10.1. Expectation. The formal subscheme Z ⊆ C is Tate-linear at every
closed point of Z.

5.10.2. Question. Is Z (an irreducible component of) the reduction of a Shimura
subvariety of the Siegel modular variety Ag,1,n over Q ?

Remark. (a) In a few cases when Z is contained in the reduction of a “small”
Shimura subvariety of the Siegel modular variety, one can show that the answer
to 5.10.2 is affirmative.

(b) Most people seem to believe that the answer to 5.10.2 is “yes”, but there is
little evidence other than our inability to produce a counter-example. The case
when g = 2 is already a challenge.

6. Strongly Tate-linear formal subschemes of Def sus(Y0)

6.1. Definition. Let Y0 be a p-divisible group over a field κ ⊇ Fp. Let(
Autst(Y )n

)
n≥1

=:
(
Γn
)
n≥1

be the projective family of stabilized Aut group schemes of Y0, and let(
FiltΓn, t ∈ [0, 1]

)
n≥1

:=
(

FiltcanAutst(Y0)n, t ∈ [0, 1]
)
n≥1

be the slope filtration on
(
Γn
)
n≥1

. A projective family
(
Hn

)
n≥1

of subgroup

schemes Hn ⊆ Γn is said to be stable if the vertical arrows in the diagram

Fil>tHn+1
//

��

Fil≥tHn+1
//

��

Fil≥tHn+1/Fil>tHn+1

��
Fil>tHn

// Fil≥tHn
// Fil≥tHn/Fil>tHn

are faithfully flat for all n ≥ 1 and all t ∈ [0, 1], where

Fil>tHn := Hn ∩ Fil>tΓn, Fil≥tHn := Hn ∩ Fil≥tΓn,
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and the projective system (
Fil≥tHn/Fil>tHn

)
n≥1

comes from a p-divisible group over κ, for every t ∈ (0, 1].

6.1.1. Definition. Let Y0 be a p-divisible group over a field κ ⊇ Fp, and let

H̃ =
(
Hn)n≥1 be a stable family of subgroup schemes of the stabilized Aut group

schemes
(
Γn
)
n≥1

of Y0 as in 6.1. Let

T̃ := (Tn, ψn)n≥1

be a compatible projective family of right Γn-torsors, in the sense that Tn is a
right Γn-torsor and

ψn : Tn+1 ∧Hn+1 Hn
∼−→ Tn

is a isomorphism of right Hn-torsors for each n ≥ 1. Here Tn+1 ∧Hn+1 Hn denote
the contraction product of Tn+1 with Hn via the faithfully flat homomorphism
Hn+1 → Hn, which has a natural structure as a right Hn-torsor.

The deformation functor Def(T̃ ) of T̃ is the functor from Artκ to the category
of sets, which sends every object (R, j, ε) in Artκ to the set of all isomorphism
classes of projective families (

Tn,ψn, ζn

)
n≥1

,

where

• Tn is a right torsor for Hn,R := Hn ×Spec(κ) Spec(R),

• ψn : Tn+1 ∧Hn+1,R Hn,R
∼−→ Tn is an isomorphism of right Hn,R-torsors,

• ζn : Tn
∼−→ Tn ×Spec(R) Spec(κ) is an isomorphism of right Hn-torsors,

• ψn ×Spec(R) Spec(κ) is naturally identified with ψn via the isomorphisms
ζn+1 and ζn

for every n ≥ 1.

The argument for 4.3 also shows the following lemma 6.1.2.

6.1.2. Lemma. Let Y0 be a p-divisible group over an algebraically closed field
κ ⊇ Fp, and let H̃ =

(
Hn)n≥1 be a stable family of subgroup schemes of the

stabilized Aut group schemes
(
Γn
)
n≥1

of Y0 as in 6.1. Let

T := (Tn, ψn)n≥1

be a compatible projective family of right Γn-torsors over κ and let(
αn : Tn ∧Hn Γn

∼−→ Autst(Y0)n

)
n≥1

be a compatible family of isomorphisms of right Γn-torsors. The deformation func-
tor Def(H̃) is formally smooth over κ, and the compatible family of isomorphisms
(αn)n≥1 defines a closed embedding

Def(H̃) ↪→ Def sus(Y0) .
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6.2. Definition. Let Y0 be a p-divisible group over an algebraically closed field
κ ⊇ Fp. A smooth closed formal subscheme Z of Def sus(Y0) is said to be a strongly
Tate-linear formal subscheme of Def sus(Y0) if there exist

• a stable projective family H̃ =
(
Hn)n≥1 of subgroup schemes of the stabi-

lized Aut group schemes
(
Γn
)
n≥1

of Y0 as in 6.1,

• a compatible family of right Hn-torsors

T̃ =
(
Tn
)
n≥1

over κ, and
• a compatible family of isomorphisms(

αn : Tn ∧Hn Γn
∼−→ Autst(Y0)n

)
n≥1

of right Γn-torsors over κ

such that Z is equal to the image of the close embedding

Def(T̃ ) ↪→ Def sus(Y0)

associated to
(
αn
)
n≥1

as in 6.1.2.

6.2.1. Remark. (i) Formal completions of central leaves in the reduction modulo
p of a Shimura subvariety in a Siegel modular variety are strongly Tate-linear.
In particular, every central leaf C in a PEL type modular variety M over an
algebraically closed field κ and every κ-point z0 ∈ C, the formal completion C/z0
of C at z0 is a strongly Tate-linear formal subscheme of Def sus(Az0 [p∞]), where
Az0 is the abelian variety with PEL structure corresponding to the point z0 in the
modular variety M .

(ii) There are good reasons to view central leaves in the reduction of a Shimura
subvariety of a Siegel modular variety as characteristic-p analogues of Shimura
varieties. We explain this for the case of Siegel modular varieties.

(a) For any two closed points x1, x2 of a central leaf C in Ag,d,n, there exists

an isomorphism β : (Ax1 , µx1)[p∞]
∼−→ (Ax2 , µx2)[p∞] and a β-equivariant

isomorphism C/x1 ∼−→ C/x2 .

(b) Every central leaf in Ag,d,n is stable under the set of all Sp2g(A
(p)
f )-Hecke

correspondences. Moreover every Sp2g(A
(p)
f )-Hecke orbit in a central leaf

C in Ag,d,n is dense in C for the Zariski topology.

If one adopts this perspective, then a strongly Tate-linear formal subscheme Z of
Def sus(Y0) as in 6.2 can be regarded as a local version of “characteristic-p Shimura

variety”, and the stable projective family of subgroup schemes H̃ attached to Z
as in 6.2 serves as an analog of the reductive Q-group in the Shimura input datum
of a Shimura variety.

6.2.2. Remark. Suppose that Z is a strongly Tate-linear formal subscheme of
Def sus(Y0) of the form Z = Im

(
Def(T̃ ) ↪→ Def sus(Y0)

)
for a compatible family of

right Hn-torsors T̃ =
(
Tn
)
n≥1

as in 6.2. Let Y be the universal p-divisible group
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over Def sus(Y0). Then we have a compatible family of isomorphisms

φn : Tn ∧(Hn×Spec(κ)Z) (Γn ×Spec(κ) Z)
∼−→ Isomst(Y0,Y)n ×Def sus(Y0) Z

of right torsors for Γn ×Spec(κ) Z, where
(
Tn

)
n≥1

is the universal family of right

Hn-torsors over Z = Def(T̃ ). In the parlance of differential geometry, the stable
family

(
H
)
n≥1

of subgroup schemes of Γn is uniquely determined by Z as the

smallest stable family of subgroup schemes of Γn such that the compatible family
of right Γn-torsors (

Isomst(Y0,Y)n ×Def sus(Y0) Z
)
n≥1

admits a “reduction of structural group” to the subgroup schemes Hn in a way
that is compatible with the transition maps.

6.3. A local rigidity question for sustained deformation spaces.
Notation.

• Let Y0 be a p-divisible group over an algebraically closed field κ ⊇ Fp.
• Let Endst(Y0) be the p-divisible group formed by the stabilized End group

schemes of Y0, and let Fil>0Endst(Y0) be the largest p-divisible formal
subgroup of Endst(Y0).
• Let Z be a reduced and irreducible closed formal subscheme of the formal

scheme Def sus(Y0).
• Let G be a closed subgroup of the compact p-adic group Aut(Y0).

Expectation. Suppose that Z is stable under the natural action of G on the
sustained deformation space Def sus(Y0) of Y0, and the natural action of G on the
p-divisible formal group Fil>0Endst(Y0) over κ is strongly non-trivial in the sense
of 5.7 (a). Then Z is a strongly Tate-linear formal subscheme of Def sus(Y0).

Remark. (i) Theorem 5.8 says that the statement 6.3 holds when Y0 is a prod-
uct of at most three isoclinic p-divisible groups over κ. So there is considerable
evidence supporting this expectation.

(ii) As remarked in 5.9 (b), it seems likely that the method for proving 5.8 (b) will
also deliver the more general statement 6.3.

(iii) In applications to the Hecke orbit problem, we are given a reduced closed
subscheme V of a central leaf C over Fp in a Shimura subvariety S of a Siegel
modular variety, such that V is stable under all prime-to-p Hecke correspondences
on S, and we want to show that C is equal to S. Let z0 be an Fp-point of the

smooth locus of V , corresponding to a polarized abelian variety A0 over Fp with

extra symmetries. Let V /z0 (respectively C/z0) be the formal completion at z0 of

V (respectively C). We have inclusions V /z0 ⊆ C/z0 ⊆ Def sus(Az0 [p∞]). The fact
that V is stable under all prime-to-p Hecke correspondences on S implies that there
exists a compact open subgroup of the group G of p-adic points of the Frobenius
torus attached to z0, such that the formal subscheme V /z0 of Def(Az0 [p∞]) is

stable under the natural action of G on (C/z0 and) Def(Az0 [p∞]). So the rigidity

statement 6.3 implies that V /z0 is a strongly Tate-linear formal subscheme of C/z0
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and Def(Az0 [p∞]). This conclusion is still some distance away from the desired
conclusion, but it is a structural constraint on Hecke-stable subvarieties of C.
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(Rennes, 1978), vol. I. Astérisque 63 (1979), 113–164.

[17] Y. Manin, The theory of commutative formal groups over fields of finite characteristic. Usp.
Math. 18 (1963), 3–90; Russ. Math. Surveys 18 (1963), 1–80.

[18] D. Mumford, Geometric invariant theory. First printing 1965, Ergebnisse Math. und ihre
Grensgebiete, Springer-Verlag; 3rd enlarged edition by D. Mumford, J. Fogarthy & F. Kir-
wan, Springer-Verlag 1994.

[19] D. Mumford, Bi-extensions of formal groups. In Algebraic Geometry, (Intl. Colloq., Tata
Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, 1969, 307–322.

[20] D. Mumford, Abelian varieties. TIFR Studies in Mathematics Vol. 5. First edition 1970;
second edition TIFR and Oxford Univ. Press 1974; corrected reprint TIFR and Hindustan
Book Agency 2008.

[21] P. Norman & F. Oort, Moduli of abelian varieties. Ann. Math. 112 (1980), 413–439.
[22] F. Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck. Ann.

Math. 152 (2000), 183–206.



SUSTAINED p-DIVISIBLE GROUPS AND LEAVES ON MODULI SPACES 27

[23] F. Oort, A stratification of a moduli space of polarized abelian varieties. In Moduli of abelian
varieties, C. Faber, G. van der Geer, F. Oort eds. Progress Math. 195, Birkhäuser Verlag
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