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This article deals with four notions due to Riemann: (A) Riemann bilinear relations, (B) Rie-
mann forms, (C) Riemann theta functions and (D) Riemann’s theta formula, in four parts. Following
the original instruction from the editors, a short explanation is given for each concept, with com-
plete definitions and key theorems. The goal was to provide a short and quick exposition of these
concepts to students and non-experts, plus some historical information to help the readers appreciate
a small portion of Riemann’s monumental contributions.

That instruction with clear perimeters persuaded me to accept the assignment, despite the ap-
prehensions due to my limited perspectives in these topics, and my ignorance in the history of
mathematics in and before the nineteenth centuray. As a result the present article is more like four
entries in [9] instead of an essay in the style found in Book reviews of the Bulletin of the American
Mathematical Society, which may be more attractive in several aspects.

Although the editorial policy of this volume has changed somewhat, I have not attempted any-
thing more ambitious, except that the four short articles have been consolidated into one, as sugges-
tion by the referee. The careful reading of the referee saved me from many embarrassing errors, for
which I am truly thankful.

Part A. Riemann bilinear relations
The Riemann bilinear relations, also called the Riemann period relations, are quadratic relations
for period matrices. The ones considered by Riemann are of two sorts: (a) periods of holomorphic
one-forms on a compact Riemann surface, and (b) periods of holomorphic one-forms on an abelian
variety.

§1. Period relations for abelian integrals of the first kind
The statements (1.2 a) and (1.2 b) in Theorem 1.2 are the Riemann bilinear relations for the period
integrals of differentials of the first kind on a a compact Riemann surface.

(1.1) Notation and terminology

• Let S be a compact connected Riemann surface of genus g≥ 1.

• Let ω1, . . . ,ωg be a C-basis of the space Γ(S,KS) of holomorphic differential one-forms on S.
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• Let γ1, . . . ,γ2g be a Z-basis of the first Betti homology group H1(S,Z).

• Let J = J2g be the 2g × 2g matrix
(

0g Ig
−Ig 0g

)
, where Ig is the g× g identity matrix, and

0g = 0 · Ig.

• For any i, j with 1≤ i, j ≤ 2g, let ∆i j = γi _ γ j ∈ Z be the intersection product of γi with γ j.
Let ∆ = ∆(γ1, . . . ,γ2g) be the 2g×2g skew-symmetric matrix with entries ∆i j.

• γ1, . . . ,γ2g is said to be a canonical basis of H1(S,Z) if ∆(γ1, . . . ,γ2g) = J2g.

• It is well-known that H1(S,Z) admits a canonical basis. In other words there exists an element
C ∈ GL2g(Z) such that tC ·∆ ·C = J2g.

• The g× 2g matrix P = P(ω1, . . . ,ωg;γ1, . . . ,γ2g) whose (r, i)-th entry is
∫

γi

ωr for every

r = 1, . . . ,g and every i = 1, . . . ,2g is called the period matrix defined by the one-cycles
γ1, . . . ,γ2g and the holomorphic one-forms ω1, . . . ,ωg.

(1.2) THEOREM. Let P = P(ω1, . . . ,ωg;γ1, . . . ,γ2g) be the period matrix for a C-basis of the space
Γ(S,KS) of holomorphic one-forms on S and a Z-basis γ1, . . . ,γ2g of H1(S,Z). We have

(1.2 a) P ·∆(γ1, . . . ,γ2g)
−1 · tP = 0g

and

(1.2 b) −
√
−1 · P ·∆(γ1, . . . ,γ2g)

−1 · tP > 0g

in the sense that −
√
−1 · P ·∆(γ1, . . . ,γ2g)

−1 · tP is a g×g hermitian positive definite matrix.

Note that the validity of the statements (1.2 a) and (1.2 b) is independent of the choice of the Z-
basis γ1, . . . ,γ2g of H1(S,R): ∆(γ1, . . . ,γ2g)

−1 is the skew-symmetric real matrix
(

γ∨i _ γ∨j

)
1≤i, j≤2g

,

where the intersection pairing _ on H1(S,Z) has been R-linearly extended to H1(S,Z)⊗ZR, and
γ∨1 , . . . ,γ

∨
2g ∈ H1(S,Z)⊗ZR are characterized by γ∨k _ γ j = δk j for all j,k = 1, . . . ,2g.

(1.3) COROLLARY. Suppose that ∆(γ1, . . . ,γ2g) = J2g. Write the period matrix P in block form
as P = (P1 P2) , where P1 (respectively P2) is the g×g matrix whose entries are period integrals of
ω1, . . . ,ωg with respect to γ1, . . . ,γg (respectively γg+1, . . . ,γ2g).

(i) The g×g matrix P1 is non-singular i.e. det(P1) 6= 0.

(ii) Let Ω :=P−1
1 ·P2. Then Ω is a symmetric g×g matrix and its imaginary part Im(Ω) is positive

definite.
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(1.4) The basic idea for the proof of Theorem 1.2 is as follows. First one “cuts open” the Riemann
surface S along 2g oriented simple closed paths C1, . . . ,C2g in S with a common base point so that
the properties (a)–(d) below hold.

(a) For any pair i 6= j, Ci meets C j only at the base point.

(b) The image of C1, . . . ,C2g in H1(S,Z) is a canonical basis γ1, . . . ,γ2g of H1(S,Z).

(c) The “remaining part” Sr (C1∪·· ·∪C2g) is 2-cell S0.

(d) The boundary ∂S0 of S0 (in the sense of homotopy theory) consists of

C1,Cg+1,C−1
1 ,C−1

g+1,C2,Cg+2,C−1
2 ,C−1

g+2, . . . ,Cg,C2g,C−1
g ,C−1

2g

oriented cyclically.

For any non-zero holomorphic one-form ω on S, there exists a holomorphic function f on the simply
connected domain S0 such that d f = ω . Then for every holomorphic one-form η on S, we have∫

∂S0

f ·η =
∫

S0

d( f ·η) = 0

and also
−
√
−1 ·

∫
∂S0

f̄ ·ω =−
√
−1 ·

∫
S0

d f̄ ∧d f > 0,

by Green’s theorem. The bilinear relations (1.2) and (1.2) follow. Details of this are carried out in
[26, Ch. 3 §3], [6, pp. 231–232] and [19, pp. 139–141].

As remarked by Siegel on page 113 of [26], these two bilinear relations were discovered and
proved by Riemann, using the argument sketched in the previous paragraph. It is remarkable that
Riemann’s original proof is still the optimal one 150 years later. The readers are encouraged to
consult Riemann’s famous memoir [22], especially §§20–21.

§2. Riemann bilinear relations for abelian functions
The Riemann bilinear relations provide a necessary and sufficient condition for a set of 2g R-linearly
independent vectors in Cg to be the periods of g holomorphic differentials on a g-dimensional
abelian variety.

(2.1) DEFINITION. (a) An abelian function on a complex vector space V is a meromorphic func-
tion f on V such that there exists a lattice Λ⊂V with the property that f (z+ξ ) = f (z) for all z∈V
and all ξ ∈ Λ.1

(b) An abelian function f on a g-dimensional vector space V over C is degenerate if its period
group

Periods( f ) := {η ∈V | f (z+η) = f (z) ∀z ∈V }
is not a lattice in V . (Then Periods( f ) contains a positive dimensional R-vector subspace of V , and
in fact also a positive dimensional C-vector subspace of V .)

1Recall that a lattice in a finite dimensional vector space V over C is a discrete free abelian subgroup of V rank
2dimC(V ), equivalently V/Λ is a compact torus.
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(2.2) DEFINITION. Let g≥ 1 be a positive integer.

(a) A g× 2g matrix Q with entries in C is a Riemann matrix if there exists a skew symmetric
integral 2g×2g matrix E with det(E) 6= 0 satisfying the two conditions (2.2 a), (2.2 b) below.

(2.2 a) Q ·E−1 · tQ = 0g

and

(2.2 b)
√
−1 · Q ·E−1 · tQ > 0g.

Such an integral matrix E is called a principal part of Q.

(b) The Siegel upper-half space Hg of genus g is the set of all symmetric g×g complex matrix

Ω such that (Ω Ig) is a Riemann matrix with principal part
(

0g Ig
−Ig 0g

)
, or equivalently Ω is

symmetric and the imaginary part Im(Ω) of Ω is positive definite.2

(2.3) THEOREM. Let Q be a g×2g matrix with entries in Cg such that the subgroup Λ of Cg

generated by the 2g columns of Q is a lattice in Cg. There exists a non-degenerate abelian function
f on Cg whose period group is equal to Λ if and only if Q is a Riemann period matrix.

A proof of theorem 2.3 can be found in [17, Ch. 1] and also in [6, Ch. 2 §6]. For a classical
treatment of theorem 2.3, chapter 5 §§ 9–11 of [27] is highly recommended.

Recall that an abelian variety over C is a complex projective variety with a an algebraic group
law, or equivalently a compact complex torus which admits an holomorphic embedding to a complex
projective space. It is a basic fact that the existence of a non-degenerate abelian function on Cg with
respect to the lattice Q ·Z2g ⊂Cg is equivalent to the statement that the quotient Cg/(Q ·Z2g) of Cg

by the lattice Q is an abelian variety. So an equivalent statement of Theorem 2.3 is:

(2.3.1) THEOREM. A compact complex torus of the form Cg/(Q ·Z2g) for a g×(2g) complex
matrix Q is an abelian variety if and only if Q is a Riemann period matrix.

It is easy to see that g-dimensional compact complex tori vary in a g2-dimensional analytic
family. Theorem 2.3.1 says that the elements of the set of all g-dimensional abelian varieties vary
in a countable union of g(g+ 1)/2-dimensional analytic families. More precisely the set of all g-
dimensional abelian varieties with a fixed principal part E is parametrized by the quotient of the
Siegel upper-half space Hg under the action of a discrete group of Sp2g(R) with finite stabilizer
subgroups.

(2.4) Historical Remarks. The statement of Theorem 2.3 did not appear in Riemann’s published
papers, but Riemann was aware of it. On page 75 of [27] Siegel wrote:

Riemann was the first to recognize that the period relations are necessary and sufficient
for the existence of non-degenerate abelian functions. However, his formulation was
incomplete and he did not supply a proof. Later, Weierstrass also failed to establish a
complete proof despite his many efforts in this direction. Complete proofs were finally
attained by Appell for the case g = 2 and by Poincaré for arbitrary g.

2Elements of Hg are also called “Riemann matrices” by some authors. We do not do so here.
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Krazer’s comments on page 120 of [13] are similar but more polite. He also said that Riemann
communicated his discovery to Hermite in 1860, citing (the German translation of) [7]. One can
feel the excitement brought by Riemann’s letter3 in Hermite’s exposition of Riemann’s “extremely
remarkable discovery” of the symmetry conditions on a period lattice Λ ⊂ Cn, necessary for the
existence of (non-degenerate) abelian functions, see pages 148–150 of [7]. On page 120 of [13] one
finds references to subsequent works on abelian integrals and abelian functions during the last two
decades of the nineteenth century, by Weierstrass, Hurwitz, Poincaré, Picard, Appell and Frobenius.
Riemann’s ideas were developed in these papers, and rigorous proofs were given to his assertions
for the first time in some cases, c.f. the first paragraph of Remark 5.6. It took forty years for these
original ideas of Riemann to be assimilated.

(2.4.1) Let S be a Riemann surface, let ω1, . . . ,ωg be a C-basis of holomorphic differentials on
S, and let γ1, . . . ,γ2g be a Z-basis of the first homology group H1(S,Z). Theorem 1.2 says that
P(ω1, . . . ,ωg;γ1, . . . ,γ2g) is a Riemann matrix with principle part −∆(γ1, . . . ,γ2g), and theorem 2.3
tells us that the quotient of Cg by the lattice P(ω1, . . . ,ωg;γ1, . . . ,γ2g) ·Z2g is an abelian variety.
This abelian variety Jac(S) is called the Jacobian variety of the Riemann surface S. Two lines of
investigation open up immediately.

A. Choose and fix a base point x0 on S. Considering abelian integrals from x0 to a variable point
x ∈ S, one get the a map

X ∈ x 7→


∫ x

x0
ω1

...∫ x
x0

ω1

 mod P(ω1, . . . ,ωg;γ1, . . . ,γ2g) ·Z2g ∈ Jac(S).

from S to Jac(S). Through this Abel-Jacobi map one can analyze further geometric properties
of the Riemann surface S.

B. As the Riemann surface S varies in its moduli space, so does the corresponding Jacobian vari-
ety Jac(S). A natural question is: which abelian varieties arise this way? Can we characterize
the Jacobian locus either analytically or algebraically, as a subvariety of the moduli space of
abelian varieties?

The best introduction to this circle of ideas is [18], which also contains a nice “guide to the literature
of references”. See also [5], [6, Ch. 2 §7] and [19, Ch. 2 §§2–3] for Jacobian varieties and the Abel-
Jacobi map. To get an idea on the immense landscape of modern-day research which grew out of
ideas of Riemann on the moduli of curves and abelian varieties, we recommend the three-volume
collection of survey articles in [4].

Part B. Riemann forms
The notion of Riemann forms began as a coordinate-free reformulation of the Riemann period

relations for abelian functions discovered by Riemann. This concept has evolved with the progress
in mathematics in the 150 years after Riemann. Nowadays it is often viewed from the perspective of
abstract Hodge theory: a Riemann form gives an alternating pairing on a (pure) Hodge Z-structure
of Hodge type {(0,−1),(−1,0)} and weight −1, with values in the “Tate twisted” version Z(1) of
Z.

3This letter wasn’t mentioned in [7].
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Along more algebraic lines, the concept of Riemann forms was extended to abelian varieties over
arbitrary base fields, after Weil [28] developed the theory of abelian varieties over an arbitrary base
fields. For any (co)homology theory, for instance de Rham, Hodge, étale or crystalline cohomology
theory, a Riemann form for an abelian variety is an alternating pairing induced by a polarization of
A, on the first homology group H1(A) of an abelian variety A, with values in H1(Gm), the first Tate
twist of the homology of a point. A synopsis for the case of étale cohomology is given in §4.

§3. From Riemann matrices to Riemann forms
A version of theorem 3.1 appeared in [7, pp. 148–150], preceded by the high praise

“il est extrèmement remarquable est c’est à M. le Dr. Riemann, de Göttingen, qu’on
doit cette découverte analytique . . . ”

from Hermite. This theorem is stated in terms of period matrices for abelian functions in the article
on Riemann bilinear relations; see [27, Ch. 5,§§9–11] for a classical treatment. The definition 3.2
of Riemann forms delivers the same conditions with a better perspective. The reader may consult
[17, Ch. I §§2-3] and [8, II §3, III §6] for more information.

(3.1) THEOREM. Let Λ be a lattice in a finite dimension complex vector space V . In other words
Λ is a discrete free abelian subgroup of V whose rank is equal to 2dimC(V ). The compact complex
torus X of the form V/Λ is isomorphic to (the C-points of) a complex abelian variety if and only if
the pair (V,Λ) admits a Riemann form.

Recall that a complex abelian variety is a projective irreducible algebraic variety over C with an
algebraic group law.

(3.2) DEFINITION. Let V be a finite dimensional vector space over C of dimension g≥ 1, and let
Λ be a lattice V , i.e. a discrete free abelian subgroup of V rank 2g. A Riemann form for (V,Λ) is a
skew symmetric Z-bilinear map

µ : Λ×Λ→ Z

such that the map
(v1,v2) 7→ µR(

√
−1 · v1,v2) ∀v1,v2 ∈V

is a symmetric positive definite R-bilinear form on V , where µR : V ×V → R is the unique skew-
symmetric R-bilinear which extends µ . Note that the last condition implies that

µR(
√
−1 · v1,

√
−1 · v2) = µR(v1,v2) ∀v1,v2 ∈V.

REMARK. The map H : V ×V → C defined by

H(v1,v1) = µ(
√
−1 · v1,v2)+

√
−1 ·µ(v1,v2) ∀v1,v2 ∈V,

is a positive definite Hermitian form whose imaginary part is equal to µR.4

4Clearly µ and H determines each other. Some authors call H a Riemann form, focusing more on the Hermitian
form H instead of Im(H).
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(3.2.1) Example. Let S be a Riemann surface of genus g ≥ 1. Regard H1(S,Z) as a lattice in the
C-linear dual Γ(S,KS)

∨ := HomC(Γ(S,KS),C) of the space Γ(S,KS) of all holomorphic one-forms
on S via the injection

j(γ)(ω) =
∫

γ

ω ∀γ ∈ H1(S,KS), ∀ω ∈ Γ(S,KS)

Let _ : H1(S,Z)×H1(S,Z)−→ Z be the intersection product on S. Then (−1)·_ , the additive
inverse of the intersection product, is a Riemann form for the lattice H1(S,Z) in Γ(S,KS)

∨.5

(3.2.2) DEFINITION. Let µ : V ×V → Z be a Riemann form of (V,Λ). A canonical basis for
(Λ,µ) is a Z-basis v1, . . . ,vg,vg+1, . . . ,v2g of Λ such that there exist positive integers d1, . . . ,dg > 0
with di|di+1 for i = 1, . . . ,g−1 and

µ(vi,v j) =


di if j = i+g
−di if j = i−g

0 if j− i 6=±g
∀1≤ i, j ≤ 2g.

The positive integers d1, . . . ,dg are uniquely determined by µ , called the elementary divisors of µ .
A Riemann form of a pair (V,Λ) is principal if all of its elementary divisors are equal to 1.

Lemma 3.3 below gives a dictionary between the more traditional notion of Riemann matrices
and the coordinate-free notion of Riemann forms. Lemma 3.3.1 shows that a Riemann form plus
a choice of a canonical basis of Λ leads to a “normal form” for the Riemann matrix in terms of
the Siegel upper-half space Hg. Thus the family of all Riemann forms with elementary divisors
d1, . . . ,dg on lattices in g-dimensional complex vector spaces are holomorphically parametrized by
the Siegel upper-half space Hg up to integral symplectic transformations in Sp2g(Z2g,J), where

J = J(d1, . . . ,dg) is the skew-symmetric pairing on Z2g given by the matrix
(

0g D
−D 0g

)
and D is the

diagonal matrix with d1, . . . ,dg along its diagonal.

(3.3) LEMMA. Suppose that µ is a Riemann form for (V,Λ). Let H be the positive definite Hermi-
tian form on V with µ as its imaginary part. Let v1, . . . ,v2g be a Z-basis of Λ. Let E be the skew
symmetric 2g×2g integer matrix whose (i, j)-th entry is µ(vi,v j) for all i, j = 1, . . . ,2g. For every
C-basis z1, . . . ,zg of V , the g×2g matrix

P =
(
zr(v j)

)
1≤r≤g, 1≤ j≤2g

is a Riemann matrix with principal part E, i.e.

P ·E−1 · tP = 0g,
√
−1 ·P ·E−1 · tP > 0g

Conversely every Riemann matrix P with a principle part E arises this way from a Riemann form
on a pair (V,Λ).

5This annoying sign is an unfortunate consequence of the choice of sign in the definition of Riemann forms as given
in 3.2. In many ways it would be more natural to require that (v1,v2) 7→ µ(v1,

√
−1 · v2) be positive definite in 3.2, but

a number of changes will be required if one adopts that.
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(3.3.1) LEMMA. Suppose that µ is a Riemann form for (V,Λ) and v1, . . . ,v2g is a canonical
basis for (Λ,µ) with elementary divisors d1| · · · |dg as in 3.2.2. Let z1, . . . ,zg be the C-linear
function on V determined by zr(vg+ j) = δr j ·d j for all r, j = 1, . . . ,g. Then the Riemann matrix
P =

(
zr(v j)

)
1≤r≤g, 1≤ j≤2g has the form

P = (Ω D)

for some element Ω in the Siegel upper-half space Hg, where D is the g× g diagonal matrix with
entries d1, . . . ,dg and the matrix Ω =

(
Ωi j
)

1≤i, j≤g is determined by

v j =
g

∑
i=1

Ωi j ·
vg+i

di
for j = 1, . . . ,g.

(3.3.2) REMARK. In the context of 3.3.1, with the Z-basis v1, . . . ,v2g for Λ and the C-coordinates
z1, . . . ,zg for V , the Hermitian form H on V becomes

(~z,~w) 7→ t~z · Im(Ω)−1 ·~w, for ~z,~w ∈ Cg.

and the matrix representation of the R-linear endomorphism J : v 7→
√
−1 · v of V for the R-basis

v1, . . . ,v2g is(
Im(Ω)−1·Re(Ω) Im(Ω)−1·D

−D−1· Im(Ω)−D−1·Re(Ω)· Im(Ω)−1·Re(Ω) −D−1·Re(Ω) · Im(Ω)−1 ·D

)
(3.3.3) REMARK. (1) The bilinear conditions for the Riemann matrix (Ω D) has an alternative
equivalent form:

(3.3.3 a)
(
Ig −tΩ ·D−1) ·( 0g D

−D 0

)
·
(

Ig
−D−1 ·Ω

)
= 0g

(3.3.3 a) −
√
−1 ·

(
Ig −tΩ ·D−1) ·( 0g D

−D 0

)
·
(

Ig
−D−1 ·Ω

)
> 0g

(2) The columns of the matrix
(

Ig
−D−1 ·Ω

)
correspond to vectors

v j⊗1−
g

∑
j=1

Ωi j · (vi+g⊗1) ∈ (Λ⊗ZC), j = 1, . . . ,g,

which form a basis of the kernel of the C-linear surjection

pr : V ⊗RC�V, vk⊗1 7→ vk for k = 1, . . . ,2g

So (3.3.3 a) says that Ker(pr) is a Lagrangian subspace for the alternating form µ⊗C on Λ⊗ZC.

(3) There is a natural Hodge Z-structure of type {(0,−1),(−1,0)} on Λ such that the kernel Ker(pr)
of pr :V⊗RC�V is the (0,−1)-part of the Hodge filtration on Λ⊗ZC. Moreover 2π

√
−1 ·Im(H)

defines a morphism Λ×Λ→ Z(1) between Hodge Z-structures, where Z(1) is the pure Hodge Z-
structure of type {(−1,−1)} on the abelian group 2π

√
−1 ⊂ C. The reader may consult [2] for a

survey of modern Hodge theory.
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§4. Algebraic incarnation of Riemann forms
(4.1) The étale version. We explain the definition of the Riemann form attached to an ample di-
visor D of an abelian variety A over a field k, as an alternating pairing for the first étale homology
group of A,6 due to Weil [28]. Details can be found in [17, IV §20]. We assume for simplicity that
the base field k is algebraically closed.

Let Het
1 (A) := lim←−n

A[n](k) and let Het
1 (Gm) := lim←−n

Gm[n](k), where n runs through all positive
integers which are invertible in k. Here A[n] denotes the group of all n-torsion points of A, and
Gm[n](k) denotes the group of all n-th roots of 1 in k. The groups H1(A) and H1(Gm) are naturally
identified with the first étale homology groups of A and Gm respectively.

The Riemann form attached to the ample divisor D will be a bilinear pairing

ED : Het
1 (A)×Het

1 (A)→ Het
1 (Gm).

Given two elements a = (an) and b = (bn) in Het
1 (A), represented as compatible systems of torsion

points an,bn ∈ A[n], we need to produce a compatible system c = (cn) of roots of unity in k.

(1) Since bn is an n-torsion point of A, the divisors [n]−1
A (T−bnD)− [n]−1

A (D) and n ·(T−bnD)−n ·D
are both principal by the theorem of the cube, where T−bn : A→ A is the map “translation by
−bn”. So there exist rational functions fn,gn on A such that the principal divisor ( fn), (gn)
are equal to [n]−1

A (T−bnD)− [n]−1
A (D) and n · (T−bnD)−n ·D respectively.

(2) Because [n]∗A(gn) and f n
n have the same divisor, their ratio is a non-zero constant in k. Hence

T ∗an
( f n

n )/ f n
n = T ∗an

[n]∗A(gn)/[n]∗A(gn) = 1.

Let
cn :=

fn

T ∗an
( fn)
∈Gm[n](k).

(3) One verifies that cm
mn = cn for all m,n ∈ N which are invertible in k, so the roots of unity cn’s

produced in (2) form a compatible system c ∈ Het
1 (Gm). Define ED

et(a,b) to be this element
c ∈ Het

1 (Gm).

(4.2) The general formalism for constructing Riemann forms. The following formal procedure
produces an alternating pairing on the first homology group of an abelian variety A and a polariza-
tion7 λ : A→ At of A, for any “good” cohomology theory H∗ on a suitable category of algebraic
varieties.

6Any divisor on A algebraically equivalent to D will give the same alternating pairing.
7Every ample divisor D on an abelian variety A gives rise to a homomorphism φD : A→ At defined as follows. It is

the homomorphism from A to its dual abelian variety At , which sends any point x∈ A(k) to the isomorphism class of the
OA(T−xD)⊗OAOA(D)⊗−1. Note that the last invertible OA-module is algebraically equivalent to 0, hence corresponds
to a point of At . A polarization of an abelian scheme A over base scheme S is by definition an S-homomorphism φ from
A to its dual abelian scheme At such that for every geometric point s̄→ S of S, the fiber φs̄ is equal to φDs̄ for some an
ample divisorn Ds̄ on As̄.
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(1) Consider the Poincaré line bundle P on A×At . The first Chern class c1(P) of P is an
element of H2(A× At)(1)∼= Hom(H1(A)⊗H1(At),H1(Gm)).

(2) The polarization λ of A induces a map H∗(λ ) : H1(A)→ H1(At).

(3) Combining (1) and (2), one gets a bilinear map

(u,v) 7→ c1(P)(u,H∗(λ )(v))

from H1(A)×H1(A) to H1(Gm), which turns out to be an alternating pairing. This is the
Riemann form on H1(A) attached to λ .

Examples of such good cohomology theories include Hodge, étale and crystalline cohomologies.
The cases of Hodge and étale cohomologies have been explained in previous paragraphs. The crys-
talline case is documented in [1, §5.1], where the commutativity of various diagrams are carefully
verified.

Part C. Riemann’s theta function
Riemann’s theta function θ(z,Ω) was born in the famous memoir [22] on abelian functions. Its

cousins, theta functions with characteristics θ
[a

b

]
(z,Ω), are essentially translates of θ(z;Ω). These

theta functions can be viewed in several ways:

(a) They were first introduced and studied as holomorphic functions in the z and/or the Ω variable.

(b) Geometrically these theta functions can be identified with sections of ample line bundles on
abelian varieties and can be thought of as projective coordinates of abelian varieties. Their
values at the zero, known as thetanullwerte, give projective coordinates of moduli of abelian
varieties.

(c) They are matrix coefficients, for the Schr̈odinger representation of the Heisenberg group and
the oscillator (or Segal-Shale-Weil) representation of the metaplectic group.

The geometric point of view will be summarized in §5 and the group theoretic viewpoint in §6.

§5. Theta functions as sections of line bundles
For any positive integer g, denote by Hg the Siegel upper-half space of genus g, consisting of all
g×g symmetric complex matrices with positive definite imaginary part. We will use the following
version of exponential function: e(z) := exp(2π

√
−1 · z) for any z ∈ C.

(5.1) DEFINITION. (i) The Riemann theta function θ(z;Ω) of genus g is the holomorphic func-
tion in two (blocks of) variables (z,Ω) ∈ Cg×Hg, defined by the theta series

θ(z;Ω) := ∑
m∈Zg

e( 1
2

tn ·Ω ·n/2) · e(tn · z).

10



(ii) Let a,b ∈ Rg. The theta function θ
[a

b

]
(z;Ω) with characteristics a,b is the is the holomorphic

function on Cg×Hg defined by

θ

[a
b

]
(z;Ω) = ∑

m∈Zg
e(1

2
t(n+a) ·Ω · (n+a)) · e(t(n+a) · (z+b))

= e( 1
2

ta ·Ω·a+ ta · (z+b)) ·θ(z+Ω ·a+b;Ω)

Note that θ
[a+m

b+n

]
(z;Ω) = e(ta ·n) ·θ

[a
b

]
(z;Ω) for all m,n ∈ Zg, so that e(ta ·b) ·θ

[a
b

]
(z;Ω) depends

only on a,bmodZg.

(5.2) The theta series in the definition (5.1) is classical but its significance is not immediately clear,
and the many transformation formulas they satisfy may look daunting when one encounters them
for the first time. We will first look at the effect of translation by elements of the lattice ΩZg +Zg

in the variable z.

The theta function θ
[a

b

]
(z;Ω) satisfies the following functional equation

θ

[a
b

]
(z+Ω·m+n;Ω) = e(ta ·n− tb ·m) · e(− 1

2
tm·Ω·m− tm · z) ·θ

[a
b

]
(z;Ω) ∀m,n ∈ Zg.

For any a,b ∈ Rg, the family of holomorphic functions

ua,b
Ω·m+n(z) := e(ta ·n− tb ·m) · e(− 1

2
tm·Ω·m− tm · z) m,n ∈ Zg

on V with values in C× forms a 1-cocycle µa,b for the lattice Ω ·Zg +Zg in Cg, in the sense that

µ
a,b
ξ1

(z) ·µa,b
ξ2

(z+ξ1) = µ
a,b
ξ1+ξ2

(z) ∀ξ1,ξ2 ∈Ω ·Zg +Zg.

This 1-cocycle defines a line bundle L a,b
Ω

on the compact complex torus Cg/(Ω ·Zg +Zg), so that
θ
[a

b

]
(z;Ω) can be interpreted as a section of L a,b

Ω
. The line bundles L a,b

Ω
are all algebraically

equivalent; each one defines a principal polarization for the abelian variety Cg/(Ω ·Zg +Zg)

It turns out that the same idea goes further and applies to all ample line bundles on complex
abelian varieties. We will see in the Appell–Humbert Theorem 5.3 how to classify all line bundles
on a complex abelian variety. Then we will see in Proposition 5.4.2 (3) how to use the theta func-
tions θ

[a
b

]
(z;Ω) to produce all sections of all ample line bundles on any complex abelian variety,

which do not necessarily admit a principal polarization. In Theorem 5.5, a version of the Lefschetz
embedding theorem, we will see how to use the theta functions to write down an explicit projective
embedding for a given abelian variety, as well as a set of generators of the field of abelian functions
on it. The last was, of course, Riemann’s motivation for introducing his theta functions.

(5.3) THEOREM. (APPELL–HUMBERT) Let Λ be a lattice in a finite dimensional complex vector
space V .

(1) Every holomorphic line bundle on V/Λ is isomorphic to the quotient of the trivial line bundle
on V via a 1-cocycle (ξ ,z) 7→ uξ (z) for Λ, where uξ (z) is an entire function on V with values
in C× for every ξ ∈ Λ and uξ1+ξ2

(z) = uξ1
(z) ·uξ2

(z+ξ1) for all ξ1,ξ2 ∈ Λ.

11



(2) For any 1-cocycle uξ (z) as in (1), there exists a quadruple (H,S, `,ψ), where

(2a) H : V ×V → C is a Hermitian form, conjugate linear in the second argument, such that
Im(H) is Z-valued on Λ, and ψ : Λ→ C×1 is a complex function with absolute values 1
such that ψ(ξ1 +ξ2) ·ψ(ξ1)

−1 ·ψ(ξ2)
−1 = (−1)Im(H)(ξ1,ξ2) for all ξ1,ξ2 ∈ Λ,

(2b) S : V ×V → C is a symmetric C-bilinear form,

(2c) ` : V → C is a C-linear function, and

(2d) ψ : Λ→ C×1 is a complex function with absolute values 1 such that

ψ(ξ1 +ξ2) ·ψ(ξ1)
−1 ·ψ(ξ2)

−1 = (−1)Im(H)(ξ1,ξ2) ∀ξ1,ξ2 ∈ Λ,

such that

uξ (z) = e
(

1
2
√
−1
· (H(z,ξ )+S(z,ξ ))

)
·e
(

1
4
√
−1
· (H(ξ ,ξ )+S(ξ ,ξ ))

)
·e(`(ξ )) ·ψ(ξ ) ∀ξ ∈ Λ.

The quadruple (H,S, `,ψ) is uniquely determined by the 1-cocycle uξ (z). Conversely every
quadruple (H,S, `,ψ) satisfying conditions (2a)–(2d) determines a 1-cocyle for (V,Λ).

(3) Let L and L ′ be two line bundles attached to two quadruples (H,S, `,ψ) and (H ′,S′, `′,ψ ′)
as in (2).

(3a) L is isomorphic to L ′ if and only if H = H ′ and ψ = ψ ′.

(3b) L is algebraically equivalent to L ′ if and only if H = H ′.

(3c) L is ample if and only if Im(H) is a Riemann form of (V,Λ), i.e. H is positive definite.

(5.4) It is explained in the article on Riemann forms that for any Riemann form µ on a compact
complex torus V/Λ and any choice of canonical Z-basis v1, . . . ,v2g of Λ with elementary divisors
d1| · · · |dg, there exists a unique element Ω ∈ Hg such that the C-linear map from V to Cg which
sends each vi to di times the i-th standard basis of Cg, induces a biholomorphic isomorphism from
V/Λ to Cg/(Ω ·Zg+D ·Zg), where D is the g×g diagonal matrix with d1, . . . ,dg as diagonal entries.
Under this isomorphism, the Riemann form µ becomes the alternating pairing

µD : (Ω ·m1 +n1,Ω ·m2 +n2) 7→ tm1 ·D ·n2− tn1 ·D ·m2 ∀m1,n2,m2,n2 ∈ Zg

on the lattice ΛΩ,D := Ω ·Zg +D ·Zg, and the Hermitian form on Cg whose imaginary part is the
R-bilinear extension of µD is given by the formula

HΩ : (z,w) 7→ tz · Im(Ω)−1 ·w′ ∀z,w ∈ Cg.

(5.4.1) An easy calculation shows that for any given a,b ∈ Rg, the restriction to ΛΩ,D of the 1-
cocycle ua,b corresponds to the quadruple (HΩ,SΩ,0,ψ0·χa,b

D ), where

• SΩ is the symmetric C-bilinear form

SΩ : (z,w) 7→ −tz·Im(Ω)−1·w ∀z,w ∈ Cg,

or equivalently SΩ is the unique C-bilinear form on Cg which coincides with −HΩ,D on the
subset Cg×(D ·Zg)⊂ Cg×Cg,

12



• ψ0 is the quadratic unitary character on ΛΩ,D defined by

ψ0(Ω ·m+D ·n) = (−1)
tm·n ∀m,n ∈ Zg,

• and χ
a,b
D is the unitary character on ΛΩ,D defined by

χ
a,b
D (Ω ·m+D ·n) = e(ta ·D ·n− tb ·m) ∀m,n ∈ Zg.

Note that χ
a,b
D = χ

a′,b′
D if and only if a−a′ ∈D−1·Zg and b−b′ ∈Zg. Let L a,b

Ω,D be the line bundle on
Cg/ΛΩ,D given by the restriction to ΛΩ,D of the 1-cocycle ua,b. Clearly for every a′ ∈ a+D−1·Zg,

θ

[
a′
b

]
(z,Ω) defines a section of the line bundle L a,b

Ω,D.

More generally, for every positive integer r, every a′ ∈ a+D−1·Zg and every b′ ∈ r−1b+r−1Zg,
θ

[
a′
b′

]
(z,r−1Ω) defines a section of the line bundle (L a,b

Ω,D)
⊗r. Underlying this statement is the fact

that the pull-back of L a′,b′

r−1Ω,D via the isogeny Cg/ΛΩ,D→Cg/Λr−1Ω,D of degree rg is isomorphic to

(L a,b
Ω,D)

⊗r, for every a′,b′ as above.

(5.4.2) PROPOSITION. (1) For every line bundle L on the compact complex torus Cg/ΛΩ,D with
Riemann form µD, there exist elements a,b ∈ Rg such that L is isomorphic to L a,b

Ω,D. Moreover for

any a′,b′ ∈ Rg, L a,b
Ω,D is isomorphic to L a′,b′

Ω,D if and only if a′ ∈ a+D−1·Zg and b′ ∈ b+Zg.

(2) We have dimCΓ
(
Cg/ΛΩ,D,L

a,b
Ω,D

)
= det(D) = ∏

g
i=1 di. Moreover as a′ runs through a set of rep-

resentatives of (a+D−1·Zg)/Zg, the theta functions θ

[
a′
b

]
(z,Ω) give rise to a C-basis of Γ(L a,b

Ω,D).

(3) For every positive integer r, we have dimCΓ
(
Cg/ΛΩ,D,(L

a,b
Ω,D)

⊗r) = rg ·∏g
i=1 di. Moreover as

a′ runs through a set of representatives of (a+D−1·Zg)/Zg and b′ runs through a set of represen-
tatives of (r−1b+ r−1Zg)/Zg, the global sections corresponding to θ

[
a′
b′

]
(z,r−1Ω) form a C-basis

of Γ
(
(L a,b

Ω,D)
⊗r).

(5.5) THEOREM. Let r be a positive integer, r ≥ 3. For given a,b ∈ Rg, let {ak|1 ≤ k ≤ rg}
be a system of representatives of (a+D−1 ·Zg)/Zg and let {bl|1 ≤ l ≤ ∏

g
i=1 di} be a system of

representatives of (r−1b+ r−1Zg)/Zg. The family of functions{
θ
[

ak
bl

]
(z,r−1

Ω) : 1≤ k ≤ rg, 1≤ l ≤ ∏
g
i=1 di

}
defines a projective embedding Cg/ΛΩ,D ↪→ P(∏

g
i=1 di)·rg−1 of the compact complex torus Cg/ΛΩ,D .

In particular the field consisting of all abelian functions for the pair (Cg,ΛΩ,D) is generated over
C by the following family of quotients of theta functions

θ

[
ak1
bl1

]
(z,r−1

Ω)

/
θ

[
ak2
bl2

]
(z,r−1

Ω) 1≤ k1,k2 ≤ rg, 1≤ l1, l2 ≤ ∏
g
i=1 di.

13



(5.6) REMARK. The Riemann theta function was defined in §17 of Riemann’s famous memoir [22]
on abelian functions. The notion of theta functions θ[ a

b ](z;Ω) with characteristics is due to Prym
[21, p. 25]. The second part of theorem 5.5 is a version of the “theta theorem” stated by Riemann in
§26 of [22] and proved by Poincaré; see Siegel’s formulation and comments in [27, p. 91]. Theorem
5.3 was proved by Appell and Humbert for abelian surfaces, called “hyperelliptic surfaces” at their
time. The higher dimensional cases of theorem 5.3 and theorem 5.5 are due to Lefschetz. For more
information related to this section, we recommend [17, Ch. I & Ch. III §17], [19, Ch. II, §§1–1], [8,
Ch. II–III] and [12, Ch. I–II].

Theta functions in dimension g= 1 go back to Jacobi, who obtained their properties by algebraic
methods through his theory of elliptic functions; see [10] and [11].8 We refer to [31, Ch. XXI]
for a classical treatment and [31, pp. 462–463] for historical comments on theta functions, which
appeared first in Euler’s investigation on the partition function ∏

n
n=1(1− xnz)−1.

§6. Theta functions as matrix coefficients
There are several infinite dimensional representations, closely related to theta functions, which are
inspired by quantum mechanics. First one has the Schrödinger representation, an irreducible unitary
projective representation of R2g. There is also a projective representation of the symplectic group
Sp(2g,R), on the space underlying the Schrödinger representation, called the oscillator represen-
tation. When viewed in the z-variable, the Riemann theta function θ(z;Ω), is essentially a matrix
representation of the Schrödinger representation. When viewed as a function in the Ω-variable,
the theta functions become matrix coefficients of the oscillator representation. This section pro-
vides a synopsis of this group-theoretic approach. More systematic treatments can be found in [20,
§§1–4 &§8] [8, Ch. 1], as well as the papers [29] and [3].

(6.1) The Heisenberg group. Heisenberg groups are central extensions of abelian groups. We
will use the following version of the real Heisenberg groups Heis(2g,R), whose underlying set is
C×1 ×R2g, and a typical element will be written as a pair (λ ,x), where λ ∈C×1 , x=

(
x1
x2

)
, x1,x2 ∈Rg.

Often we write (λ ,x1,x2) for (λ ,x). The group law on Heis(2g,R) is

(λ ,x) · (µ,y) = λ ·µ · e( 1
2(

tx1 · y2− tx2 · y1))

so that the (λ ,0)’s form the center of Heis(2g,R), identified with C×1 . This group law induces a
C×1 -valued commutator pairing

R2g×R2g −→ C×1 , (x,y) 7→ (λ ,x) · (µ,y) · (λ ,x)−1 · (µ,y)−1 = e(tx1 · y2− tx2 · y1)

on R2g. Underlying the notation for Heis(2g,R) is a continuous section s of the projection pr :
Heis(2g,R)� R2g, s : x 7→ (1,x) for all x ∈ R2g, which is a group homomorphism when restricted
to any Lagrangian subspace of R2g for the R-bilinear alternating pairing E : (x,y) 7→ tx1 ·y2− tx2 ·y1.

8The theta functions θ1(z,q), θ2(z,q) θ3(z,q), θ4(z,q) in Jacobi’s notion [11] [31, Ch. XXI], where z ∈ C and
q= e(τ/2), τ ∈H1 , are equal to: −θ

[
1/2
1/2

]
(z/π;τ), θ [1/2

0 ](z/π;τ), θ [ 0
0 ](z/π;τ) and θ

[
0

1/2

]
(z/π;τ) respectively. In Jacobi’s

earlier notation in [10] are four theta functions Θ(u,q),Θ1(u,q),H(u,q) and H1(u,q), where the symbol H denotes
capital eta. They are related to his later notation by: Θ(u,q) = θ4

(
u·θ3(0,q)−2, q

)
, Θ1(u,q) = θ3

(
u·θ3(0,q)−2, q

)
,

H(u,q) = θ1
(
u·θ3(0,q)−2, q

)
and H1(u,q) = θ2

(
u·θ3(0,q)−2, q

)
.
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(6.2) The Schrödinger representation. The main theorem about the representations of the
Heisenberg group Heis(2g,R), due to Stone, Von Neumann and Mackey is this:

There is a unique irreducible unitary representation U : Heis(2g,R2g)→Aut(H) whose
restriction to the center C×1 of Heis(2g,R2g) is λ 7→ λ · IdH.

This infinite dimensional unitary representation of the Heisenberg group will be call the Schrödinger
representation. It can be produced, or realized, in many ways. We will explain how to obtain a model
of the Schrödinger representation for each pair (K,σ), consisting of a closed maximal isotropic
subgroup K ⊂ R2g and a splitting σ : K → Heis(2g,R) of the projection pr : Heis(2g,R)→ R2g

over K.
Given such a pair (K,σ), we have the induced representation on the space L2(R2g//K) of all

essentially L2-functions on σ(K)\Heis(2g,R) whose restriction to C×1 is λ 7→ λ · Id. In the case
that K = 0⊕Rg ⊂ Rg⊕Rg and σ = s|K , we have the usual position-momentum realization on the
Hilbert space HPM = L2(R2g), where the action of a typical element (λ ,y1,y2) ∈ Heis(2g,R) is
given by

(U(λ ,y1,y2)φ)(x) = λ · e(tx · y2) · e( 1
2

ty1 · y2) ·φ(x+ y1) ∀φ(x) ∈ L2(Rg).

Let C, A1, . . . , Ag, B1, . . . ,Bg be the basis of the Lie algebra heis(2g,R) of Heis(2g,R) such that
exp(t ·C) = (e(t),~0,~0), exp(t ·Ai) = (1, t~ei,~0) and exp(t ·Bi) = (1,~0, t~ei) for all i = 1, . . . ,g, where
~e1, . . . ,~eg are the standard basis elements of Rg. Their Lie brackets are

[Ai,A j] = [Bi,B j] = [C,Ai] = [C,B j] = 0 and [Ai,B j] = δi j ·C ∀ i, j = 1, . . . ,g.

The action of heis(2g,R) on HPM is given by

UAi( f ) =
∂ f
∂xi

, UBi( f ) = 2π
√
−1xi · f , UC( f ) = 2π

√
−1 · f .

(6.3) H∞ and H−∞. Let H∞ be the set of all smooth vectors in the Schrödinger representation H,
consisting of all elements f ∈H such that all higher derivatives

(( g

∏
i=1

Uni
Bi

)
◦
( g

∏
i=1

Umi
Ai

))
( f )

of f exists in H, for all m1, . . . ,mg,n1, . . . ,ng ∈ N. By Sobolev’s lemma, the space HPM
∞ of all

smooth vectors in the position-momentum realization HPM is equal to the Schwartz space S (Rg)
of Rg, consisting of all rapidly decreasing smooth functions on Rg.

Let H−∞ be the space of all C-linear functionals on H∞ which are continuous for the topology
defined by the family of seminorms{

f 7→
∣∣∣∣((∏

g
i=1Umi

Ai

)
◦
(

∏
g
i=1Uni

Bi

)
f
∣∣∣∣}

mi,ni∈N ∀ i=1,...,g

on H∞. For the position-momentum realization, this “distribution completion” of H is the space of
all tempered distributions on Rg.
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(6.4) The smooth vectors fΩ. Every element Ω ∈ Hg determines a Lie subalgebra WΩ of the
complexification heis(2g,C) := heis(2g,R)⊗RC of heis(2g,R), given by

WΩ := ∑
g
i=1C · (Ai−∑

g
j=1 Ωi j B j).

A direct computation shows that for every Ω ∈ Hg, the subspace of all elements in the Schrödinger
representation killed by WΩ is a one-dimensional subspace of H∞; let fΩ be a generator of this
subspace. In the position-momentum realization, fΩ can be taken to be the function

fΩ(x) = e( 1
2

tx ·Ω · x).

(6.5) The theta distribution eZ ∈H−∞. Inside Heis(2g,R) we have a discrete closed subgroup

σ(Z2g) :=
{(

(−1)
tm·n, m, n

)
∈ Heis(2g,R)

∣∣ m,n ∈ Zg}.
One sees by a direct computation that the set of all elements in H−∞ fixed by σ(Z2g) is a one-
dimensional vector subspace over C. A generator eZ of this subspace in HPM is

eZ = ∑
n∈Zg

δn , where δn = the delta function at n.

This element eZ ∈H−∞ might be thought of as a “universal theta distribution”.

(6.6) PROPOSITION. For any Ω∈Hg, any generator fΩ of HWΩ and any generator eZ of Hσ(Z2g),
there exists a constant c ∈ C× such that

〈U(1,x1,x2) fΩ, eZ 〉 = c · e
(

1
2 (

tx1Ωx1 +
tx1 · x2)

)
·θ(Ωx1 + x2;Ω)

= c · e(− 1
2

tx1 · x2) ·θ
[

x1

x2

]
(0;Ω)

for all elements (1,x1,x2) ∈ Heis(2g,R). This constant c is 1 if fΩ and eZ are those specified in 6.4
and 6.5 for the position-momentum realization.

(6.7) The big metaplectic group. Let M̃p(2g,R) be the subgroup of of the group U(H) of all
unitary automorphisms of the Hilbert space H, defined by

M̃p(2g,R) :=
{

T ∈ U(H) |∃γ ∈ Sp(2g,R) s.t. T ·U(λ ,x)·T−1 =U(λ ,γx) ∀(λ ,x) ∈ Heis(2g,R)
}

The uniqueness of the Schrödinger representation implies that the natural homomorphism

ρ : M̃p(2g,R)−→ Sp(2g,R)

is surjective and Kerρ = C×1 · Id, so that M̃p is a central extension of Sp(2g,R) by C×1 . Being a
subgroup of U(H), we have a tautological unitary representation M̃p(2g,R) on H.

The natural action of the symplectic group Sp(2g,R) on the set of all Lagrangian subspaces of
R2g induces an action on the set of all Lie subalgebras WΩ ⊂ heis(2g,C) associted to elements of
Hg as defined in 6.4. Explicitly, we have γ ·WΩ =Wγ·Ω, where

γ ·Ω = (D ·Ω−C) · (−B ·Ω+A)−1 ∀γ =

(
A B
C D

)
∈ Sp(2g,R),
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which is the composition of the usual action(
A B
C D

)
: Ω 7→ (A ·Ω+B) · (C ·Ω+D)−1

of Sp(2g,R) on Hg with the involution

γ =

(
A B
C D

)
7→ t

γ
−1 =

(
0 Ig
−Ig 0

)
· γ ·
(

0 Ig
−Ig 0

)−1

=

(
D −C
−B A

)
of Sp(2g,R). Let j(γ,Ω) := det(−B ·Ω + A) for γ as above and Ω ∈ Hg; it is a 1-cocycle for
(Sp(2g,R),Hg).

(6.8) PROPOSITION. For every Ω ∈ Hg, let fΩ be the element fΩ(x) = e( 1
2

txΩx) in H
WΩ

PM .

(1) For every γ̃ ∈ M̃p(2g,R) with image γ = ρ(γ̃) in Sp(2g,R) and every Ω ∈ Hg, there exists a
unique element C(γ̃,Ω) ∈ C× such that

γ̃ · fΩ =C(γ̃,Ω) · fγ·Ω.

(2) There is a unitary character χ : M̃p(2g,R)→ C×1 of Mp(2g,R) such that

C(γ̃,Ω)2 = χ(γ̃) · j(γ,Ω) ∀Ω ∈ Hg.

(6.9) The metaplectic group and the theta level subgroup. The metaplectic group, defined by
Mp(2g,R) := Ker(χ), is a double cover of the symplectic group Sp(2g,R). The tautological action
of Mp(2g,R) on H is called the oscillator representation.

Let Γ1,2 be the subgroup of Sp(2g,Z) consisting of all γ ∈ Sp(2g,Z) leaving fixed the function
(m,n) 7→ (−1)

tm·n on Z2g. Its inverse image Γ̃1,2 in Mp(2g,R) is the subgroup consisting of all
elements γ̃ ∈Mp(2g,R) such that γ̃ ·σ(Z2g) · γ̃−1 = σ(Z2g).

(6.10) PROPOSITION. Let µ8 be the group of all 8th roots of unity. There exists a surjective group
homomorphism η : Γ̃1,2→ µ8 such that γ̃ · eZ = η(γ̃) · eZ for all γ̃ ∈ Γ̃1,2.

Because Mp(2g,R) is contained in the normalizer of the image of the Heisenberg group in
U(H) by construction, we have a unitary representation of their semi-direct product Heis(2g,R)o
Mp(2g,R) on H which combines the Schrödinger and the oscillator representation. Proposition
6.11 below, which is a reformulation of 6.8 (1), says that the Riemann theta function θ(z;Ω) is
essentially a matrix coefficient for the representation of Heis(2g,R)oMp(2g,R) up to some ele-
mentary exponential factor.

(6.11) PROPOSITION. Let eZ be the σ(Z2g)-invariant distribution ∑n∈Z2g δn in HPM
−∞ and let

f√
−1Ig

be the smooth vector f√
−1Ig

(x) = exp(−π txx) in HPM
∞ fixed by W√−1Ig

. We have〈
U(1,x1,x2)·γ̃ ·f√−1Ig

, eZ
〉
=C(γ̃,

√
−1Ig) · e(− 1

2
tx1 x2) ·θ

[
x1
x2

]
(0,γ ·

√
−1Ig)

for all γ̃ ∈Mp(2g,R) and all (1,x1,x2) ∈ Heis(2g,R), where γ is the image of γ̃ in Sp(2g,R).
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In the above formula γ ·
√
−1Ig = (

√
−1D−C) · (A−

√
−1B)−1 =: Ωγ if γ =

(
A B
C D

)
, and we

have C(γ̃,
√
−1Ig)2 = det(A−

√
−1B), which determines C(γ̃,

√
−1Ig) up to ±1. Note that

C(γ̃,
√
−1Ig) · e(− 1

2
tx1 x2) ·θ

[
x1
x2

]
(0,γ ·

√
−1Ig)

=C(γ̃,
√
−1Ig) · e(− 1

2 (
tx1 ·Ωγ · x2)+

tx1 · x2) ·θ(Ωγx1 + x2;Ωγ),

so up the the elementary factors C(γ̃,
√
−1Ig) ·e(− 1

2 (
tx1 ·Ωγ ·x2)+

tx1 ·x2), the Riemann theta function
is indeed a matrix coefficient of the group Heis(2g,R)oMp(2g,R) on the Hilbert space H for the
unitary representation which combines both the Schrödinger and the oscillator representation.

(6.12) Propositions 6.8 and 6.10 provide a modern version of the transformation theory of theta
functions. They reflect the fact that theta constants θ

[a
b

]
(0;Ω) with rational characteristics are

Siegel modular forms of weight 1/2. The readers may consult Part 2 of [14] and [13, Ch. V] for
what this theory looked like at the end of the nineteenth century.

(6.13) So far we have only looked at matrix coefficients attached to special elements of the form
fΩ⊗ eZ in the tensor product H∞⊗H−∞. The group Heis(2g,R)×Heis(2g,R) acts on the tensor
product H∞⊗H−∞, such that the C×1 in the first copy of Heis(2g,R) acts on through z 7→ z · Id
and the C×1 in the second copy of Heis(2g,R) acts through via z 7→ z−1 · Id. Each element of
v ∈ H∞⊗H−∞ gives rise to a function fv on R2g, defined by fv(x) = ε

(
(U(1,x),1) · v

)
, where

ε : H∞⊗H−∞ → C is the linear functional corresponding to the pairing between H∞ and H−∞.
The action of the first and second copy of Hein(2g,R) on v ∈H∞⊗H−∞ becomes two commuting
actions of Hein(2g,R) on the space of all “good functions” on R2g,

U right
(λ ,y1,y2)

f (x1,x2) = λ · e
(

1
2 (

tx1 · y2− tx2 · y1)
)
· f (x1 + y1,x2 + y2)

and
U left
(λ ,y1,y2)

f (x1,x2) = λ
−1 · e

(
1
2 (

tx1 · y2− tx2 · y1)
)
· f (x1− y1,x2− y2)

respectively. This provides a very nice way to organize all theta functions through symmetries
arising from the action of the group Hein(2g,R)×Hein(2g,R)/{(λ ,λ )|λ ∈ C×1 }. Of course the
last group is isomorphic to the Heisenberg group Hein(4g,R), and its action on H∞⊗H−∞ is an
incarnation of the Schrödinger representation of this bigger Heisenberg group! This compelling
story is elegantly presented in [20, §§1-5]; see also [8, Ch. I] and [3].

(6.14) The Heisenberg groups play an important role in the study of the mathematical foundations
of quantum mechanics by Weyl in Ch. II §11 and Ch. IV §15 of [30]. Weil recognized that theta
series should be interpreted as automorphic forms for the metaplectic group and developed the
adelic theory of oscillator representations in [29] for this purpose. This representation-theoretic
approach has since become a core part of the theory of automorphic forms and L-functions.

Part D. Riemann’s theta formula
There is a myriad of identities satisfied by the Riemann theta function θ(z;Ω) and its close

relatives θ
[a

b

]
(z;Ω). The most famous among these theta relations is a quartic relation known
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to Riemann, associated to a 4× 4 matrix all of whose entries are ±1 and is 2 times an orthogonal
matrix; see 7.3. It debuted as formula (12) on p. 20 of [21], and was named Riemann’s theta formula
by Prym. In the preface of [21] Prym said that he learned of this formula from Riemann in Pisa,
where he was with Riemann for several weeks in early 1865, and that he wrote down a proof
following Riemann’s suggestions.

For any fixed abelian variety, these theta identities give a set of quadratic equations which
defines this abelian variety. The coefficients of these quadratic equations are theta constants, or
“thetanullwerte”, which vary with the abelian variety. At the same time, the Riemann theta identi-
ties give a set of quartic equations satisfied by the theta constants, which forms a system of defining
equations of the moduli space of abelian varieties (endowed with suitable theta level structures).

§7. Riemann’s theta formula
We will first formulate a generalized Riemann theta identity, for theta functions attached to a
quadratic form on a lattice.

(7.1) DEFINITION. (THETA FUNCTIONS ATTACHED TO QUADRATIC FORMS) Let Q be a Q-
valued positive definite symmetric bilinear form on an h-dimensional Q-vector space ΓQ, where
h is a positive integer. Let Γ ⊂ ΓQ be a Z-lattice in ΓQ, i.e. Γ is a free abelian subgroup of ΓQ of
rank h. Denote by Γ∨Q the Q-linear dual of ΓQ, and let Γ∨ := {λ ∈ Γ∨Q |λ (Γ) ⊂ Z.}. We identify
elements of Qg⊗QΓQ with g-tuples of elements of ΓQ and similarly for Qg⊗QΓ∨Q.

(i) The pairing Qg×Cg 3 (n,z) 7→ tn · z ∈ C on Qg×Cg and the natural pairing ΓQ×Γ∨Q→ Q
induce a pairing 〈 , 〉 : (Qg⊗QΓQ)× (Cg⊗QΓ∨Q)→ C.

(ii) Let Q̃ : (Qg⊗ΓQ)× (Qg⊗ΓQ)→Mg(Q) be the matrix-valued symmetric bilinear pairing

Q̃ : (u,v) = ((u1, . . . ,ug),(v1, . . . ,vg))→ Q̃(u,v) =
(
Q(ui,v j)

)
1≤i, j≤g ∀u,v ∈Qg⊗Q Γ.

(iii) For every A ∈Qg⊗Q ΓQ, every B ∈Qg⊗Q Γ∨Q and every element Ω ∈Hg of the Siegel upper-
half space of genus g, define the theta function θ Q,Γ[A

B ] on the (gh)-dimensional C-vector space
C⊗Q Γ∨Q attached to (Q,Γ) by

θ
Q,Γ[A

B ](Z;Ω) := ∑
N∈Zg⊗ZΓ

e
(

1
2 Tr(Ω · Q̃(N +A, N +A)

)
· e(〈N +A, Z +B〉),

where e(z) := exp(2π
√
−1z) for all z ∈ C.

Note that we have θ Q⊕Q′,Γ⊕Γ′
[
(A,A′)
(B,B′)

]
((Z,Z′);Ω) = θ Q,Γ[A

B ](Z;Ω) · θ Q′,Γ′
[

A′
B′
]
(Z′;Ω) for the orthogonal

direct sum (Q⊕Q′,Γ⊕Γ′) of (Q,Γ) and (Q′,Γ′). In particular if (Q,Γ) is the orthogonal direct
sum of h one-dimensional quadratic forms, then θ Q,Γ is a product of h “usual” theta functions with
characteristics.
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Let (Q,Γ) be a Q-valued positive definite quadratic form. Let T : LQ → ΓQ be a Q-linear
isomorphism of vector spaces over Q, and let L be a Z-lattice in LQ. Let T∨ : Γ∨Q → LQ be the
Q-linear dual of T . Let Q′ : LQ×LQ→ Q be the positive definite quadratic form on LQ induced
by Q through the isomorphism T . Let 1⊗ T : Qg⊗QLQ → ΓQ be the linear map induced by T ;
similarly for 1⊗T∨ : Cg⊗QΓ∨Q→ Cg⊗QL∨Q. Define two finite abelian groups K and ∆ by

K := (1⊗T )(Zg⊗Z L)/
(
(Zg⊗Z Γ)∩ (1⊗T )(Zg⊗Z L)

) ∼−→ [(1⊗T )(Zg⊗Z L)+(Zg⊗Z L)
]
/Zg⊗Z L

∆ := (1⊗T∨)−1(Zg⊗ZL∨)/
(
(Zg⊗ZΓ

∨)∩ (1⊗T∨)−1(Zg⊗ZL∨)
) ∼−→ [(1⊗T∨)−1(Zg⊗ZL∨)+(Zg⊗ZL∨)

]
/Zg⊗ZL∨

(7.2) THEOREM. (GENERALIZED RIEMANN THETA IDENTITY) For every A ∈ Qg⊗ ΓQ and
every B ∈Qg⊗Γ∨Q, the equality

(RQ,T
ch ) θ

Q′,L
[
(1⊗T )−1A
(1⊗T∨)B

]
((1⊗T∨)Z;Ω) = #(∆)−g · ∑

A′∈K,B′∈∆

e(−〈A, B′〉) ·θ Q,Γ
[

A+A′
B+B′

]
(Z;Ω)

holds for all Ω ∈Hg and all Z ∈ Cg⊗Γ∨Q.

Note that each term on the right hand side of (RQ,T
ch ) is independent of the choice of B′ in its congru-

ence class modulo Zg⊗ZL∨.

(7.3) Theorem 7.2 is very easy to prove once stated in that form. In two examples below (Q′,L) is
the diagonal quadratic form x2

1 + · · ·+ x2
h on Zh, Γ is equal to Zn, and T is (given by) a matrix such

that T ·tT is a multiple of the identity matrix Ih.

(a) When h = 4, Q and Q′ are both the diagonal quadratic form x2
1+x2

2+x2
3+x2

4 on Z4, A = B = 0
and T is given by the matrix 

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ,

the equation (RQ,T
ch ) is the classical Riemann’s theta formula [21, p. 20].

(b) When h = 2, Γ = L = Z2, B = 0, Q′ is x2
1 + x2

2, Q is 2x2
1 + 2x2

2, T is given by the matrix
1
2

(
1 1

1 −1

)
, and (RQ,T

ch ) becomes

θ

[a
0

]
(z,2Ω) ·θ

[
b
0

]
(w,2Ω) = 2−g · ∑

c∈2−1Zg/Zg

θ

[
c+(a+b)/2

0

]
(z+w,2Ω) ·θ

[
c+(a−b)/2

0

]
(z−w,2Ω)

for all z,w ∈ Cg and all a,b ∈Qg.

Much more about theta identities can be found in [19, Ch. II §6], [20, §6], [8, Ch. IV §1], and classi-
cal sources such as [13, Ch. VII §1], [14] and [21].
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§8. Theta relations
(8.1) Notation. Let d1,d2, . . . ,dg be positive integers such that 4|d1|d2| · · · |dg, fixed in this section.

• Let δ = (d1, . . . ,dg). For any positive integer n, let

K(nδ ) :=
g⊕

j=1

n−1d−1
i Z/Z.

• For any positive integer m, let

Km :=
g⊕

j=1

m−1Z/Z, and let K∗m := Hom(Km,C∗).

• For any non-negative integer n and any a ∈ K(2nδ ), we will use the following notation

qn(a) = qn,δ (a) := θ[−a
0 ](0,2

n
Ω), Qn(a) = Qn,δ (a) := θ[−a

0 ](2
n z,2n

Ω)

for theta constants and theta functions, where Ω ∈Hg has been suppressed.

Clearly the following symmetry condition holds:

(Θn,δ
ev ) qn(a) = qn(−a) ∀a ∈ K(2n

δ ).

(8.2) The generalized Riemann theta identities implies a whole family of relations between theta
functions and theta constants. Among them are the quadratic relations (Θn,δ

quad) between theta func-

tions with theta constants as coefficients below, as well as the quartic relations (Θn,δ
quad) between theta

constants, for all n ≥ 0. The theta constants satisfy strong non-degeneracy conditions, represented
by (Θn+1,δ

nv ) below.

(8.2.1) For any a,b,c ∈ K(2nδ ) satisfying a≡ b≡ c (mod K(nδ )) and any l ∈ K∗2 , we have

(Θn,δ
quad)

0 =
[

∑
η∈K2

l(η) ·qn+1(c+ r)
]
·
[

∑
η∈K2

l(η) ·Qn(a+b+η) ·Qn(a−b+ r)
]

−
[

∑
η∈K2

l(η) ·qn+1(b+ r)
]
·
[

∑
η∈K2

l(η) ·Qn(a+ c+η) ·Qn(a− c+ r)
]
.

(8.2.2) For any a,b,c,d ∈ K(2nδ ) satisfying a≡ b≡ c≡ d (mod K(nδ )) and any l ∈ K∗2 , we have

(Θn,δ
quar)

0 =
[

∑
η∈K2

l(η)·qn(a+b+η)qn(a−b+η)
]
·
[

∑
η∈K2

l(η) ·qn(c+d +η)qn(c−d +η)
]

−
[

∑
η∈K2

l(η)·qn(a+d +η)qn(a−d +η)
]
·
[

∑
η∈K2

l(η)·qn(b+ c+η)qn(b−d +η)
]
.

(8.2.3) For any n ≥ 0, any a1,a2,a3 ∈ K(2n+1δ ) and any l1, l2, l3 ∈ K∗4 , there exists an element
b ∈ K8 ⊂ K(2δ ) and an element λ ∈ 2K∗4 such that

(Θn+1,δ
nondeg) 0 6=

3

∏
i=1

[
∑

η∈K4

(li +λ )(η) ·qn+1(ai +b+η)
]
.
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(8.3) Equations defining abelian varieties. The geometric significance of these theta relations
are twofold, for abelian varieties and also their moduli. Recall that d1, . . . ,dn are positive integers
with d1| · · · |dg. Let N = (∏

g
i=1 di)−1.

1. Let AΩ,δ :=Cg/(Ω ·Zg+D(δ ) ·Zg) be the abelian variety whose period lattice is generated by
the columns of (Ω D(δ )), where D(δ ) is the diagonal matrix with d1, . . . ,dg as its diagonal
entries. It was proved by Lefschetz that the theta functions

{
{Q0,δ (a) |a ∈ K(δ )

}
define a

projective embedding j : AΩ,δ ↪→ PN if 4|d1| · · · |dg. Mumford showed in [16, I §4] that

the quadratic equations (Θ0,δ
quar) in the projective coordinates of PN cut out the

abelian variety AΩ,δ as a subvariety inside PN if 4|d1.

In particular an abelian variety is determined by its theta constants q0,δ (a)’s if the level δ is
divisible by 4. The group law on the abelian variety can also be recovered from these theta
constants.

2. The next question is: do the Riemann quartic equations (Θn,δ
quar) on the theta constants cut out

the moduli of abelian varieties? The answer given in [16, II §6] is basically “yes if 8|d1” with
a suitable non-degeneracy condition:

Suppose that 8|d1| · · · |dg, and {q(a) |a ∈ K(δ )} is a family of complex numbers indexed by
K(δ ). Assume that this given (∏

g
i=1 di)-tuple of numbers has the following properties.

– q(a) = q(−a) for all a ∈ K(δ ).

– All quartic equations in (Θ0,δ
quar) hold.

– (The non-degeneracy condition) There exists a family of complex numbers
{q1(u) |u ∈ K(δ )} indexed by K(2δ ) which satisfies conditions (Θ1,δ

ev ), (Θ1,δ
quar) and

(Θ1,δ
nondeg), and

q0(a) ·q0(b) = ∑
u,v∈K(2δ ),u+v=a,u−v=b

q1(u) ·q1(v) ∀a,b ∈ K(δ ).

Then there exists an element Ω ∈ Hg such that

q0,δ (a) := θ [−a
0 ](0,Ω) ∀a ∈ K(δ ).

(8.4) Adelic Heisenberg groups and theta measures.

(8.4.1) The analysis in [16] of theta relations is based on a finite adelic version of the Heisenberg
group, which is a central extension of A2g

f by the multiplicative group scheme Gm over a base field
k in which 2 is invertible. Here A f = ∏

′
pQp, the restricted product of p-adic numbers, over all

primes p which are invertible in k. One gets such a group scheme Ĝ(L ) whenever one is handed
a symmetric ample line bundle of degree one over a g-dimensional principally polarized abelian
variety over k, plus a compatible family of theta structure for torsion points of order invertible in k,
which induces an isomorphism from A2g

f to the set of all torsion points as above.

22



(8.4.2) Such a Heisenberg group Ĝ(L ) is isomorphic to “the standard finite adelic Heisenberg
group” Heis(2g,A f ) over the algebraic closure kalg of k. The definition of Heis(2g,A f ) is similar
to that of the real Heisenberg group Heis(2g,R) in (6.1), with the following changes: (a) the field
R is replaced by the ring A f , (b) the unit circle group C×1 is replaced by the multiplicative group
scheme Gm over kalg, and (c) the isomorphism e : R/Z ∼−→ C×1 is replaced by an isomorphism from
A f /Ẑ∼=⊕pQp/Zp to the group µ∞(kalg) of all roots of 1 in kalg.

The group Ĝ(L ) acts on the direct limit lim−→n
Γ(A,L ⊗n) =: Γ̂(L ), where n runs through all

positive integers which are invertible in k. This action of Ĝ(L ) on Γ̂(L ) is an A f -version of
the dual Schrödinger representation discussed in (6.2). At this point the representation-theoretic
formalism for theta functions discussed in §6 carries over to the present situation.

(8.4.3) The insight gained from the systematic use of the adelic Schrödinger representation pro-
duces not only the two theorems in (8.3), but also a new way to look at theta constants: There exists
a measure µ on Ag

f which satisfies the properties (i)–(iv) below. All theta relations are encoded in
the simple equality in (i), and the non-degeneracy condition becomes (iv).

(i) There exists another measure ν on Ag
f such that ξ∗(µ×µ) = ν×ν as measures on Ag

f ×Ag
f ,

where ξ : Ag
f ×Ag

f → Ag
f ×Ag

f is the map (x,y) 7→ (x+ y,x− y).

(ii) The algebraic theta constants are integrals over suitable compact open subsets of Ag
f .

(iii) The algebraic theta function attached to a non-zero global section s0 of the one-dimensional
vector space Γ(A,L ) as above, is the function

x 7→ θ
alg(x) =

∫
(U(1,−x) ·δ0)dµ

on A2g
f , where δ0 is the characteristic function for the compact open subset ∏

′
pZp ⊂A2g

f , and
U(1,−x) · δ0 is the result of the action on δ0 by the the element U(1,−x) ∈ Heis(2g,A f ) under
the dual Schrödinger representation.

(iv) For every x ∈ A2g
f , there exists an element η ∈ 1

2 ∏
′
pZp such that θ alg(x+η) 6= 0.

REMARK. When the base field is C, the theta measure µΩ attached to Ω ∈ Hg is

µΩ(V ) = ∑
n∈V∩Qg

e
(

1
2 · tn ·Ω ·n

)
for all compact open subset V ⊂ Ag

f , and the companion measure νΩ is

νΩ(V ) = ∑
n∈V∩Qg

e
(

1
2 · tn ·Ω ·n

)
.

(8.5) The best introduction to the circle of ideas in this section is [20], which also motivates you to
reach for the real candies in [16]. The readers may also consult [8, Ch. IV].

Anyone who had more than a casual look at the papers [16] would agree that the results are
both fundamental and deep, opening up a completely new direction in the study of theta functions.
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These papers are “however, not easy to read”, and the ideas in them “have not been developed very
far”.9 It is indeed curious that there has been no “killer application” of the theory of algebraic theta
functions so far. However it should be a safe bet that this anomaly won’t last too much longer.
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abéliennes et courbes algébriques, Hermann, 1948. Second ed. of (a) and (b), under the collective title
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