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Summary. We sketch a proof of the Hecke orbit conjecture for the Siegel modular
variety Ag,n over Fp, where p is a prime number, fixed throughout this article. We
also explain several techniques developed for the Hecke orbit conjecture, including
a generalization of the Serre–Tate coordinates.

1 Introduction

In this article we give an overview of the proof of a conjecture of F. Oort that
every prime-to-p Hecke orbit in the moduli space Ag of principally polarized
abelian varieties over Fp is dense in the leaf containing it. See Conjecture 4.1
for a precise statement, Definition 2.1 for the definition of Hecke orbits, and
Definition 3.1 for the definition of a leaf. Roughly speaking, a leaf is the lo-
cus in Ag consisting of all points s such that the principally quasi-polarized
Barsotti–Tate group attached to s belongs to a fixed isomorphism class, while
the prime-to-p Hecke orbit of a closed point x consists of all closed points y
such that there exists a prime-to-p quasi-isogeny from Ax to Ay which pre-
serves the polarizations. Here (Ax, λx), (Ay, λy) denote the principally polar-
ized abelian varieties attached to x, y respectively; a prime-to-p quasi-isogeny
is the composition of a prime-to-p isogeny with the inverse of a prime-to-p
isogeny.

For clarity in logic, it is convenient to separate the prime-to-p Hecke or-
bit conjecture, or the Hecke orbit conjecture for short, into two parts (see
Conjecture4.1):

(i) the continuous part, which asserts that the Zariski closure of a prime-to-p
Hecke orbit has the same dimension as the dimension of the leaf containing
it, and

(ii) the discrete part, which asserts that the prime-to-p Hecke correspondences
operate transitively on the set of irreducible components of every leaf; see
Conjecture 4.1.
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The prime-to-p Hecke correspondences on Ag form a large family of sym-
metries on Ag. In characteristic 0, each prime-to-p Hecke orbit is dense in
the metric topology of Ag(C), because of complex uniformization. In charac-
teristic p, it is reasonable to expect that every prime-to-p Hecke orbit is “as
large as possible”. The decomposition of Ag into the disjoint union of leaves
constitutes a “fine” geometric structure of Ag, existing only in characteristic
p and called foliation in [26]. The prime-to-p Hecke orbit conjecture says, in
particular, that the foliation structure on Ag over Fp is determined by the
Hecke symmetries.

The prime-to-p Hecke orbit H(p)(x) of a point x is a countable subset of
Ag. Experience indicates that determining the Zariski closure of a countable
subset of an algebraic variety in positive characteristic is often difficult. We
developed a number of techniques to deal with the Hecke orbit conjecture.
They include

(M)the ℓ-adic monodromy of leaves,
(C) the theory of canonical coordinates on leaves, generalizing Serre–Tate

parameters on the local moduli spaces of ordinary abelian varieties,
(R) a rigidity result for p-divisible formal groups,
(S) a trick “splitting at supersingular point”,
(H) hypersymmetric points,

and will be described in §5, §7, §8, §11, and §10 respectively. We hope that
the above techniques will also be useful in other situations. Among them,
the most significant is perhaps the theory of canonical coordinates on leaves,
which generalizes the Serre–Tate coordinates for the local moduli space of
ordinary abelian varieties. At a non-ordinary closed point x ∈ Ag(Fp), there
is no description of the formal completion A/x

g of Ag at x comparable to what
the Serre–Tate theory provides. But if we restrict to the leaf C(x) passing
through x, then there is a “good” structure theory for the formal completion
C(x)/x. To get an idea, the simplest situation is when the Barsotti–Tate group
Ax[p∞] is isomorphic to a direct product X × Y , where X, Y are isoclinic
Barsotti–Tate groups over Fp of Frobenius slopes µX , µY respectively, and
µX < µY = 1−µX . In this case, C(x)/x has a natural structure as an isoclinic p-
divisible formal group of height g(g+1)

2 , Frobenius slope µY−µX , and dimension
dim(C(x)/x) = (µY −µX ) · g(g+1)

2 . Moreover, there is a natural isomorphism of
V -isocrystals

M(C(x)/x) ⊗Z Q ∼−→ Homsym

W (Fp)
(M(X), M(Y )) ⊗Z Q ,

where M(C(x)/x), M(X), M(Y ) denote the Cartier–Dieudonné modules of
C(x)/x, X , Y respectively, W (Fp) is the ring of p-adic Witt vectors, and the
right-hand side of the formula denotes the symmetric part of the internal Hom,
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with respect to the involution induced by the principal polarization on Ax.
In the general case, C(x)/x is built up from a successive system of fibrations,
and each fibration has a natural structure of a torsor for a suitable p-divisible
formal group.

The fundamental idea underlying our method is to exploit the action of the
local stabilizer subgroups. Recall that the prime-to-p Hecke correspondences
come from the action of the group Sp2g(A

(p)
f ) on the prime-to-p tower of the

moduli space Ag. Here the symplectic group Sp2g in 2g variables is viewed as
a split group scheme over Z, and A(p)

f denotes the restricted product of Qℓ’s,
where ℓ runs through all primes not equal to p. Suppose that Z ⊂ Ag is a closed
subscheme of Ag which is stable under all prime-to-p Hecke correspondences.
It is clear that for any closed point x ∈ Z(k), the subscheme Z is stable under
the set Stab(x) consisting of all prime-to-p Hecke correspondences having x
as a fixed point. This is an elementary fact, referred to as the local stabilizer
principle, and will be rephrased in a more usable form below.

The stabilizer Stab(x) comes from the unitary group Gx over Q attached
to the pair (Endk(Ax)⊗ZQ, ∗x), where ∗x denotes the Rosati involution on the
semisimple algebra Endk(Ax)⊗Z Q. Notice that Gx = U(Endk(Ax)⊗Z Q, ∗x)
has a natural Z-model attached to the Z-lattice Endk(Ax) ⊂ Endk(Ax)⊗Z Q,
and we denote by Gx(Zp) the group of Zp-valued points for that Z-model.
The group Gx(Zp) is a subgroup of the p-adic group U(Endk(Ax[p∞]), ∗x);
the latter operates naturally on the formal completion A/x

g by deformation
theory. With the help of the weak approximation theorem, applied to Gx, the
local stabilizer principle then says that the formal completion Z/x of Z at x,
as a closed formal subscheme of A/x

g , is stable under the action of Gx(Zp).
See §6 for details.

The tools (C), (R), (H) mentioned above allows us to use the local stabilizer
principle effectively. A useful consequence is that, if Z is a closed subscheme
of Ag stable under all prime-to-p Hecke correspondences, and x is a split
hypersymmetric point of Z, then Z contains an irreducible component of the
leaf passing through x; see Theorem 10.6. Here a split point of Ag is a point
y of Ag such that Ay is isogenous to a product of abelian varieties where each
factor has at most two slopes, while a hypersymmetric point of Ag is a point
y of Ag such that Endk(Ay) ⊗Z Zp

∼−→ Endk(Ay[p∞]). It should not come as
a surprise that the local stabilizer principle gives us a lot of information at a
hypersymmetric point, where the local stabilizer subgroup is quite large.

Let x ∈ Ag(Fp) be a closed point of Ag. Let H(p)(x) be the Zariski closure

of the prime-to-p Hecke orbit H(p)(x) of x, and let H(p)(x)
0

:= H(p)(x)∩C(x).1

The conclusion of the last paragraph tells us that, to show that H(p)(x) is

1In fact H(p)(x)
0

is the open subscheme of H(p)(x) consisting of all points y of

H(p)(x) such that the Newton polygon of Ay is equal to the Newton polygon of Ax.
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irreducible, it suffices to show that H(p)(x)
0

contains a split hypersymmet-
ric point. The result that H(p)(x)

0
contains a split hypersymmetric point is

accomplished through what we call the Hilbert trick and the splitting at su-
persingular points.

The Hilbert trick refers to a special property of Ag: Up to an isogeny cor-
respondence, there exists a Hilbert modular subvariety of maximal dimension
passing through any given Fp-valued point of Ag; see §9. To elaborate a bit,
let x be a given point of Ag(Fp). The Hilbert trick tells us that there exists an
isogeny correspondence f , from a g-dimensional Hilbert modular subvariety
ME ⊂ Ag to Ag, whose image contains x. The Hilbert modular variety above
is attached to a commutative semisimple subalgebra E of EndFp

(Ax) ⊗Z Q,
such that [E : Q] = g and E is fixed by the Rosati involution. There are Hecke
correspondences on ME coming from the semisimple algebraic group SL(2, E)
over Q, and SL(2, E) can be regarded as a subgroup of the symplectic group
Sp2g. The isogeny correspondence f above respects the prime-to-p Hecke cor-
respondences. So, among other things, the Hilbert trick tells us that, for an
Fp-point x of Ag as above, the Hecke orbit H(p)(x) contains the f -image of a
prime-to-p Hecke orbit H(p)

E (x̃) on the Hilbert modular variety ME , where x̃
is a pre-image of x under the isogeny correspondence f .

A consequence of the Hilbert trick and the local stabilizer principle, is the
following trick of “splitting at supersingular points”; see Theorem 11.3. This
“splitting trick” says that, in the interior of the Zariski closure of a given
Hecke orbit, there exists a point y such that Ay is a split abelian variety. The
last clause means that Ay is isogenous to a product of abelian varieties, where
each factor abelian variety has at most two slopes.

One can formulate the notion of leaves and the Hecke orbit conjecture
for Hilbert modular varieties. It turns out that the prime-to-p Hecke orbit
conjecture for Hilbert modular varieties is easier to solve than Siegel mod-
ular varieties, reflecting the fact that a Hilbert modular variety comes from
a reductive group G over Q such that every Q-simple factor of the adjoint
group Gad has Q-rank one. The trick “splitting at supersingular points” and
a standard technique in algebraic geometry implies that, when one tries to
prove the prime-to-p Hecke orbit conjecture, one may assume that the point
x of Ag is defined over Fp and the abelian variety Ax is split. Now we apply
the Hilbert trick to x. To simplify the exposition, we will assume, for sim-
plicity, that we have a Hilbert modular variety ME in Ag passing through
the point x, suppressing the isogeny correspondence f . We will also assume
(or “pretend”) that the leaf CE(x) on ME passing through x is the inter-
section of C(x) with ME . (The last assumption is not far from the truth, if
we interpret “intersection” as a suitable fiber product.) Notice that the com-
mutative semisimple algebra E is a product of totally real number fields Fi,
i = 1, . . . , m, and Fi ⊗Qp is a field for each i, because the abelian variety Ax

is split.
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It is easy to see that every leaf in ME contains a hypersymmetric point
y of Ag. Moreover Ay is split because Ax is split. So if we can prove the
Hecke orbit conjecture for ME , then we will know that the Zariski closure
of the Hecke orbit H(p)(x) in C(x) contains a split hypersymmetric point y.
Therefore the prime-to-p Hecke orbit conjecture for Hilbert modular varieties
implies the continuous part of the prime-to-p Hecke orbit conjecture for Ag.

The general methods we developed, when applied to a Hilbert modular
variety ME , produce a proof of the continuous part of the prime-to-p Hecke
orbit conjecture for ME . So the prime-to-p Hecke orbit conjecture for Ag is
reduced to the discrete part of the prime-to-p Hecke orbit conjecture for both
Ag and the Hilbert modular varieties.

The discrete part of the Hecke orbit conjecture is equivalent to the state-
ment that every non-supersingular leaf is irreducible, see Theorem 5.1; the
same holds for Hilbert modular varieties. Generally such irreducibility state-
ments do not come by easily; so far there is no unified approach which works
for all modular varieties of PEL-type. Using the techniques (H) and (M),
one can reduce the discrete part of the Hecke orbit conjecture for Ag to the
statement that the prime-to-p Hecke correspondences operate transitively on
the set of irreducible components of every non-supersingular Newton polygon
stratum in Ag. Happily the results of Oort in [24], [25] can be applied to settle
the latter irreducibility statement; see Theorem 13.1, [21], and references cited
in 13.1.

The discrete part of the Hecke orbit conjecture for the Hilbert modular
varieties, however, requires a different approach, based on the Lie-alpha strat-
ification of Hilbert modular varieties, and the following property of Hilbert
modular varieties: For each slope datum ξ for ME , there exists a Lie-alpha
stratum Ne,a ⊂ ME , contained in the Newton polygon stratum in ME at-
tached to the given slope datum ξ, and a dense open subset Ue,a of Ne,a such
that Ue,a is a leaf in ME . Here a slope datum for ME is a function which to
each prime ideal ℘ of OE/pOE attaches a set of the form {µ℘, 1− µ℘}, where
0 ≤ µ℘ ≤ 1

2 , and the denominator of µ℘ divides 2[E℘ : Qp]. There is a natural
slope stratification of ME , indexed by the set of slope data for ME . The Lie-
alpha stratification of ME is defined in terms of the Lie type and alpha type of
the OE-abelian varieties attached to points of ME ; the Lie type (resp. alpha
type) of an OE abelian variety A over Fp refers to the (semi-simplification of)
the linear representation of the algebra OE ⊗Fp Fp on the vector space Lie(A)
(resp. Hom(αp, A)) over Fp. A critical step in the proof of the discrete part
of the Hecke orbit conjecture for Hilbert modular varieties, due to C.-F. Yu,
is the construction of “enough” deformations for understanding the incidence
relation of the Lie-alpha stratification.
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2 Hecke orbits

Let p be a prime number, fixed throughout this article. Let Z(p)
f =

∏
ℓ ̸=p Zℓ,

where ℓ runs through all prime numbers different from p. Let A(p)
f be the

restricted product
∏′

ℓ ̸=p Qℓ of Qℓ’s for ℓ ̸= p, naturally isomorphic to Z(p)
f ⊗ZQ

and known as the ring of prime-to-p finite adèles attached to Q.

Let k be an algebraically closed field of characteristic p. Choose and fix an
isomorphism ζ : Z(p)

f
∼−→ Z(p)

f (1) over k, i.e., a compatible system of isomor-
phisms ζm : Z/mZ ≃ µm(k), where m runs through all positive integers which
are not divisible by p. For any natural number g and any integer n ≥ 3 with
(n, p) = 1, denote by Ag,n the moduli space over k classifying g-dimensional
principally polarized abelian varieties with a symplectic level-n structure with
respect to ζ.

For any two integers n1, n2 ≥ 3, such that (p, n1n2) = 1 and n1 | n2, there
is a canonical map Ag,n2 → Ag,n1 . Denote by Ag,(p) the resulting projective
system of the moduli spaces Ag,n, where n runs through all integers n ≥ 3 with
(p, n) = 1. By definition, a geometric point of Ag,(p)(k) corresponds to a triple
(A, λ, η), where A is a g-dimensional principally polarized abelian variety over
k, λ is a principal polarization on A, and η is a level-Z(p)

f structure on A, i.e.,
η is a symplectic isomorphism from

∏
ℓ ̸=p A[ℓ∞] to (Z(p)

f )2g, where the free
Z(p)

f -module (Z(p)
f )2g is endowed with the standard symplectic pairing.
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From the definition of Ag,(p) we see that there is a natural action of
Sp2g(Z

(p)
f ) on Ag,(p), operating as covering transformations over the mod-

uli stack Ag. Moreover there is a natural action of the group Sp2g(A
(p)
f ) on

Ag,(p), extending the action of Sp2g(A
(p)
f ) and gives a much larger collection

of symmetries on the tower Ag,(p). The automorphism hγ of Ag,(p) attached
to an element γ ∈ Sp2g(A

(p)
f ) is characterized by the following property. There

is a prime-to-p isogeny αγ from the universal abelian scheme A to h∗
γA such

that
η ◦ αγ [(p)] = γ ◦ η ,

where αγ [(p)] denotes the prime-to-p quasi-isogeny induced by αγ , between
the prime-to-p-divisible groups attached to A and h∗

γA respectively. On each
individual moduli space Ag,n, the action of Sp2g(A

(p)
f ) induces algebraic cor-

respondences to itself; they are the classical Hecke correspondences on the
Siegel moduli spaces.

Definition 2.1. Let n ≥ 3 be an integer, (n, p) = 1. Let x ∈ Ag,n(k) be a
geometric point of Ag,n, and let x̃ ∈ Ag,(p)(k) be a geometric point of the
tower Ag,(p) above x.

(i) The prime-to-p Hecke orbit of x in Ag,n, denoted by H(p)(x), or H(x) for
short, is the image of the subset Sp2g(A

(p)
f )·x̃ of Ag,(p) under the projection

map πn : Ag,(p) → Ag,n.
(ii) Let ℓ be a prime number, ℓ ̸= p. The ℓ-adic Hecke orbit of x in Ag,n,

denoted by Hℓ(x), is the image of Sp2g(Qℓ) · x̃ under π : Ag,(p) → Ag,n.

Remark 2.2.

(i) It is easy to see that the definition of Hℓ(x) does not depend on the choice
of x̃. One can also use the ℓ-adic tower above Ag,n to define the ℓ-adic
Hecke orbits.

(ii) Explicitly, the countable set H(p)(x) (resp. Hℓ(x)) consists of all points
y ∈ Ag,n(k) such that there exists an abelian variety B over k and two
prime-to-p isogenies (resp. ℓ-power isogenies) α : B → Ax, β : B → Ay

such that α∗(λx) = β∗(λy).

(iii) The moduli stack Ag over k has a natural pro-étale GSp2g(Z
(p)
f ) cover; and

the group GSp2g(A
(p)
f ) operate on the projective limit. Then for any geo-

metric point x ∈ Ag,n(k), we can define the GSp2g(A
(p)
f )-orbit of x and the

GSp2g(Qℓ)-orbit of x as in Definition 2.1 using the pro-étale GSp2g(Z
(p)
f )-

tower. Explicitly, the GSp2g(A
(p)
f )-orbit of x (resp. the GSp2g(Qℓ)-orbit

of x) on Ag,n for a geometric point x ∈ Ag,n(k) can be explicitly de-
scribed as follows. It consists of all points y ∈ Ag,n(k) such that there
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exists a prime-to-p isogeny (resp. an ℓ-power isogeny) β : Ax → Ay such
that β∗(λy) = m(λx), where m is a prime-to-p positive integer (resp. a
non-negative integer power of ℓ.)

Remark 2.3. In Definition 2.1 we used the group Sp2g(A
(p)
f ) to define the

prime-to-p Hecke orbits of a closed point x in Ag,n → Spec(k). Geometrically
that means to consider the orbit of x under all prime-to-p symplectic quasi-
isogenies. One can also consider the orbit of x under all symplectic quasi-
isogenies, or, as a slight variation, the orbit of x under all quasi-isogenies which
preserve the polarization up to a multiple. The latter was used in [22, 15.A].
We considered only the prime-to-p Hecke correspondences in this article, since
they are finite étale correspondences on Ag,n, and reflect well the underlying
group-theoretic properties.

For any totally real number field F and any integer n ≥ 3, (n, p) = 1,
denote by MF,n the Hilbert modular variety over k attached to F as defined
in [8]. Just as in the case of Siegel modular varieties, the varieties MF,n over k

form a projective system, with a natural action by the group SL2(F ⊗Q A(p)
f ).

The prime-to-p Hecke orbit H(p)
F (x) and the ℓ-adic Hecke orbit HF,ℓ(x) of

a geometric point x ∈ MF,n(k) are, by definition, the image in MF,n(k) of
SL2(F⊗QA(p)

f )·x̃ and SL2(F⊗QQℓ)·x̃ respectively, where x̃ is a k-valued point,
lying above x, of the projective system MF,(p) := {MF,m : (m, p) = 1}.

More generally, if E = F1 × · · · × Fr is a product of totally real number
fields, and n ≥ 3 is a positive integer not divisible by p, we can define the
Hilbert modular variety ME over k attached to E, in the same fashion as in
[8], with OE := OF1 × · · · × OFr , as follows. For any k-scheme S, ME(S) is
the set of isomorphism classes of triples of the form

(A → S, α : OE → EndS(A), φ : A ⊗OE L
∼−→ At) ,

where α is a ring homomorphism, L is an invertible OE module with a notion
of positivity L+ ⊂ L ⊗Q R, and φ is an isomorphism of abelian varieties such
that for each element λ ∈ L, the homomorphism φλ : A → At attached to λ
is symmetric, and φλ is a polarization of A if λ is positive. Then we have a
canonical isomorphism ME = MF1 × · · ·×MFr . The notion of Hecke orbits
generalizes in the obvious way to the present situation.

Remark 2.4. The notion of prime-to-p Hecke orbits can be generalized to
other modular varieties over k of PEL-type in a natural way. Furthermore,
one expects that the notion of prime-to-p Hecke orbits can be generalized to
the reduction over k of a Shimura variety X , with satisfactory properties.
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3 Leaves

In this section we work over an algebraically closed field k of characteristic
p > 0. The modular varieties Ag,n and ME,n are considered over the fixed
based field k.

Theorem 3.1 (Oort). Let n ≥ 3 be an integer, (n, p) = 1. Let x ∈ Ag,n(k)
be a geometric point of Ag,n.

(i) There exists a unique reduced constructible subscheme C(x) of Ag,n, called
the leaf passing through x, characterized by the following property. For
every algebraically closed field K ⊇ k, C(x)(K) consists of all elements
y ∈ Ag,n(K) such that

(Ax[p∞], λx[p∞]) ×Spec(k) Spec(K) ≃ (Ay[p∞], λy[p∞]) ,

where λx[p∞], λy [p∞] are the principal quasi-polarizations induced by the
principal polarizations λx, λy on the Barsotti–Tate groups Ax[p∞], Ay[p∞]
respectively.

(ii) The leaf C(x) is a locally closed subscheme of Ag,n. Moreover it is smooth
over k.

Remark 3.2.

(i) Theorem 3.1 is proved in [26, 3.3, 3.14]. The claim that the subset of
Ag,n(k) consisting of all geometric points y such that (Ay [p∞], λy[p∞])
is isomorphic to (Ax[p∞], λx[p∞]) is the set of geometric points of a con-
structible subset of Ag,n, follows from the following fact, proved in Manin’s
thesis [16]: A Barsotti–Tate group over k of a given height h is determined,
up to non-unique isomorphism, by its truncation modulo a sufficiently high
level N ≥ N(h).

(ii) T. Zink showed, in a letter to C.-L. Chai dated May 1, 1999, the following
generalization of Manin’s result: A crystal M over k is determined, up to
non-unique isomorphisms, by its quotient modulo pN , for some suitable
N > 0 depending only on the height of M and the maximum among the
slopes of M .

(iii) In [26], C(x) is called the central leaf passing through x.
(iv) It is clear from the definition that each leaf in Ag,n is stable under all

prime-to-p Hecke correspondences. In particular, the Hecke orbit H(p)(x)
is contained in the leaf C(x) passing through x.

(v) Every leaf is contained in a Newton polygon stratum of Ag,n, and every
Newton polygon stratum is a disjoint union of leaves. Recall that a Newton
polygon stratum Wξ(Ag,n) in Ag,n over k is, by definition, the subset of
Ag,n such that Wξ(Ag,n)(K) consists of all K-valued points y of Ag,n such
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that the Newton polygon of Ay[p∞] is equal to ξ, for all fields K ⊃ k.2
By Grothendieck–Katz, Wξ(Ag,n) is a locally closed subset of Ag,n; see
[14] for a proof. There are infinitely many leaves in Ag,n if g ≥ 2. In
particular the decomposition of Ag,n into a disjoint union of leaves is not
a stratification in the usual sense: There are infinitely many leaves, and
the closure of some leaves contain infinitely many leaves.

Examples 3.3.

(i) The ordinary locus of Ag,n, that is the largest open subscheme of Ag,n over
which each geometric fiber of the universal abelian scheme is an ordinary
abelian variety, is a leaf.

(ii) The “almost ordinary” locus of Ag,n, or, the locus consisting of all ge-
ometric points x such that the maximal étale quotient of the attached
Barsotti–Tate group Ax[p∞] has height g − 1, is a leaf.

(iii) Every supersingular leaf in Ag,n is finite over k. Hence there are infinitely
many supersingular leaves in Ag,n if g ≥ 2.

(iv) Consider the Newton polygon stratum Wξ(A3,n) in A3,n, where the New-
ton polygon ξ has slopes ( 1

3 , 2
3 ). Every leaf C contained in Wξ(A3,n) is

two-dimensional, while dim(Wξ(A3,n)) = 3.

Proposition 3.4. Let C be a leaf in Ag,n. For each integer N ≥ 1, denote
by A[pN ] → C the pN-torsion subgroup scheme of the restriction to C of
the universal abelian scheme. Then there exists a finite surjective morphism
f : S → C such that (A[pN ], λ[pN ]) ×C S is a constant principally polarized
truncated Barsotti–Tate group over S.

Proof. See [26, 1.3]. !

Remark 3.5. Using Proposition 3.4, one can show that there exist finite sur-
jective isogeny correspondences between any two leaves lying in the same
Newton polygon stratum; see [26, Lemma 3.14]. In particular, any two leaves
in the same Newton polygon stratum have the same dimension.

Remark 3.6. In this article we have focused our attention on leaves in Ag,n

over k. The notion of leaves can be extended to other modular varieties of
PEL-type in a similar way, and the basic properties of leaves, including The-
orem 3.1 and Propositions 3.4, 3.7, can all be generalized; some of the gener-
alized statements become a little stronger. It is expected that the notion of
leaves can be defined on reduction over k of a Shimura variety X , with nice
properties.

2Some author use the notation W 0
ξ (Ag,n) instead of W 0

ξ (Ag,n), and call it an
“open Newton polygon stratum”; then they denote by Wξ(Ag,n) the closure of
W 0

ξ (Ag,n) in Ag,n and call it a Newton polygon stratum.
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Proposition 3.7. Let C be a leaf in Ag,n. Denote by A[p∞] → C the Barsotti–
Tate group attached to the restriction to C of the universal abelian scheme.
Then there exists a slope filtration on A[p∞] → C. More precisely, there exist
Barsotti–Tate subgroups

0 = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gm = A[p∞]

of A[p∞] → C over the leaf C such that Gi/Gi−1 is a Barsotti–Tate group over
C with a single Frobenius slope µi, i = 1, . . . , m, and µ1 > µ2 > · · · > µm.
Moreover each Barsotti–Tate group Gi/Gi−1 → C is geometrically fiberwise
constant, for i = 1, . . . , m. In other words, any two geometric fibers of
Gi/Gi−1 → C are isomorphic after base extension to a common algebraically
closed overfield.

Remark 3.8.

(i) The statement that Hi := Gi/Gi−1 has Frobenius slope µi means that
there exist constants c, d > 0 such that

Ker([p⌊Nµi−c⌋]Hi) ⊆ Ker(Fr(p
N )

Hi
) ⊆ Ker([p⌊Nµi+d⌋]Hi)

for all N ≫ 0. Here Fr(p
N )

Hi
: Hi → H(pN )

i denotes the relative pN -
Frobenius for Hi → C, also called the N -th iterate of the relative Frobenius
by some authors, while Ker([p⌊Nµi−c⌋]Hi) (resp. Ker([p⌊Nµi+d⌋]Hi)) is the
kernel of multiplication by p⌊Nµi−c⌋ (resp. by p⌊Nµi+d⌋) on Hi.

(ii) The Frobenius slopes of a Barsotti–Tate group X measures divisibility
property of iterates of the Frobenius map on X . A Barsotti–Tate group
X is isoclinic with Frobenius slope µ if (FrX)N/pµN and pµN/(FrX)N

are both bounded as N → ∞. In the literature the terminology “slope” is
sometimes also used to measure the divisibility of the Verschiebung, hence
we use “Frobenius slope” to avoid possible confusion.

(iii) When all fibers of A[p∞] at points of C are completely slope divisible, the
existence of the slope filtration was proved by in [32, Proposition 14];
see also [27, Proposition 2.3]. The statement of Proposition 3.7 has not
appeared in the literature, but the following stronger statement can be
deduced from [32, Theorem 7] and [27, Theorem 2.1]: If S → Spec(Fp)
is an integral Noetherian normal scheme of characteristic p, and G is a
Barsotti–Tate group over S which is geometrically fiber-wise constant,
then G → S admits a slope filtration.

(iv) The slope filtration on a leaf holds the key to the theory of canonical
coordinates on a leaf; see §7.

(v) It is clear that on a Barsotti–Tate group over a reduced base scheme S
over k, there exists at most one slope filtration.

(vi) One can construct a Barsotti–Tate group G over a smooth base scheme S
over k, for instance P1, such that G does not have a slope filtration.
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Denote by Π0(C(x)) the scheme of geometrically irreducible components of
C(x), or equivalently, the set of geometrically connected components of C(x),
since C(x) is smooth over k. The scheme Π0(C(x)) is finite and étale over k;
this assertion holds even if the base field k is not assumed to be algebraically
closed.

Let E = F1×· · ·×Fr be the product of totally real number fields F1, . . . , Fr ,
and let n ≥ 3 be an integer with (n, p) = 1. The notion of leaves can
be extended to the Hilbert modular variety ME,n over k, as follows. Let
x ∈ ME,n(k) be a geometric point of the Hilbert modular variety ME,n(k).
The leaf in ME,n passing through x is the smooth locally closed subscheme
CE(x), characterized by the property that CE(x)(K) consists of all geometric
points y ∈ ME,n(K) such that there exists an OE⊗ZZp-linear isomorphism
from Ay[p∞] to Ax[p∞] compatible with the OE-polarizations, for every alge-
braically closed field K ⊃ k.

Just as in the case of Siegel modular varieties, each leaf in ME,n is stable
under all prime-to-p Hecke correspondences on ME,n.

The slope filtration on the Barsotti–Tate group over a leaf in ME,n takes
the following form. Let CE be a leaf in ME,n, and denote by G the Barsotti–
Tate group attached to the restriction to CE of the universal abelian scheme
over CE . Write OE⊗ZZp =

∏s
j=1 OE℘j

, where each OE℘j
is a complete discrete

valuation ring. The natural action of OE ⊗Z Zp on G gives a decomposition

G = G1 × · · ·× Gs ,

where each Gj is a Barsotti–Tate group over CE , with action by OE℘j
, and

the height of Gj is equal to 2 [OE℘j
: Zp]. Moreover, for j ∈ {1, . . . , s} and Gj

not isoclinic of slope 1
2 , there exists a Barsotti–Tate subgroup Hj ⊂ Gj over

CE , stable under the action of OE℘j
, such that

• the height of Hj is equal to [OE℘j
: Zp],

• both Hj and Gj/Hj are isoclinic, of Frobenius slopes µj , µ′
j respectively,

and
• µj > µ′

j and µj + µ′
j = 1.

4 The Hecke orbit conjecture

Let k be an algebraically closed field of characteristic p, and let n ≥ 3 be an
integer, (n, p) = 1.
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Conjecture 4.1. Denote by Ag,n the moduli space of g-dimensional princi-
pally polarized abelian varieties over k with symplectic level-n structures as
before.

(HO) For any geometric point x of Ag,n, the Hecke orbit H(p)(x) is dense
in C(x).
(HO)ct For any geometric point x of Ag,n, we have dim(H(p)(x)) =
dim(C(x)), where H(p)(x) denotes the Zariski closure of the countable sub-
set H(p)(x) in Ag,n. Equivalently, H(p)(x) contains the irreducible compo-
nent of C(x) passing through x.
(HO)dc For any geometric point x of Ag,n, the canonical map

Π0(H(p)(x)
◦
) → Π0(C(x))

is surjective, where H(p)(x)
◦

:= H(p)(x)∩ C(x) denotes the Zariski closure
of the Hecke orbit H(p)(x) in the leaf C(x). In other words, the prime-
to-p Hecke correspondences operate transitively on the set Π0(C(x)) of
geometrically irreducible components of C(x).

Remark 4.2.

(i) Conjecture (HO) is due to Oort, see [26, 6.2]. It implies Conjecture 15.A
in [22], which asserts that the orbit of a point x of Ag,n(k) under all Hecke
correspondences, including all purely inseparable ones, is Zariski dense in
the Newton polygon stratum containing x.

(ii) It is clear that conjecture (HO) is equivalent to the conjunction of (HO)ct
and (HO)dc. We call (HO)ct (resp. (HO)dc) the continuous (resp. discrete)
part of the Hecke orbit conjecture (HO).

(iii) Conjecture (HO)dc is essentially an irreducibility statement; see Theorem
5.1.

(iv) We can also formulate an ℓ-adic version of the Hecke orbit conjecture,
(HO)ℓ, for any prime number ℓ ̸= p. It asserts that Hℓ(x) is dense in
C(x). One can define the continuous part (HO)ℓ,ct, and the discrete part
(HO)ℓ,dc of (HO)ℓ as in 4.1. Clearly, (HO)ℓ ⇐⇒ (HO)ℓ,ct + (HO)ℓ,dc.

(v) Theorem 5.1 tells us that (HO)ℓ,dc ⇐⇒ (HO)dc, and (HO)ℓ ⇐⇒ (HO).
So, although (HO)ℓ appears to be a stronger statement than (HO), it is
essentially equivalent to it. Strictly speaking, Theorem 5.1 gives the im-
plications when the Hecke orbit in question is not supersingular, however
the supersingular case can be dealt with directly, using the weak approx-
imation theorem.

Let E be a finite product of totally real number fields, and let ME be
the Hilbert modular variety over k attached to E. Then we can formulate the
Hecke orbit conjectures for Mn as in Conjecture 4.1, and will use (HO)E ,
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(HO)E,ct, and (HO)E,dc to denote the Hecke orbit conjecture for Mn and its
two parts. Remark 4.2 (ii), (iii), (iv) hold in the present context.

Remark 4.3. The Hecke orbit conjecture(s) can be formulated for other mod-
ular varieties of PEL-type, and the reduction over k of any Shimura variety
X if one is optimistic. It should be noted, however, that the statement in Re-
mark 4.2 (iii) needs to be modified, because the last sentence of Theorem 5.1
depends on the fact that Sp2g is simply connected. The remedy is to use
the Gder(A(p)

f )-orbit instead of the G(A(p)
f )-orbit, where G is the connected

reductive group over Q in the input data of the Shimura variety X .

Theorem 4.4. The Hecke orbit conjectures (HO),(HO)ℓ hold for the Siegel
modular varieties. In other words, every prime-to-p Hecke orbit is Zariski
dense in the leaf containing it; the same is true for every ℓ-adic Hecke orbit,
for every prime number ℓ with (ℓ, p) = 1.

In the rest of this article we present an outline of the proof of Theorem
4.4. We have already seen that Theorem 5.1 on ℓ-adic monodromy groups is
helpful in clarifying the discrete Hecke orbit conjecture, and for the equiv-
alence between (HO)ℓ and (HO). The foundation underlying our approach
is the local stabilizer principle, to be explained in §6; this principle is quite
general and can be applied to all PEL-type modular varieties. We will also
use a special property of the Siegel modular varieties, called the Hilbert trick,
to be explained in §9. That property holds for modular varieties of PEL-type
C, but not for PEL-type A or D. Both the local stabilizer principle and the
Hilbert trick were used in [6]; the former was used not only for points of the
ordinary locus, but also the zero-dimensional cusps and supersingular points.

There are several techniques, listed as items (C), (R), (S), (H) in the fourth
paragraph of §1, which make the local stabilizer principle more potent. Among
them, the methods (C), (R), (H) can be generalized to all modular varieties
of PEL-type, while (S) depends on the Hilbert trick, therefore applies only to
modular varieties of PEL-type C.

The Hecke orbit conjecture for the Hilbert modular varieties enters the
proof of (HO)ct for Ag,n at a critical point, through the Hilbert trick.

Theorem 4.5. The Hecke orbit conjecture holds for Hilbert modular varieties.
In other words, every prime-to-p Hecke orbit in a Hilbert modular variety is
Zariski dense in the leaf containing it.

5 ℓ-adic monodromy of leaves

Theorem 5.1 below explores the relation between the Hecke symmetries and
the ℓ-adic monodromy. It asserts that the ℓ-adic monodromy of any non-
supersingular leaf on Ag is maximal. A byproduct of Theorem 5.1, from a
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group theoretic consideration, is an irreducibility statement. The irreducibility
statement implies that for a non-supersingular leaf C in Ag, the discrete part
(HO)dc of the Hecke orbit conjecture holds for C if and only if C is irreducible.

Theorem 5.1. Let k be an algebraically closed field of characteristic p. Let
n ≥ 3 be a natural number which is prime to p. Let ℓ be a prime number ℓ ! pn.
Let Z be a smooth locally closed subvariety of Ag,n over k. Assume that Z is
stable under all ℓ-adic Hecke correspondences coming from Sp2g(Qℓ), and that
the ℓ-adic Hecke correspondences operate transitively on the set of irreducible
components of Z. Let A → Z be the restriction to Z of the universal abelian
scheme. Let Z0 be an irreducible component of Z, and let η̄ be a geometric
generic point of Z0. Assume that Aη̄ is not supersingular. Then the image
ρA,ℓ(π1(Z0, η)) of the ℓ-adic monodromy representation of A → Z0 is equal
to Sp(Tℓ, ⟨ , ⟩ℓ) ∼= Sp2g(Zℓ), where Tℓ = Tℓ(Aη̄) = lim←−n

A[ℓn](η̄) denotes the
ℓ-adic Tate module of Aη̄. Moreover Z = Z0, i.e., Z is irreducible, and Z is
stable under all prime-to-p Hecke correspondences on Ag,n.

Remark 5.2.

(i) Theorem 5.1 is handy when one tries to prove the irreducibility of certain
subvarieties of Ag. For instance, if one wants to show that a leaf or a
Newton polygon stratum in Ag is irreducible, Theorem 5.1 tells us that
it suffices to show that the the prime-to-p Hecke correspondences operate
transitively on the set of irreducible components of the given leaf or New-
ton polygon stratum. The latter statement be approached by the standard
degeneration argument in algebraic geometry.

(ii) Theorem 5.1 is the main result of [4]. The proof of Theorem 5.1 can be
generalized to other modular varieties of PEL-type, but one has to make
suitable modification of the statement if the derived group of G is not
simply connected.

(iii) The assumption that Z is stable under all ℓ-adic Hecke correspondences
coming from Sp2g(Qℓ) means that the closed points of Z is a union of ℓ-
adic Hecke correspondences. See Section 2 for the action of Sp2g(A

(p)
f ) on

the tower Ag,(p) of modular varieties. The action of the subgroup Sp2g(Qℓ)
of Sp2g(A

(p)
f ) induces the ℓ-adic Hecke correspondences on Ag,n.

(iv) The proof of Theorem 5.1 is mostly group-theoretic; the algebro-geometric
input is the semisimplicity of the ℓ-adic monodromy group.

6 The action of the local stabilizer subgroup

Let k be an algebraically closed field of characteristic p. Let n ≥ 3 be an
integer, (n, p) = 1. Let ℓ be a prime number, ℓ ̸= p. Let Z ⊂ Ag,n be a
reduced closed subscheme stable under all ℓ-adic Hecke correspondences. In
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other words, Z is a union of ℓ-adic Hecke orbits. Let x = ([Ax, λx]) ∈ Z(k)
be a closed point of Z. Let E = Endk(Ax) ⊗Z Qp, and let ∗ be the Rosati
involution of E induced by the principal polarization λx. Let

H = {u ∈ E×| u · u∗ = u∗ · u = 1}

be the unitary group attached to the pair (E ⊗Q Qp, ∗). Define the local sta-
bilizer subgroup Ux at x ∈ Ag(k) by Ux := H ∩ Endk(Ax[p∞])×.

Similarly, let Ẽ := Endk(Ax[p∞])⊗Zp Qp, and let ∗̃ be the involution on Ẽ

induced by λx. Denote by H̃ the unitary group attached to the pair (Ẽ, x̃), and
let Ũx = H̃ ∩ Endk(Ax[p∞])×. The group Ũx operates naturally on A/x

g,n by
deformation theory. Since there is a natural inclusion Ux ↪→ Ũx, the subgroup
Ux inherits an action on A/x

g,n.

Proposition 6.1 (local stabilizer principle). Notation as above. Then the
closed formal subscheme Z/x of A/x

g,n is stable under the action of the local
stabilizer subgroup Ux on A/x

g,n

Proof (Sketch). Let U be the unitary group attached to the pair (E, ∗); it is a
reductive linear algebraic group over Q. In particular the weak approximation
theorem holds for U . Choose and fix a “standard embedding”

U(A(p)
f ) ↪→ Sp2g(A

(p)
f )

coming from a choice of a symplectic level-Z(p)
f structure of Ax. Then every

element of the subgroup U(A(p)
f ) of Sp2g(A

(p)
f ) gives rise to a prime-to-p Hecke

correspondence having x as a fixed point. For any given element γp ∈ Ux,
choose an element γ ∈ U(Q) close to γp in U(Qp). Note that the image of
γ in U(A(p)

f ) gives rise to a prime-to-p Hecke correspondence, which has x

as a fixed point and sends the formal subscheme Z/x of A/x
g,n into Z/x itself.

Interpreted in terms of deformation theory, the last assertion implies that a
formal neighborhood Spec

(
OZ/x/mN

x

)
of x in Z/x, as a formal subscheme of

A/x
g,n, is stable under the natural action of γp, where mx is the maximal ideal

of OZ/x , and N = N(γp, γ) depends on how close γ is to γp, N(γp, γ) → ∞
as γ → γp. Taking the limit as γ goes to γp, we see that Z/x is stable under
the action of γp. !

Remark 6.2.

(i) The action of the local stabilizer subgroup on the deformation space goes
back to Lubin and Tate in [15].

(ii) In [6], the local stabilizer principle was applied to the zero-dimensional
cusps of Ag,n, and also to points of Ag,n defined over finite fields. The
calculation of [6, Proposition 2, p. 454] at the zero-dimensional cusps is
a bit complicated, and can be avoided, using “Larsen’s example” on page
443 of [6] instead.
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(iii) The bigger the local stabilizer subgroup Ux, the more information the
action of Ux on A/x

g,n contains. The size of U , the linear algebraic group
over Qp such that Ux is open in U(Qp), is maximal when the abelian
variety Ax is supersingular. If x is a supersingular point, then U is an
inner twist of Sp2g, so in some sense almost all information about the
prime-to-p Hecke correspondences on Ag,n are encoded in the action of
Ux on A/x

g,n. The challenge, however, is to dig the buried information
out of this action; the success stories include Theorem 11.3, and [6, §5,
Proposition 7].

7 Canonical coordinates for leaves

Let k be an algebraically closed field of characteristic p. Let C be a leaf on
Ag,n, where n ≥ 3 is a natural number relatively prime to p. Let x ∈ C(k)
be a closed point of C. Recall that the leaf C is defined by a point-wise prop-
erty, namely, a point y ∈ C(k) is in C = C(x) if and only if the principally
quasi-polarized Barsotti–Tate groups (Ay [p∞], λy[p∞]) and (Ax[p∞], λx[p∞])
are isomorphic. One can also use the same point-wise property to define leaves
(on the base scheme) for a (principally quasi-polarized) Barsotti–Tate group
over a Noetherian integral base scheme over k; see [26].

From the definition it is not immediately clear how to “compute” the for-
mal completion C/x of the leaf C at x. However this turns out to be possible,
and the resulting theory is a generalization of the classical Serre–Tate theory
for the local moduli of ordinary abelian varieties. Some highlights of the de-
scription of C/x will be explained in this section. More details can be found
in [7], [2].

Recall that the deformation theory of (Ax, λx) is the same as that of the
associated principally quasi-polarized Barsotti–Tate group (Ax[p∞], λx[p∞]).
Let

0 = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gm = AC [p∞]

be the slope filtration of the restriction to C of the Barsotti–Tate group at-
tached to the universal abelian scheme, so that each Gi/Gi−1 is a Barsotti–
Tate group over C with slope µi, i = 1, 2, . . . , m, and µ1 > µ2 > · · · > µm.
Moreover, each subquotient Gi/Gi−1 is constant over the formal completion
C/x of C at x, because it is geometrically fiberwise constant over the complete
strictly henselian base formal scheme C/x.

Let Def(Ax) = Def(Ax[p∞]) be the local deformation space of Ax over
k, or equivalently the local deformation space of Ax[p∞] over k; it is a g2-
dimensional smooth formal scheme over k. A basic phenomenon here is that
C/x is determined by the slope filtration on A[p∞] → C/x. More precisely,
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the formal subscheme C/x ⊂ A/x
g,n ⊂ Def(Ax) is contained in the “extension

part” MDE(Ax[p∞]) of Def(Ax), where MDE(Ax[p∞]) is the maximal closed
formal subscheme of the local deformation space Def(Ax) = Def(Ax[p∞]) such
that the restriction to MDE(Ax[p∞]) of the universal Barsotti–Tate group is
a successive extension of constant Barsotti–Tate groups

(Gi/Gi−1)x ×Spec(k) MDE(Ax[p∞]) ,

extending the slope filtration of Ax[p∞]. For each Artinian local k-algebra R,
MDE(R) is the set of isomorphism classes of tuples

(
0 = G̃0 ⊂ G̃1 ⊂ · · · ⊂ G̃m; α1, . . . , αm; β1, . . . , βm

)
,

such that

• G̃i is a Barsotti–Tate group over R for each i,
• each quotient G̃i/G̃i−1 is a Barsotti–Tate group over R, i = 1, . . . , m,
• αi is an isomorphism from G̃i ×Spec(R) Spec(k) to (Gi)x, for i = 1, . . . , m,

• βi is an isomorphism from G̃i/G̃i−1 to (Gi/Gi−1)x ×Spec(k) Spec(R), for
i = 1, . . . , m,

• the inclusion maps Gi ↪→ Gi+1 and G̃i ↪→ G̃i+1, for i = 1, . . . , m − 1, are
compatible with the isomorphisms α1, . . . , αm

• the isomorphisms β1, . . . , βm are compatible with α1, . . . , αm.

Our theory of canonical coordinates provides a description of the closed formal
subscheme C/x of MDE(Ax[p∞]) in terms of the structure of MDE(Ax[p∞]),
independent of the notion of leaves. If the abelian variety Ax is ordinary, then
m = 2, G1 is toric, G2/G1 is étale, and the theory reduces to the classical
Serre–Tate coordinates.

The computation of C/x can be reduced to the following two “essential
cases”. In both cases we have two p-Barsotti–Tate groups X and Y over k; X
has slope µX , while Y has slope µY . We assume that µX < µY . Let Spf(R) be
the equi-characteristic deformation space of X × Y . Let G → Spf(R) be the
universal deformation of X × Y . For each s ≥ 1, since G[ps] is a finite locally
free group scheme over Spf(R), it is the formal completion of a unique finite
locally free group scheme over Spec(R), denoted by G[ps]′ → Spec(R). The
inductive system of finite locally free group schemes G[ps]′ → Spec(R) form
a Barsotti–Tate group over Spec(R), denoted by G → Spec(R), abusing the
notation.

• (unpolarized case) In this case, our goal is to compute the leaf in Spec(R),
passing through the closed point of Spec(R), for the Barsotti–Tate group
G → Spec(R). This leaf will be denoted by C∧

up.
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• (polarized case) Suppose that λ is a principal quasi-polarization on the
product X × Y . This assumption implies that µX +µY = 1. The equi-
characteristic deformation space of (X×Y, λ) is a closed formal subscheme
Spf(R/I) of Spf(R). We would like to compute the leaf in Spec(R/I),
passing through the closed point of Spec(R/I), for the principally polarized
Barsotti–Tate group G → Spec(R/I); denote this leaf by C∧.

Our starting point in the computation of C/x
up and C/x is the following

observation. There is a closed formal subscheme DE(X, Y ) of the deformation
space Spf(R), maximal with respect to the property that the restriction to
DE(X, Y ) of the universal deformation of X×Y is an extension of the constant
group X ×Spec(k) DE(X, Y ) by the constant group Y ×Spec(k) DE(X, Y ). It is
not difficult to see that DE(X, Y ) is formally smooth over k. The existence
of the canonical filtration of the restriction of G to the leaves implies that
both C∧

up and C∧ are closed formal subschemes of DE(X, Y ). On the other
hand, the Baer sum for extensions produces a group law on DE(X, Y ), so
that DE(X, Y ) has a natural structure as a smooth formal group over k.

Theorem 7.1.

(i) In the unpolarized case, the leaf C∧
up is naturally isomorphic to the maximal

p-divisible formal subgroup DE(X, Y )p-div of DE(X, Y ). The p-divisible
group DE(X, Y )p-div has slope µY −µX .

(ii) In the polarized case, the principal quasi-polarization λ on X × Y induces
an involution on DE(X, Y )p-div, and C∧ is equal to the maximal subgroup
DE(X, Y )sym

p-div of DE(X, Y )p-div which is fixed under the involution. Again,
DE(X, Y )sym

p-div is a p-divisible formal group with slope µY −µX .

Remark 7.2.

(i) Theorem 7.1 gives a structural characterization of the leaves C∧
up and C∧

in the formal subscheme DE(X, Y ) of the deformation space Spf(R) of
X × Y . In Theorem 7.7 and Proposition 7.8, we will see a structural
characterization of a leaf C(Def(G)) in the equi-characteristic deformation
space Def(G) of a general Barsotti–Tate group G over k, in a similar spirit.
The above characterization deals with the differential property of leaves,
and complements the global point-wise definition of leaves.

(ii) The statement in Theorem 7.1 (ii) follows quickly from 7.1 (i). The last
sentence of 7.1 (i) can be proved by comparing the effect of iterates of
the relative Frobenius on DE(X, Y )p-div with suitable powers p, assuming
without loss of generality that X and Y are both minimal.

(iii) We have a natural inclusion C∧
up ⊂ DE(X, Y ). To prove that C∧

up contains
DE(X, Y )p-div, one shows that the pull-back of the universal extension of
X by Y over DE(X, Y ) to the perfection of DE(X, Y )p-div splits. To prove
that C∧

up ⊆ DE(X, Y )p-div, one shows that for every complete Noetherian
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local domain S over k and every S-valued point f : S → DE(X, Y )unip of
the maximal unipotent part of DE(X, Y ), if the extension of X ×Spec(k) S
by Y ×Spec(k) S attached to f becomes trivial over the perfection Sperf of
S, then f corresponds to the trivial extension over S.

Theorem 7.3. Let M(X), M(Y ) be the covariant Dieudonné module of X, Y
respectively. Let B(k) be the fraction field of W (k). The B(k)-vector space

HomW (k)(M(X), M(Y )) ⊗W (k) B(k)

has a natural structure as a V -isocrystal.

(i) Let M(DE(X, Y )p-div) be the covariant Diedonné module of

C∧
up = DE(X, Y )p-div.

Then there exists a natural isomorphism of V -isocrystals

M(DE(X, Y )p-div) ⊗W (k) B(k) ∼−→ HomW (k)(M(X), M(Y )) ⊗W (k) B(k) .

(ii) Suppose that λ is a principal quasi-polarization λ on X × Y . Let ι be
the involution on HomW (k)(M(X), M(Y )) ⊗W (k) B(k) induced by λ and
M(DE(X, Y )sym

p-div) the covariant Diedonné module of C∧ = DE(X, Y )sym
p-div.

Then there exists a natural isomorphism of V -isocrystals

M(DE(X, Y )sym
p-div) ⊗W (k) B(k) ∼−→ Homsym

W (k)(M(X), M(Y )) ⊗W (k) B(k) ,

where the right-hand side is the subspace of HomW (k)(M(X), M(Y ))⊗W (k)

B(k) fixed under the involution ι.

Remark 7.4.

(i) See [2] for a proof of Theorem 7.3. The set Cartp(k[[t]]) of all formal
curves in the functor of reduced Cartier ring for algebras over Z(p) plays
a crucial role in the proof of Theorem 7.3; it is denoted by BCp(k) in [2].
The set BCp(k) has a natural (Cartp(k), Cartp(k))-bimodule structure, be-
cause Cartp(k) is a subring of Cartp(k[[t]]). Moreover Cartp(k[[t]]) has an
“extra” Cartp(k)-module structure, compatible with the above bimodule
structure; it comes from the Cartier theory, because the functor Cartp is
a commutative smooth formal group. The Cartier module of MDE(X, Y )
is canonically isomorphic to

Ext1Cartp(k)

(
M(X), BCp(k) ⊗Cartp(k) M(Y )

)

where the extension functor is computed using the left Cartp(k)-module
structure in the bimodule structure, and the action of Cartp(k) on
MDE(X, Y ) comes from the “extra” Cartp(k)-module structure of BCp(k)
mentioned above. It follows that the covariant V -isocrystal attached to
MDE(X, Y )p-div is canonically isomorphic to

Ext1Cartp(k)

(
M(X), BCp(k) ⊗Cartp(k) M(Y )

)
⊗W (k) B(k) .
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(ii) Theorem 7.3 is a generalization of the appendix of [18]. In [18] the au-
thors dealt with the case when Y is the formal completion of Gm. In
that case MDE(X, Y ) is already a p-divisible formal group, and the nat-
ural map in the last displayed formula in Theorem 7.3 (i) preserves the
natural integral structures, giving a formula for the Cartier module of
MDE(X, Y ). The proof of Theorem 7.3 (i) begins by choosing a finite
free resolution of M(X) of length 1, then using the resolution to write
down the canonical map in Theorem 7.3 (i). The main technical ingredi-
ent is an approximation of BCp(k)⊗Z Q by Cartp(k)⊗̂W (k)Cartp(k)⊗Z Q,
where Cartp(k)⊗̂W (k)Cartp(k) denotes a completed tensor product. The
statement 7.3 (ii) follows easily from the proof of 7.3 (i).

(iii) The method of the proof of Theorem 7.3 can be regarded as a gener-
alization of §4 and §5 of Mumford’s seminal paper [17]. It may be in-
teresting to note that the set denoted by ÃR on pages 316–317 of [17],
together with its (AR, AR)-bimodule structure is essentially the same as
the set BCp(k) ⊗Cartp(k) M(Ĝm) in our notation, with two structures of
left (Cartp(k)-modules that commute with each other. The first action of
Cartp(k)) comes from the left action of Cartp(k)) on BCp(k), while the
second left action of Cartp(k)) comes from the “extra” Cartp(k)-module
structure of BCp(k).

(iv) We do not know a convenient characterization of the the p-divisible formal
group DE(X, Y )p-div inside its isogeny class, in terms of the Dieudonné
modules M(X), M(Y ). When both X and Y are minimal in the sense
of [20], i.e., the endomorphism Zp-algebra of X, Y are maximal orders,
we expect that DE(X, Y )p-div is also minimal. It is easy to check that
this conjectural statement holds when the denominators of the Brauer
invariant of X and Y are relatively prime.

Corollary 7.5. Let h(X), h(Y ) be the height of X, Y respectively.

(i) In the unpolarized case, the height of DE(X, Y )p-div is equal to h(X)·h(Y ),
and

dim(DE(X, Y )p-div) = (µY −µX ) · h(X) · h(Y ).

(ii) In the polarized case, we have h(X) = h(Y ), the height of DE(X, Y )sym
p-div

is equal to h(X)·(h(X)+1)
2 , and

dim(DE(X, Y )sym
p-div) =

1
2
(µY −µX )·h(X)·(h(X) + 1).

Remark 7.6. The formulae (i), (ii) in Corollary 7.5 are quite similar to the
formulae for the dimension of the deformation space of an h-dimensional
abelian variety and the dimension of Ah respectively, except that there is
an “extra factor” µY −µX .
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We go back to the general case. Just as in Theorem 7.1, it is convenient
to consider the leaves in the local deformation space for the (unpolarized)
Barsotti–Tate group Ax[p∞]. Denote by C(Def(Ax[p∞])) the leaf in the de-
formation space Def(Ax[p∞]) of the Barsotti–Tate group Ax[p∞]. Just as in
Proposition 3.7, there exists a slope filtration

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gm = AC(Def(Ax[p∞]))[p∞]

on the universal Barsotti–Tate group over C(Def(Ax[p∞])), where each graded
piece Gi/Gi−1 is an isoclinic Barsotti–Tate group over C(Def(Ax[p∞])) with
slope µi, µ1 > · · · > µm. Therefore the leaf C(Def(Ax[p∞])) is contained in
MDE(Ax[p∞]), the maximal closed formal subscheme of Def(Ax[p∞]) such
that the restriction to MDE(Ax[p∞]) of the universal Barsotti–Tate group
has a slope filtration extending the slope filtration of Ax[p∞]. We would
like to have a structural description of the leaf C(Def(Ax[p∞])) as a closed
formal subscheme of MDE(Ax[p∞]), independent of the “point-wise” defi-
nition of the leaf. This will be achieved inductively, allowing us to under-
stand how C(Def(Ax[p∞])) is “built up” from the p-divisible formal groups
DE(Gi/Gi−1, Gj/Gj−1)p-div, for 1 ≤ j < i ≤ m.

For each Barsotti–Tate group G over k, we can consider the leaf C(Def(G))
in the deformation space Def(G) over k, and we know that C(Def(G)) is con-
tained in MDE(G), the maximal closed formal subscheme of Def(G) such that
the restriction to MDE(G) of the universal Barsotti–Tate group has a slope
filtration extending the slope filtration of G.

Let 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gm be the slope filtration of a Barsotti–Tate
group G over k. Suppose that 0 ≤ j1 ≤ j2 < i2 ≤ i1 ≤ m. Then there exists a
natural formally smooth morphism

π[j2,i2],[j1,i1] : MDE(Gi1/Gj1) → MDE(Gi2/Gj2) .

These morphisms form a finite projective system, that is

π[j3,i3],[j2,i2] ◦ π[j2,i2],[j1,i1] = π[j3,i3],[j1,i1]

if 0 ≤ j1 ≤ j2 ≤ j3 < i3 ≤ i2 ≤ i1 ≤ m. Moreover, using the theory of
biextensions of Mumford and Grothendieck in [17] and [11], one can show
that the morphism

MDE(Gi/Gj) −→ MDE(Gi−1/Gj) ×MDE(Gi−1/Gj+1) MDE(Gi/Gj+1)

attached to the pair of morphisms (π[j,i−1],[j,i], π[j+1,i],[j,i]) has a natural struc-
ture as a torsor for the formal group DE(Gi/Gi−1, Gj/Gj−1).

Theorem 7.7.
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(i) If 1 ≤ i ≤ m − 1, then C(Def(Gi+1/Gi−1)) is a torsor for the p-divisible
formal group DE(Gi+1/Gi, Gi/Gi−1)p-div.

(ii) If 0 ≤ j1 ≤ j2 < i2 ≤ i1 ≤ m, then the restriction of π[j2,i2],[j1,i1]

to the closed formal subscheme C(Def(Gi1/Gj1)) of MDE(Gi1/Gj1) fac-
tors through C(Def(Gi2/Gj2)) ↪→ MDE(Gi2/Gj2), and induces a formally
smooth morphism

π[j2,i2],[j1,i1] : C(Def(Gi1/Gj1)) → C(Def(Gi2/Gj2)) .

(iii) If 1 ≤ i, j ≤ m, i ≥ j + 2, then the morphism

C(Def(Gi/Gj)) −→ C(Def(Gi−1/Gj))×C(Def(Gi−1/Gj+1))C(Def(Gi/Gj+1))

attached to the pair of morphisms (π[j,i−1],[j,i], π[j+1,i],[j,i]) is a torsor for
the p-divisible formal group DE(Gi/Gi−1, Gj/Gj−1)p-div, respecting the
DE(Gi/Gi−1, Gj/Gj−1)-torsor structure of

MDE(Gi/Gj) −→ MDE(Gi−1/Gj) ×MDE(Gi−1/Gj+1) MDE(Gi/Gj+1).

Proposition 7.8. The properties (i), (ii), (iii) in Theorem 7.7 determine
uniquely the family of formal schemes {C(Def(Gi/Gj)) : 0 ≤ j < i ≤ m},
where each member C(Def(Gi/Gj)) of the family is considered as a closed
formal subscheme of Def(Gi/Gj).

Remark 7.9. It is possible to do better than what was stated in Prop. 7.8.
Namely, one can actually construct closed subschemes MDE(Gi/Gj)p-div of
MDE(Gi/Gj), satisfying the properties (i), (ii), (iii) in Theorem 7.7, using
structural properties of the formal schemes MDE(Gi/Gj), without the con-
cept of leaves, in an inductive way. An important ingredient of the construction
uses the theory of biextensions due to Mumford [17] and Grothendieck [11].
Of course, MDE(Gi/Gj)p-div is canonically isomorphic to C(Def(Gi/Gj)) by
Proposition 7.8. However that construction is a bit complicated, so we do not
give further indication here.

Corollary 7.10. Notation as in Thm. 7.7. Then

dim(C(Def(G))) =
∑

1≤j<i≤m

(µi−µj) · hi · hj ,

where µi is the slope of Gi/Gi−1 and hi is the height of Gi/Gi−1, for i =
1, . . . , m.

Proposition 7.11. Let G be a Barsotti–Tate group over k, with a princi-
pal quasi-polarization λ. Then λ induces an involution on MDE(G)p-div.
Denote by MDE(G)sym

p-div the maximal closed subscheme of MDE(G)p-div

which is fixed by the involution. Then MDE(G)sym
p-div is the largest closed
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formal subscheme of MDE(G)p-div such that λ extends to a principal quasi-
polarization on the restriction to MDE(G)sym

p-div of the universal Barsotti–Tate
group over MDE(G)p-div ⊂ Def(G). If (G, λ) = (Ax[p∞], λx[p∞]) for some
point x ∈ Ag,n(k), then there is a natural isomorphism of formal schemes
from MDE(G)sym

p-div to C/x, where C is the leaf in Ag,n passing through x.

Proposition 7.12. Let Ax be a g-dimensional principally polarized abelian
variety over k. Suppose that Ax[p∞] has Frobenius slopes µ1 < µ2 < · · · < µm,
so that µi + µm−i+1 = 1 for i = 1, . . . , m. Let hi be the multiplicity of µi, so
that hi = hm−i+1 for all i,

∑m
i=1 hi = 2g,

∑m
i=1 hiµi = g. Then

dim(C(x)) =
1
2

∑

i<j, i+j ̸=1

(µj−µi)·hi ·hj +
1
2

∑

2i≤m

(1 − 2µi)·hi(hi + 1) .

Remark 7.13. Proposition 7.12 follows from Proposition 7.11 and Corollary
7.5; see [2].

Remark 7.14. Historically, the formula for the dimension of a leaf C(x) in
Ag,n (resp. the dimension of the leaf C(Def(G)) in the deformation space of
a Barsotti–Tate group G) were first conjectured by Oort, in terms of the
number of lattice points inside suitable regions under the Newton polygon of
Ax (resp. G), after suggestions by B. Poonen. See [7] for the original proofs
of Propositions 7.10 and 7.12, which depend on the following fact, proved in
[20]: If G1, G2 are Barsotti–Tate groups over k, G1 is minimal, and G1[p] is
isomorphic to G2[p], then G2 is isomorphic to G1.

Remark 7.15. The theory of canonical coordinates inspires a conjectural
group-theoretic formula for the dimension of leaves in the reduction over k
of a Shimura variety. That formula will be explained in a future article with
C.-F. Yu, and verified for modular varieties of PEL-type.

8 A rigidity result for p-divisible formal groups

Let k be an algebraically closed field of characteristic p. Let X be a p-divisible
formal group over k. Then Endk(X) ⊗Zp Qp is a semisimple algebra of finite
dimension over Qp, and Endk(X) is an order in Endk(X) ⊗Zp Qp. Let H
be a connected reductive linear algebraic group over Qp. Let ρ be a Qp ra-
tional homomorphism H(Qp) → (Endk(X) ⊗Zp Qp)×, i.e., ρ comes from a
Qp-homomorphism from H to the linear algebraic group over Qp whose R-
valued points is (Endk(X)⊗Zp R)× for every commutative Qp-algebra R. Let
U ⊂ H(Qp) be an open subgroup of H(Qp) such that ρ(U) ⊆ Endk(X)×, so
that U operates on X via ρ.

Theorem 8.1. Notation as above. Let Z be an irreducible closed formal sub-
scheme of X which is stable under the action of U . Let rX be the left regular
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representation of (Endk(X) ⊗Zp Qp)× on Endk(X) ⊗Zp Qp, viewed as a Qp-
linear representation of the group (Endk(X)⊗Zp Qp)× on a finite-dimensional
Qp-vector space. We assume that the composition rX ◦ ρ of ρ with rX does
not contain the trivial representation of H as a subquotient. Then Z is a
p-divisible formal subgroup of X.

Remark 8.2.

(i) Theorem 8.1 is a considerable strengthening of [6, §4, Proposition 4], in
several aspects. There, the p-divisible formal group is a formal torus,
and the formal subvariety is assumed to be formally smooth. The most
significant part is that, in [6, §4, Proposition 4], the symmetry group
O×

℘1
× · · ·× O×

℘r
has about the same size as the formal torus

(
Y1 ⊗Zp Ĝm

)
× · · ·×

(
Yr ⊗Zp Ĝm

)

in some sense, while the symmetry group H in Theorem 8.1 can be quite
small compared with the p-divisible formal group X .

(ii) A “typical” special case of Theorem 8.1 is to take H = Gm, U = Z×
p ,

with each u ∈ Z×
p operating as [u]X on X , the map “multiplication by u”

on X . Any argument which proves this special case is likely to be strong
enough to prove Theorem 8.1 as well.

(iii) The proof of Theorem 8.1 in [5] is elementary, in the sense that it is mostly
manipulation of power series.

9 The Hilbert trick

Notation 9.1. Let n ≥ 3 be an integer prime to p. Let x ∈ Ag,n(Fp) be an
Fp-valued point of Ag,n. Let B = EndFp

(Ax)⊗Z Q, and let ∗ be the involution
of B induced by λx. Let E = F1× · · ·×Fm be a product of totally real number
fields contained in B, fixed under the involution ∗, such that dimQ(E) = g.
Let OE = OF1 × · · · × OFm . Denote by SL(2, E) the linear algebraic group
over Q whose set of R-valued points is SL2(E ⊗Q R) for every Q-algebra R.
There exists a “standard embedding” h : SL(2, E) ↪→ Sp2g, well-defined up to
conjugation.

We will use the following variant of the definition of Hilbert modular va-
rieties in [31], slightly different from the definition in [8]. Denote by ME,n

the Hilbert modular scheme attached to OE , such that for every Fp-scheme S,
ME,n(S) is the set of isomorphism classes of (A → S, λ, ι, η), where A → S
is an abelian scheme, ι : OE → EndS(A) is an injective ring homomorphism,
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λ is an OE-linear principal polarization of A → S of degree prime to p, and
η is a level-n structure on A → S. See [31, §5]. The modular scheme ME,n

is locally of finite type over k, and every irreducible component of ME,n is
of finite type over Fp. There is a set of algebraic correspondences on ME,n,
coming from the adelic group SL2(E ⊗Q A(p)

f ), called the prime-to-p Hecke
correspondences on the Hilbert modular scheme ME,n.

Proposition 9.2 (Hilbert trick). Notation as above. Then there exists

• a non-empty open-and-closed subscheme M0 of ME,n1 for some natural
number n1 ≥ 3 not divisible by p,

• a finite morphism M0 → ME,n,
• a point y ∈ M0(Fp), and
• a finite morphism f : M0 → Ag,n

such that

(i) f(y) = x,
(ii) f is compatible with the prime-to-p Hecke correspondences on M0 and

Ag,n, coming from the embedding h : SL(2, E) ↪→ Sp2g, and
(iii) the pull-back by f of the universal abelian scheme over Ag,n is isogenous

to the universal abelian scheme over M0.

The idea of the proof of Proposition 9.2 is as follows. It is well-known that
every abelian variety defined over a finite field has “sufficiently many complex
multiplications”. Hence every maximal commutative semisimple subalgebra
L of B stable under the Rosati involution ∗ is a product of CM-fields, and
the subalgebra of L fixed under ∗ is a product of totally real number fields.
In particular this shows the existence of subalgebras E with the required
properties in Notation 9.1. If EndFp

(Ax) contains OE , then we obtain a natural
morphism ME,n → Ag,n passing through x = [(Ax, λx, ηx)] ∈ Ag,n(Fp). In
general E ∩ EndFp

(Ax) is an order of OE , and we have to use an isogeny
correspondence to conclude the proof of Proposition 9.2.

Remark 9.3. The local stabilizer principle and Theorem 8.1, applied to a
point y of a Hilbert modular variety ME,n over Fp, implies that there are

only a finite number of possibilities of HE,n(y)
/y

, as a closed formal subscheme
of ME,n over k, where HE,n(y) denotes the prime-to-p Hecke orbit of y in
ME,n. The possibilities are parametrized by non-empty subsets of the finite
set Spec(OE/pOE) of maximal ideals of OE containing p. Then one can verify
that the subset of Spec(OE/pOE) attached to HE,n(y)

/y
must be equal to

Spec(OE/pOE) itself. That proves the continuous part of the Hecke orbit
conjecture for Hilbert modular varieties. The above line of argument is possible
because SL2(E) is “small” in some sense, for instance each semisimple factor
of SL2(E)n has Q-rank one. So Hilbert modular varieties are “not too big”
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either, and it turns out that one can understand the incidence relation of
the Lie-alpha strata to prove the discrete part of the Hecke orbit conjecture
for Hilbert modular varieties. With the Hecke orbit conjecture for Hilbert
modular varieties known, the Hilbert trick becomes an effective tool for the
Hecke orbit conjecture for the Siegel modular varieties Ag,n, as well as other
modular varieties of PEL-type.

Remark 9.4. In this section the base field is Fp, because every abelian variety
over Fp has sufficiently many complex multiplications. So it seems that if we
use the Hilbert trick, we would be able to deal with the Hecke orbit conjecture
(HO) “only” in the case when the algebraically closed base field k is equal to
Fp. However every closed subvariety of Ag,n over k is finitely presented over
k, and a standard argument in algebraic geometry shows that the validity of
(HO) over Fp implies the validity of (HO) over every algebraically closed field
k. See the beginning of §3 of [6] for details.

10 Hypersymmetric points

Let k be an algebraically closed field of characteristic p as before.

Definition 10.1. An abelian variety A over k is hypersymmetric if the nat-
ural map

Endk(A) ⊗Z Zp −→ Endk(A[p∞])

is an isomorphism. An equivalent condition is that the canonical map

Endk(A) ⊗Z Qp −→ Endk(A[p∞]) ⊗Zp Qp

is an isomorphism.

Remark 10.2. It is clear from the definition that the abelian variety Ax

has sufficiently many complex multiplications for any hypersymmetric point
x. Therefore a theorem of Grothendieck tells us that Ax is isogenous to an
abelian variety defined over Fp; see [23] for a proof of Grothendieck’s theorem.

Examples 10.3.

(i) A g-dimensional ordinary abelian variety over k is hypersymmetric if and
only if it is isogenous to a g-fold self-product E × · · ·× E, where E is an
ordinary elliptic curve defined over Fp.

(ii) Let A be an abelian variety over k such that A[p∞] has exactly two slopes,
g = dim(A). It is hypersymmetric if and only if Endk(A)⊗Z Q is a central
simple algebra over an imaginary quadratic field, and

dimQ(Endk(A) ⊗Z Q) = 2g2.
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The assertions in the two examples can be verified using Honda–Tate the-
ory for abelian varieties over finite fields. See [30] and [29] for the Honda–Tate
theory.

Remark 10.4. In every given Newton polygon stratum Wξ in Ag,n over k,
there exists a hypersymmetric point x ∈ Wξ(k). This statement follows easily
from the Honda–Tate theory; see [19] for a proof.

Remark 10.5. Let E = F1× · · ·×Fr be a totally real number field such that
there is only one place of Fi above p for i = 1, . . . , r. Let ME be the Hilbert
modular variety over k attached to ME . Then there exists a hypersymmetric
point in every given Newton polygon stratum of ME . Similarly, there exists
a hypersymmetric point in every given leaf of ME . This statement can be
derived from the Honda–Tate theory and the “foliation structure” on ME .

Theorem 10.6. Let [(Ax, λx)] be a point of Ag(k) such that

• Ax is hypersymmetric, and
• Ax is split, i.e., Ax is isomorphic to a product B1 × · · ·×Bm, where each

Bi is an abelian variety over k, and each Bi has at most two slopes.

Then Zariski closure in Ag of the the prime-to-p Hecke orbit H(p)(x) contains
the irreducible component of the leaf C(x) passing through x.

Remark 10.7. A special case of Theorem 10.6 is an example of M. Larsen;
see [6, §1].

The proof of Theorem 10.6 uses Proposition 6.1, Theorem 8.1 and the the-
ory of canonical coordinates. Here we sketch a proof of the special case when
Ax[p∞] is isomorphic to a product X × Y , where X, Y are isoclinic Barsotti–
Tate groups of height g, with slopes µX < µY , µX +µY = 1. The principal
polarization λx induces an isomorphism between X and the Serre dual of Y .
The theory of canonical coordinates tells us that C(x)/x is isomorphic to the
maximal subgroup DE(X, Y )sym

p-div of the Barsotti–Tate group DE(X, Y )p-div

fixed under the involution induced by the principal polarization λx. Let Z(x)
be the Zariski closure of the Hecke orbit H(x) in C(x). Notice that Z(x) is
smooth over k: it contains a dense open subset U smooth over k by generic
smoothness, and Z(x) is equal to the the union of Hecke-translates of U .

Let Z(x)/x be the formal completion of Z(x) at x. Clearly Z(x)/x is irre-
ducible, because it is formally smooth over k. The local stabilizer principle says
that the closed formal subscheme Z(x)/x of C(x)/x is stable under the natural
action of the local stabilizer Ux. By Theorem 8.1, Z(x)/x is a Barsotti–Tate
subgroup of the Barsotti–Tate group DE(X, Y )sym

p-div.
Now we are ready to use Dieudonné theory and translate the last asser-

tion into a statement in linear algebra. Let VX = M(X) ⊗W (k) B(k), VY =
M(Y ) ⊗W (k) B(k). The principal polarization λx induces a duality pairing
between VX and VY . Theorem 7.3 tells us that M(DE(X, Y )p-div)⊗W (k) B(k)
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is naturally isomorphic to Homsym
B(k)(VX , VY ), the symmetric part of the in-

ternal Hom. The group Ux operates naturally on M(X) ⊗W (k) B(k) and
M(Y )⊗W (k)B(k). One checks that, after passing to the algebraic closure B(k)
of B(k), the Zariski closure of Ux operating on VY ⊗B(k) B(k) is isomorphic to
the standard representation of GLg, and the Zariski closure of Ux operating
on VX ⊗B(k) B(k) is isomorphic to the dual of the standard representation of
GLg. So the action of the Zariski closure of Ux on Homsym

B(k)(VX , VY )⊗B(k)B(k)
is isomorphic to the second symmetric product of the standard representation
of GLg. The last representation is absolutely irreducible; in fact it is one of the
fundamental representations. Since M(Z(x)/x)⊗W (k)B(k) is a non-trivial sub-
representation of the absolutely irreducible representation Homsym

B(k)(VX , VY )
of Ux, we conclude that M(Z(x)/x)⊗W (k) B(k) is equal to Homsym

B(k)(VX , VY ),
therefore Z(x)/x = C(x)/x. ⊓:

Remark 10.8. A weaker form of Theorem 8.1, in which the closed formal
subscheme is assumed to be formally smooth instead of being irreducible,
would be sufficient for the proof of Theorem 10.6.

Proposition 10.9. Let C+ be an irreducible component of a leaf C in Ag,n,
and let Wξ be the Newton polygon stratum in Ag,n containing C+. Assume
that Wξ is irreducible. Then for every point y ∈ Wξ(k), there exists a point
x ∈ C+(k) such that there exists an isogeny from Ax to Ay, which respects the
polarizations up to a multiple.

Idea of Proof. Proposition 10.9 is an immediate consequence of the “almost
product structure” on each irreducible component of a Newton polygon stra-
tum Wξ; see [26, Theorem 5.3]. We sketch the proof below.

Using Proposition 3.4, one constructs a finite surjective morphism f : S →
C+, a scheme T over k, and a morphism g : S ×Spec(k) T → Wξ such that

(i) For any s1, s2 ∈ S(k), t1, t2 ∈ T (k), if f(s1) = f(s2), then there exists an
isogeny from Ag(s1,t1) to Ag(s2,t2), which respects the polarizations up to
a multiple.

(ii) The image of g, in the naive sense, is a union of irreducible components
of Wξ.

So far we have not used the assumption that Wξ is irreducible. The irreducibil-
ity of Wξ implies that f is surjective. Proposition 10.9 follows.

Proposition 10.10. Let C be a leaf in Ag,n, and let Wξ be the Newton polygon
stratum in Ag,n containing C. Assume that Wξ is irreducible. Then the prime-
to-p Hecke correspondences operate transitively on π0(C). Consequently C is
irreducible if Wξ is not the supersingular locus of Ag,n.
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Idea of Proof. Let y be a hypersymmetric point of Wξ; such a point exists
by Remark 10.4. By Proposition 10.9, for each irreducible component C+

j of
C, there exists a hypersymmetric point xj in C+

j , related to y by a (possibly
inseparable) isogeny which preserves the polarizations up to a multiple. Using
the weak approximation theorem, one sees that the xj ’s are related by suit-
able prime-to-p Hecke correspondences. This shows that the prime-to-p Hecke
correspondences operate transitively on the irreducible components of the leaf
C. The last statement follows from Theorem 5.1.

We would like to discuss an emerging picture about the leaves and the
hypersymmetric points. In many ways each non-supersingular leaf in Ag,n has
properties similar to those for the Siegel modular variety in characteristic 0,
of genus g and with symplectic level-n structures. The Hecke orbit conjecture
(HO) is an example of this phenomenon, so is Theorem 5.1. Borrowing an
idea from Hindu mythology, one might want to think of the decomposition of
Ag,n into leaves as Indra-inspired.

For a leaf C in Ag,n, the hypersymmetric points of C serve as an analogue
of the notion of special points (or CM points) on a Shimura variety in char-
acteristic 0. The following is an analogue of the André–Oort conjecture in
characteristic p. Let C be a leaf of Ag,n over k, and let Z be a closed irre-
ducible subvariety in C. Assume that there is a subset S ⊂ Z(k) such that S
is dense in Z, and every point of S is hypersymmetric. Then there is a closed
subvariety X ⊂ Ag,n which is the reduction over k of a Shimura subvariety
such that Z is an irreducible component of C ∩ X . This conjecture seems to
be more difficult than the André–Oort conjecture.

In another direction, one expects that the p-adic monodromy of a subvari-
ety Z in a leaf C ⊂ Ag,n can be described in terms of the canonical coordinates
and the naive p-adic monodromy of Z; see the first paragraph of §14 for the
definition of naive p-adic monodromy. The case when C is the ordinary locus
of Ag,n has been considered in [3], and one expects that the general phe-
nomenon is similar. In particular, there should be a more global theory of
canonical coordinates on a leaf, and we hope to carry out such a project in
the near future.

11 Splitting at supersingular points

Proposition 11.1. Let k be an algebraically closed field of characteristic p.
Let x be a point of Ag,n over k, and let H(p)(x) be the prime-to-p Hecke orbit
of x. Then there exists a point z0 in the Zariski closure of H(p)(x) such that
Az0 is a supersingular abelian variety over k.
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Remark 11.2.

(i) Similarly, every prime-to-p Hecke orbit in a Hilbert modular variety has
a supersingular point in its closure.

(ii) One can replace “prime-to-p” by “ℓ-adic” in Proposition 11.1, and also in
(i) above.

(iii) See [6, Proposition 6] for a proof of Proposition 11.1 and (i), (ii) above.
A key ingredient is the fact that every Ekedahl–Oort stratum in Ag,n is
quasi-affine; see [25].

Theorem 11.3. Let x ∈ Ag,n(Fp) be an Fp-valued point of Ag,n. Let Z be
the Zariski closure in Ag,n of the prime-to-p Hecke orbit H(p)(x) of x, and let
Z0 be the intersection of Z with the leaf C(x) passing through x. Then there
exists

• a point y ∈ Z0(Fp),
• totally real number fields L1, . . . , Ls, and
• an injective ring homomorphism β : L1 × · · ·× Ls −→ Endk(Ay) ⊗Z Q

such that

(i) [L1 : Q] + · · · + [Ls : Q] = g,
(ii) β(L1 × · · · × Ls) is fixed by the Rosati involution on EndFp

(Ay) ⊗Z Q
induced by λy, and

(iii) there is only one maximal ideal in OLj which contains p, for j = 1, . . . , s.

In particular, there exists a point y ∈ Z0(Fp) and abelian varieties B1, . . . , Bs

over Fp such that Ay is isogenous to B1 × · · ·×Bs, and each Bj has at most
two slopes, j = 1, . . . , s.

Remark 11.4. Theorem 11.3 depends crucially on the fact that x is an Fp-
valued point. However we have seen in Remark 9.4 that we may assume that
the base field k is Fp when considering the Hecke orbit conjecture (HO).

We sketch a proof of Proposition 11.3, which uses the action of the local
stabilizer subgroup at a supersingular point in the closure of C and the Hilbert
trick.

We may and do assume that there exists a product E = F1 × · · ·× Fr of
totally real number fields, [E : Q] = g, such that there exists an embedding
ι : OE ↪→ EndFp

(Ax) of rings, and ι(OE) is fixed under the Rosati involution.
This means that we have a natural morphism f : ME,m −→ Ag,n passing
through x, compatible with the Hecke correspondences, for some m prime to
p, such that for every geometric point u ∈ ME,m(Fp), the map induced by f
on the strict henselizations
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f (u) : M(u)
E,m → A(f(u))

g,n

is a closed embedding. Here M(u)
E,m denotes the henselization of ME,m at u,

and A(f(u))
g,n denotes the henselization of Ag,n at f(u). Let W be the Zariski

closure of the prime-to-p Hecke orbit H(p)
E (x) in ME,n.

By Remark 11.2 (i), there exists a supersingular point z ∈ W (k). The local
stabilizer principle tells us that the formal subscheme Z/z ⊂ Ag,n is stable
under the natural action of the local stabilizer subgroup Uz attached to z.
Recall that Uz is a subgroup of EndFp

(Az [p∞])× by definition.
One checks that there exists an element γ ∈ Uz such that the subring

Ad(γ)(E ⊗Q Qp) = γ · (E ⊗Q Qp)·γ−1

of EndFp
(Az) ⊗Z Qp is equal to the Qp-linear span of

E′ := (Ad(γ)(E) ⊗Q Qp) ∩
(
EndFp

(Az) ⊗Z Q
)

,

and E′ is a product of totally real number fields L1× · · ·×Ls, such that there
is only one maximal ideal in OLj above p for j = 1, . . . , s.

Denote by γ/z the automorphism of A/z
g,n attached to γ. The fact that

γ/z(W /z) ⊂ Z/z tells us, in the case when

Ad(γ)(OE ⊗Z Zp) ⊂ EndFp
(Az [p∞]) = EndFp

(Az) ⊗Z Zp,

that there is a natural finite morphism

f1 : ME′,m −→ Ag,n

with the following properties:

(1) There exists a point z1 ∈ ME′,m(Fp) such that f1(z1) = z.
(2) For every point u ∈ ME′,m(Fp), the morphism f1 induces a closed embed-

ding, from the henselization M(u)
E′,m of ME′,m at u, to the henselization

A(f1(u))
g,n of Ag,n at f1(u).

(3) γ/z(W /z) ⊂ f/z1
1

(
M/z1

E′,n

)
∩ Z/z .

Hence the fiber product ME′,m ×Ag,n Z0 is not empty. Pick a point ỹ ∈
(ME′,m ×Ag,n Z0)(Fp), and let y be the image of ỹ in Z0(Fp). It is easy to see
that y has the property stated in Theorem 11.3, and we are done. In general
(Ad(γ)(OE ⊗Z Zp))∩

(
EndFp

(Az) ⊗Z Zp

)
is of finite index in Ad(γ)(OE⊗ZQp)

and may not be equal to Ad(γ)(OE ⊗Z Zp), and we have to use an isogeny
correspondence to conclude the proof.

Remark 11.5. The last sentence in the statement of Theorem 11.3 follows
from the properties (i), (ii), (iii) of Ay stated in 11.3.
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12 Logical interdependencies

Let k be an algebraically closed field of characteristic p as before. We sum-
marize the logical interdependencies of various statements.

12.1. We have seen that

(HO) ⇐⇒ (HO)ct + (HO)dc.

12.2. If x ∈ Ag(k) is not supersingular. then Thm. 5.1 shows that

(HO)dc for x ⇐⇒ C(x) is irreducible.

12.3. Suppose that x, y ∈ Ag(k), and there is an isogeny from Ax to Ay

which preserves the polarizations up to multiples. Then

(HO)ct for x ⇐⇒ (HO)ct for y.

This is a consequence of Remark 3.5, which depends on Proposition 3.4.

12.4. Suppose that x, y ∈ Ag(k), and there is an isogeny from Ax to Ay

which preserves the polarizations up to multiples. Then

(HO)dc for x ⇐⇒ (HO)dc for y.

The proof of the above statement is similar to the argument of Proposition
10.10, using hypersymmetric points.

12.5. Let Wξ be a non-supersingular Newton polygon stratum on Ag, and
let C be a leaf in Wξ. Then

Wξ is irreducible =⇒ C is irreducible .

See Proposition 10.10.

12.6. The implication

(HO) for Hilbert modular varieties =⇒ (HO)ct

holds.

Here is a sketch of the proof of 12.6. Assume the Hecke orbit conjecture
for Hilbert modular varieties. As remarked in Remark 9.4, we may and do
assume that the base field is Fp. Apply the trick “splitting at supersingular
points” to get a point y ∈ Ag,n(Fp) contained in H(p)(x)∩C(x) as in Theorem
11.3. The Hilbert trick and the Hecke orbit conjecture for Hilbert modular
varieties show that there exists a point y2 ∈

(
H(p)(x) ∩ C(x)

)
(Fp) such that

Ay2 is hypersymmetric and split. Here we used Remark 10.5 on the existence
of hypersymmetric points on every leaf of the Hilbert modular subvariety in
Ag,n passing through the point y. Apply Theorem 10.6; the continuous part
of the Hecke orbit conjecture for a Siegel modular variety Ag,n follows.
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13 Outline of the proof of the Hecke orbit conjecture

Theorem 13.1. Every non-supersingular Newton polygon stratum in Ag,n is
irreducible.

Proof. See [21]. The proof uses Theorem 5.1 and the results in [24], [13], [25].
!

We have seen in Proposition 10.10 and 12.5 that (HO)dc follows from
Theorem 13.1. We are left with the continuous part (HO)ct of the Hecke orbit
conjecture.

The continuous part (HO)ct of the Hecke orbit conjecture for Hilbert mod-
ular varieties uses Theorem 8.1 and the argument in [3, §8]; the latter depends
on the main result of [12] by de Jong. It is also possible to avoid de Jong’s
theorem in [12], using instead the local stabilizer principle at a supersingular
point, similar to the argument of [6, §5, Proposition 7]. But the argument will
not be as clean.

By 12.6, to complete the proof of the Hecke orbit conjecture for the Siegel
modular varieties Ag,n, it suffices to prove the discrete part of the Hecke orbit
conjecture for Hilbert modular varieties.

The proof of the discrete part of the Hecke orbit conjecture for Hilbert
modular varieties uses the Lie-alpha stratification on Hilbert modular vari-
eties. See [31] for some properties of the Lie-alpha stratification; see also [10]
for the case when p is unramified in the totally real number field, and [1]
for the case when p is totally ramified in the totally real number field. The
starting point is the fact that for each given Newton polygon stratum Wξ on
a given Hilbert modular variety MF , there exists a leaf C contained in Wξ

which is an open subset of some Lie-alpha stratum of MF . A standard de-
generation argument shows that it suffices to prove that the closure of every
Lie-alpha stratum contains a superspecial point of a specific type. This obser-
vation allows us to bring in deformation theory. The last and the most crucial
step was done by C.-F. Yu, who constructed enough deformations to facilitate
an induction on the partial ordering on the family of irreducible components
of Lie-alpha strata induced by the incidence relation.

14 p-adic monodromy of leaves

In this last section we mention a maximality property of the naive p-adic
monodromy group. By definition, the naive p-adic monodromy representation
of a leaf C(x) passing through a point x ∈ Ag,n(Fp) is the natural action of
the Galois group of the function field of C(x) on the product
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m∏

i=1

Hom ((Gi/Gi−1)x, (Gi/Gi−1)η̄) ,

where 0 = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gm = A[p∞] is the slope filtration of
A[p∞] → C(x) denotes the slope filtration as in Proposition 3.7, and η̄ is a ge-
ometric generic point of C(x). The naive p-adic monodromy group is the image
of the naive p-adic monodromy representation. The notion of hypersymmetric
points plays an important role in the proof of Theorem 14.1.

Theorem 14.1. Let x be a hypersymmetric point such that Ax[p∞] is min-
imal, i.e., the ring Endk(Ax[p∞]) of endomorphisms is a maximal order of
Endk(Ax[p∞])⊗ZpQp. Then the naive p-adic monodromy group of the leaf C(x)
is maximal. In other words, if we use x as the base point, then the image of
the naive p-adic monodromy group is equal to the intersection of Aut(Ax[p∞])
with the unitary group attached to the pair (Endk(Ax[p∞])⊗Zp Qp, ∗), where ∗
denotes the involution on the semisimple algebra Endk(Ax[p∞]) ⊗Zp Qp over
Qp induced by the principal polarization λx on Ax.

Corollary 14.2. Let x ∈ Ag,n(k) be a closed point of Ag,n such that the ring
Endk(Ax[p∞]) is a maximal order of Endk(Ax[p∞]) ⊗Zp Qp. Then the naive
p-adic monodromy group of the leaf C(x) is maximal.

The idea of the proof of Theorem 14.1 is the following. First we prove
an analogous statement for the naive p-adic monodromy group using Ribet’s
method in [28], [9]. Use a hypersymmetric point x with the properties in
the statement of Theorem 14.1 as the base point for computing the p-adic
monodromy group. This allows us to overcome the usual sticky issues related
to different choices of base points, and reduce Theorem 14.1 to showing that
the conjugates of the p-adic monodromy group of a leaf in a Hilbert modular
subvariety already generates the target group of the naive p-adic monodromy
representation. The last group-theoretic statement is elementary and can be
verified directly.
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