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§1. Introduction
Let K be a local field, and let O be the ring of integers of K. In this paper we study some nu-
merical invariants attached to tori over K, or equivalently, to integral Galois representations
Gal(Ksep/K)→ GLd(Z) with finite image.

Let T be a torus over K. The definition of the numerical invariants

c(T,K) = (c1(T,K), . . . , cdim(T )(T,K))

of T can be found in 2.4. The ci(T,K)’s are non-negative rational numbers satisfying

c1(T,K) ≤ · · · ≤ cdim(T )(T,K) .

They come from the elementary divisors of the map from the Lie algebra of the Néron model
T NR to the Lie algebra of the Néron model TL

NR over O, where L is a finite Galois extension
of K such that the torus T is split over L. One may think of (T,K) as a measure for the
failure of T to have semistable reduction over O: A torus T extends to a torus over O if and
only if ci(T,K) = 0 for i = 1, . . . , dim(T ). We call the ci(T,K)’s the elementary divisors of
the base change conductors; their sum c(T,K) := c1(T,K) + · · ·+ cdim(T )(T,K) is called the
base change conductor of T .

According to [CYdS, 11.3, 12.1] or [dS], c(T,K) is equal to one-half of the Artin conduc-
tor of the representation of the Galois group Gal(Ksep/K) on the character group (or the
cocharacter group) of T , if the residue field κ of O is perfect. In particular c(T,K) = c(T1, K)
if T and T1 are isogenous over K. In contrast, the ci(T,K)’s tend to change under isogenies;
see 5.2 for an example.

Using the correspondence between a torus T and its character group X∗(T ), one can
regard c(T,K) as a numerical invariant c(ρ) attached to a continuous Galois representation
ρ : Gal(Ksep/K) → GLd(Z). Assume that Char(κ) = p > 0. It is easy to see that if ρ1

and ρ2 are two Galois representations on Zd which are conjugate in GLd(Z(p)), then c(ρ1) =
c(ρ2). So one can localize at p and define c(ρ) for any continuous Galois representation
ρ : Gal(Ksep/K)→ GLd(Z(p)). In the next paragraph we describe some general estimates of
these invariants in terms of the ramification of the Galois representation ρ.

Let r ≥ 0 be the integer such that cr(T,K) = 0, cr+1(T,K) > 0, where c0(T,K) = 0 by
convention, and T is assumed to be non-trivial. Assuming that the residue field κ is perfect,
and T is split over a finite Galois extension L of K. Let Γ = Gal(L/K) be the Galois group

1partially supported by grant DMS 9800609 from the National Science Foundation

1



of L/K, and let Γ = Γ−1 ⊇ Γ0 ⊇ · · · be the lower numbering filtration of Γ. Denote by t
be the integer such that t ≥ −1 and Γ = Γt ) Γt+1. The results of this paper gives the
following estimate:

t+ 1

e(L/K)
≤ cr+1(T,K) ≤ cdimT (T,K) ≤ ordK(disc(L/K))

e(L/K)
(†)

See Cor. 4.3 and Cor. 4.5. In a sense these bounds cannot be improved: Denote by RL/M :=
ResL/K(Gm) the Weil restriction of Gm from L to K. If L/K is totally ramified, then r = 1,

dim(RL/M) = [L : K], c2(RL/M , K) = t+1
e(L/K)

, and c[L:K](RL/M , K) = ordK(disc(L/K))
e(L/K)

. On the

other hand in the context of (†), we do not have any non-trivial general estimate of ci(T,K)
if i is in the “intermediate range” r + 1 ≤ i ≤ dim(T )− 1.

Here is a description the method used in this paper. In Thm. 3.1 we prove a series of
inequalities relating c(T,K) to c(T ′, K) and c(T ′′, K), whenever there is an exact sequence
of tori 1 → T ′ → T → T ′′ → 1. In Thm. 4.1 we compute all the ci(RL/K , K)’s for the Weil
restriction RL/K , where L is a totally ramified separable extension of K. In Thm. 4.4 we
compute the first invariant c1(R′L/K , K) for the norm-one subtorus

R′L/K := ker
(
NmL/K : RL/K → Gm

)
in RL/K(Gm), where L/K is assumed to be Galois and totally ramified. The estimate (†)
follows from these computation and inequalities provided by 3.1.

We would like to stress that the results in this paper about the invariants ci(T,K) is
just a small step, under the benevolent assumption that the residue field is perfect. We
have not even computed the invariants ci(R

′
L/K , K), i ≥ 2 for the norm-one torus R′L/K . For

a continuous Galois representation ρ : Gal(Ksep/K) → GL(Z(p)), we do not know to what
extent c(ρ) is related to c(ρ′), where ρ′ is the contragredient representation of ρ. If the residue
field κ is not perfect, then the base change conductor c(T,K) may change under K-isogenies;
see 5.3 for such an example. It remains a challenge to determine which estimates about the
invariants ci(T,K) proved under the assumption that κ is perfect remain true without that
assumption.

§2. Notation and definitions
(2.1) In this paper O denotes a complete discrete valuation ring with fraction field K. Let
κ be the residue field of O, p be the maximal ideal of O, and let π be a generator of p. For
a finite separable extension field L of K, denote by OL, κL, pL, πL the ring of integers of
L, the residue field of OL, the maximal ideal of OL, and a generator of πL respectively. The
ramification index e(L/K) is defined by πOL = π

e(L/K)
L . Let Osh be the strict henselization

of OL. The fraction field Ksh of Osh is the maximal unramified extension of K, and the
residue field of Osh is κsep, the separable closure of κ. We assume that the characteristic of
the residue field κ is a prime number p. No generality is sacrificed by this assumption: Every
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finite extension of a local field is at most tamely ramified if the residue field has characteristic
0, in which case the questions treated in this paper are vastly simplified.

(2.2) Néron models Let T be a torus over K. We have two notions of Néron models of
T . The lft Néron model T lft NR as defined in [BLR, Ch. 10], is a smooth group model of
T locally of finite type over O, and satisfies T lft NR(Osh) = T (Ksh). We also have the open
subgroup T ft NR of T lft NR such that T ft NR(Osh) is the maximal bounded subgroup of T (Ksh);
T lft NR is of finite type over O. We abbreviate T ft NR to T NR.

(2.3) Definition Let OL be a discrete valuation ring with fraction field L. Let N1 ⊂ N2 be
two free OL-modules of finite rank d. Let h : N1 → N2 be an injective OL-homomorphism.
Let j be a natural number such that 0 ≤ j ≤ d. Define αj(h;N1, N2) to be the largest natural
number m such that the Λj(h) ≡ 0 (mod πmL ), where Λj(h) : Λj

OL
(N1)→ Λj

OL
(N2) is the j-

th exterior power of h. In other words, if πe1L ≤ πe2L . . . ≤ π
edim(V )

L are the elementary divisors
of the OL-module homomorphism h, then αj(h;N1, N2) = e1 + · · ·+ ej. When N1 ⊆ N2 are
two lattices in an d-dimensional vector space and h : N1 → N2 is the inclusion map, then we
abbreviate αj(h;N1, N2) to αj(N1, N2). For any integer n ≥ 0, α1(h;N1, N2) ≥ n means that
h ≡ 0 (mod πnL), while αd(h;N1, Nd)−αd−1(h;N1, N2) ≤ n means that coker(h) is killed by
πnL.

(2.4) Definition Let T be a torus over K, and let L be a finite Galois extension of K such
that T is split over L. Let

canT,L/K : T NR ×Spec O Spec OL → TL
NR

be the unique homomorphism which extends the identity map between the generic fibers,
where TL := T ×Spec K Spec L. Let

(
canT,L/K

)
∗ : Lie(T NR) ⊗O OL → Lie(TL

NR) be the
homomorphism between the Lie algebras induced by canT,L/K . Define

c(T,K) = (c1(T,K), . . . , cdim(T )(T,K)) ∈ Qd
≥0

by

c1(T,K) + · · ·+ ci(T,K) =
1

e(L/K)
αi
((

canT,L/K
)
∗ ; Lie(T NR)⊗O OL,Lie(TL

NR)
)
,

for i = 1, . . . , dim(T ). In other words, c1(T,K) ≤ · · · ≤ cdim(T )(T,K), and

π
e(L/K)c1(T,K)
L , . . . , π

e(L/K)cdim(T )(T,K)

L

are the elementary divisors of the OL-module homomorphism
(
canT,L/K

)
∗. The above def-

inition first appeared in [CYdS, 12.2]; it does note depend on the choice of L. The sum
c(T,K) := c1(T,K) + · · · + cdim(T )(T,K), called the base change conductor of T in [Ch1],
was studied in [CYdS]. We call the ci(T,K)’s the elementary divisors of th base change
conductor of T .
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(2.5) Let L be a finite separable extension of K. Denote by RL/K the torus ResL/K(Gm),
such RL/K(A) = (A ⊗K L)× for every K-algebra A. Its Néron model RL/K

NR is equal to

ResOL/O(Gm), the Weil restriction of Gm from OL to O.

There are natural homomorphisms w : Gm → RL/K and NmL/K : RL/K → Gm. On
the group of K-rational points they induce the inclusion K× ↪→ L× and the L/K-norm
NmL/K : L× → K× respectively. Let

R′L/K = ker(NmL/K : RL/K → Gm), R′′L/K = RL/K/w(Gm) .

The character group of X∗(RL/K) is a free abelian group with basis elements {χσ}Hom(L,Ksep);
the Galois group Gal(Ksep/K) operates transitively on the χσ’s. The restriction of the
character χσ : RL/K → Gm to L× = RL/K(K) is equal to σ. The character group X∗(R′′L/K)
of R′′L/K is the subgroup of X∗(RL/K) generated by elements of the form χσ−χσ0 , where σ0 is
a fixed element of Hom(L,Ksep). The character group of R′L/K is the quotient of X∗(RL/K)
by the subgroup Z · (

∑
σ∈Hom(L,Ksep) χσ).

(2.5.1) Let L be a finite Galois extension of K such that the κL/κ is separable. Let Γ =
Gal(L/K). The lower numbering filtration of Γ defined in [S2, V §1] is a decreasing filtration

Γ = Γ−1 ⊇ Γ0 ⊇ Γ1 ⊇ · · ·

indexed by integers ≥ −1 such that Γn = {1} if n is sufficiently large. For each integer
m ≥ 0 and each σ ∈ Γ, σ ∈ Γm if and only if σ operates trivially on OL/p

m+1
L . The function

iΓ = iL/K : Γ − {1} → N, defined in [S2, V §1], is characterized by the following property:
iΓ(σ) = m if and only if σ ∈ Γm+1 and σ /∈ Γm+2.

§3. The basic estimates
(3.1) Theorem Let 1→ T ′ → T → T ′′ → 1 be a short exact sequence of tori over K.

(i) For all 1 ≤ k ≤ dim(T ′) we have∑
1≤j≤k

cj(T,K) ≤
∑

1≤j≤k

cj(T
′, K) .

(ii) Assume that the residue field κ of O is perfect. Then∑
i+dim(T ′)≤j≤dim(T )

cj(T,K) ≥
∑

i≤j≤dim(T ′′)

cj(T
′′, K)

for all 1 ≤ i ≤ dim(T ′′).
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Proof. Consider the commutative diagram

Lie(T ′NR)⊗O OL
//

canT ′,L/K∗
��

Lie(T NR)⊗O OL
//

canT,L/K∗
��

Lie(T ′NR)⊗O OL

canT ′′,L/K∗
��

0 // Lie(T ′L
NR) // Lie(TL

NR) // Lie(T ′′L
NR) // 0

where the second row is exact and the first row is a complex which is not necessarily exact.
To simplify the notation in the proof, we abbreviate the above diagram to

M ′ ⊗O OL
//

��

M ⊗O OL
//

��

M ′′ ⊗O OL

��

0 // M ′
L

// ML
// M ′′

L
// 0 .

Insert an exact middle row to obtain an enlarged commutative diagram

M ′ ⊗O OL
//

��

M ⊗O OL
//

=

��

M ′′ ⊗O OL

0 //
M̃ ′ //

��

M ⊗O OL

��

//
M̃ ′′ //

��

OO

0

0 // M ′
L

// ML
// M ′′

L
// 0

where M̃ ′ = (M ′⊗OOL)∩(M⊗OOL), and M̃ ′′ is equal to the image of M⊗OOL in M ′′⊗OOL.
Notice that all vertical arrows are injective homomorphisms between finite free OL-modules
of the same rank. The second and the third row are exact, while the first row is a complex
of OL-modules. Denote by r (resp. s) the rank of the free O-module M ′ (resp. M ′′), so that
M has rank r + s.

Let k be a natural number such that 0 ≤ k ≤ r = dim(T ′). Then the natural map

Λk
OL

(M̃ ′)→ Λk
OL

(M ⊗O OL) is a split injection. Therefore αk(M̃ ′,M ′
L) ≥ αk(M ⊗O OL,ML).

Combined with the trivial estimate αk(M
′ ⊗O OL,M

′
L) ≥ αk(M̃ ′,M ′

L), we get αk(M
′ ⊗O

OL,M
′
L) ≥ αk(M ⊗O OL,ML). Dividing the above inequality by e(L/K) finishes the proof

of 3.1 (i).

The proof of 3.1 (ii) is somewhat long and will be divided into several Lemmas for clarity.

(3.1.1) Lemma Let r = rank(M ′) = dim(T ′), s = rank(M ′′) = dim(T ′′) as above. Then

αr(M
′ ⊗O OL, M̃ ′) = αs(M̃ ′′,M ′′ ⊗O OL)
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Proof. According to [CYdS, 11.3, 12.1] or [dS] we have c(T ′, K) + c(T ′′, K) = c(T,K), or
equivalently,

αr(M
′ ⊗O OL,M

′
L) + αs(M

′′ ⊗O OL,M
′′
L) = αr+s(M ⊗O OL,ML)

On the other hand the exactness of the second and the third row in the digram (*) yields

αr+s(M ⊗O OL,ML) = αr(M̃ ′,M ′
L) + αs(M̃ ′′,M ′′

L) .

The Lemma follows.

(3.1.2) Lemma For i = 1, . . . , s = rank(M ′′), we have

αi(M̃ ′′,M ′′
L) ≤ αi(M

′′ ⊗O OL,M
′′
L) + αs(M̃ ′′,M ′′ ⊗O OL)

Proof. This is a special case of the following general statement in linear algebra: Suppose
that N0 ⊂ N1 ⊂ N2 are three OL-lattices in an s-dimensional L-vector space V , then

αi(N0, N2) ≤ αi(N1, N2) + αs(N0, N1) ∀ i = 1, . . . , s .

To prove this claim, choose an OL-basis w1, . . . , ws of N1 such that πe1L w1, . . . , π
es
L ws is an

OL-basis of N0. for suitable natural numbers e1, . . . , es. Let v1, . . . , vs be an OL-basis of N2.
Write wk =

∑s
l=1 akl vl for k = 1, . . . , s, so we have πekL wk =

∑s
l=1 π

ek
L akl vl for each k.

By definition, the determinant of every i × i-minor of the s × s-matrix B = (πekL akl) ∈
Ms(OL) is divisible by π

αi(N0,N2)
L . Hence the determinant of every i × i-minor of the s × s-

matrix A = (akl) ∈ Ms(OL) is divisible by π
αi(N0,N2)
L −

∑s
k=1 ek. This means that

αi(N0, N2)− αs(N0, N1) = αi(N0, N2)−
s∑

k=1

ek ≤ αi(N1, N2) .

The claim is proved. Notice that the argument also shows that we can replace αs(N0, N1) =∑s
k=1 ek in the claim by

max
I⊆{1,... ,s},Card(I)=i

(∑
k∈I

ek

)
in the claim.

(3.1.3) Lemma Notation as above, in particular r = rank(M ′). Then

αr+i(M ⊗O OL,ML) ≤ αr(M̃ ′,M ′
L) + αi(M̃ ′′,M ′′

L)

for i = 1, . . . , s = rank(M ′′).

Proof. This is a consequence of the fact that the natural map

Λr
OL

(M̃ ′)⊗OL Λi
OL

(M̃ ′′)→ Λr+i
OL

(M ⊗O OL)

is a split injection.
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Proof of 3.1 (ii), continued. Let i be a natural number such that 0 ≤ i ≤ s = dim(T ′′).
Then

αr+i(M ⊗O OL,ML) ≤ αr(M̃ ′,M ′
L) + αi(M̃ ′′,M ′′

L) by Lemma 3.1.3

= αr(M
′ ⊗O OL,M

′
L)− αr(M ′ ⊗O OL, M̃ ′) + αi(M̃ ′′,M ′′

L)

= αr(M
′ ⊗O OL,M

′
L)− αs(M̃ ′′,M ′′ ⊗O OL) + αi(M̃ ′′,M ′′

L) by Lemma 3.1.1
≤ αr(M

′ ⊗O OL,M
′
L) + αi(M

′′ ⊗O OL,M
′′
L) by Lemma 3.1.2

Dividing the above inequality by e(L/K) gives∑
1≤j≤dim(T ′)+i

cj(T,K) ≤ c(T ′K) +
∑

1≤j≤i

cj(T
′′, K)

Since c(T,K) = c(T ′, K) + c(T ′′, K), the above inequality is equivalent to∑
dim(T ′)+i+1≤j≤dim(T )

cj(T,K) ≥
∑

i+1≤j≤dim(T ′′)

cj(T
′′, K) .

We have finished the proof of Thm. 3.1 (ii).

(3.1.4) Remark Theorem 3.1 was asserted without proof in [Ch1] 8.5 (d). Unfortunately
3.1 (ii) appeared incorrectly there.

(3.2) Proposition Let 1 → T ′ → T → T ′′ → 1 be an exact sequence of tori over K.
Assume that T ′ is a split torus over K.

(i) The induced complex

0→ Lie(T ′
NR

)→ Lie(T NR)→ Lie(T ′′
NR

)→ 0

is a short exact sequence of O-modules.

(ii) For each i = 1, . . . , dim(T ′′), we have cdim(T ′)+i(T,K) = ci(T
′′).

Proof. The statement (i) is proved in [Ch1] 4.5 and 4.8. Statement (ii) follows from (i).

(3.3) Proposition Let T be a torus over K which is anisotropic over the maximal unram-
ified extension Ksh of K.

(i) The neutral component of the closed fiber of T NR is a unipotent commutative algebraic
group over κ.

(ii) We have ci(T,K) > 0 for i = 1, . . . , dim(T ).
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Proof. We may and do assume that O is strictly henselian. Since T is anisotropic, T (K)
is bounded: Every element x ∈ T (K) corresponds to a Γ-equivariant homomorphism hx :
X∗(T )→ L×, and ordL ◦hx : X∗(T )→ Z must be trivial because the Γ-coinvariant of X∗(T )
is finite. Therefore T NR = T lft NR.

Let T NR◦
κ be the neutral component of T NR × Spec O Spec κ. It is known that every

connected commutative algebraic group over κ is canonically isomorphic to a product of
a commutative unipotent group over κ and a torus over κ. Write T NR◦

κ = U ×W , where
U is a commutative unipotent group over κ and W is a torus over κ. Let ` be a prime
number different from p = Char(κ). For every natural number n, [`n]U : U → U is an
isomorphism, [`n]TNR◦

κ
is étale, and [`n]W : W → W is an étale isogeny. The kernel–cokernel

long exact sequence gives an isomorphism T NR◦
κ[`

n]
∼−→ W [`n] between the two finite étale

group schemes over κ. Since [`n]TNR : T NR → T NR is étale and O is strictly henselian, every
element of T NR◦

κ[`
n] can be uniquely lifted to an element of T NR[`n](O). So if W is non-

trivial, the `-adic Tate module V(T ) attached to T has a non-trivial Γ-invariant element.
This is impossible because V(T ) and X∗(T ) ⊗Z Q`(1) are isomorphic as Γ-modules, and
(X∗(T )⊗Z Q)Γ is assumed to be trivial. We have proved (i).

Consider the map between Lie algebras
(
canT,L/K

)
∗ induced by the homomorphism

canT,L/K : T NR ×Spec O Spec OL → TL
NR. Its reduction modulo pL is canonically identi-

fied with the tangent map of the restriction of canT,L/K to the closed fibers. The neutral
component of the closed fiber of T NR is unipotent by (i), and the closed fiber of TL

NR is a split
torus by definition. So canT,L/K is trivial on the neutral component of T NR ×Spec O Spec OL,
and its tangent map is trivial. This proves (ii).

(3.3.1) Remark (i) Here is an alternative proof of (ii) Suppose that L is a finite Galois
extension of K such that T is split over K. We may and do assume that L is totally
ramified over K, in the sense that κL is a purely inseparable extension of κ. By Prop. 3.4
(ii), it suffices to verify the statement of 3.3 for T = R′L/K . According to the description of
Lie(T NR in [dS, A1.7], we must show that if u(x) = 1 +

∑
n≥1 an x

n is a formal power series
OL[[x]] such that NmL/K(u(x)) = 1, then a1 ∈ pL. Let bn be the image of an in κL, and let
v(x) = 1+

∑
n≥1 bn x

n be the image of u(x) in κL[[x]]. We have 1 = NmκL/κ(v(x)) = v(x)[L:K].
Hence v(x) = 1. In particular a1 ∈ pL.

(ii) If κL is separable over κ, the same line of argument provides an explicit lower bound
on c1(T,K); see Cor. 4.5.

(3.4) Proposition Let T be a torus over K, and let L be a finite Galois extension of K
such that T is split over K. Assume that T is anisotropic over K.

(i) There exists a short exact sequence of tori of the form

1→ T ′ → (R′′L/K)
m → T → 1
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(ii) There exists a short exact sequence of tori of the form

1→ (R′L/K)
n → T → T ′′ → 1

Proof. We first prove (i). The cocharacter group X∗(T ) has a natural structure as a module
over the finite group Γ = Gal(L/K). The assumption that T is anisotropic over K means
that X∗(T )Γ, the submodule of all Γ-invariants in X∗(T ), is trivial. Choose a Γ-equivariant
surjection h : Z[Γ]⊕m � X∗(T ). The submodule (Z ·

∑
σ∈Γ σ)⊕m ⊂ (Z[Γ]⊕m)Γ maps to zero

under h, because X∗(T )Γ = (0). The resulting Γ-equivariant surjection(
Z[Γ]/Z ·

∑
σ∈Γ

σ

)⊕m
� X∗(T )

gives a homomorphism of tori required in (i). The same argument, using the character group
X∗(T ) instead of the cocharacter group X∗(T ), proves (ii).

§4. Induced tori and norm-one tori
(4.1) Proposition Let L be a totally ramified finite Galois extension of K such that κL = κ.
Let Γ = Gal(L/K). Then for each k = 1, . . . , e(L/K), we have

c1(RL/K , K) + · · ·+ ck(RL/K , K) = min
I⊆Γ,Card(I)=k

 1

2 e(L/K)

∑
σ,τ∈Γ
σ 6=τ

iΓ(σ τ−1)

 .

In particular, c1(RL/K , K) = 0, and
∑e(L/K)

i=1 ci(RL/K , K) = 1
2

ordK(disc(L/K)).

Proof. Let Γ = Gal(L/K) = {1 = σ1, . . . , σn}, n = [L : K] = e(L/K). Let πL be a
generator of pL. As an O-algebra, OL is generated by πL. Hence iΓ(σi σ

−1
j ) = ordL(σi(πL)−

σj(πL)) for any 1 ≤ i 6= j ≤ n. Let A be the n × n matrix whose (i, j)-th entry is σj(π
i−1
L )

for i, j = 1, . . . , n. For a natural number k, 1 ≤ k ≤ n, n · (c1(RL/K , K) + · · ·+ ck(RL/K , K))
is equal to the minimum among the orders (measured by ordL) of the determinant of all
k × k-minors of A; we have to show that it is equal to

min
I⊆{1,... ,n},Card(I)=k

∑
i<j
i,j∈I

ordL(σi(πL)− σj(πL))

 .

That each sum
∑

i<j
i,j∈I

ordL(πiL − π
j
L) in the above displayed formula is equal to the order

of the determinant of a k × k-minor of A follows from the Vandermonde determinant. The
following Lemma 4.1.1 finishes the proof.
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(4.1.1) Lemma Let m be a positive integer, and let a1, . . . , am ≥ 0 be mutually dis-
tinct natural numbers. Consider the m × m-matrix B with entries in the polynomial ring
Z[x1, . . . , xm] whose (i, j)-th entry is equal to xaij for i, j = 1, . . . ,m. Then det(B) is divisible
by
∏

1<i,j<m (xi − xj) in Z[x1, . . . , xm]

Proof of 4.1.1. Clearly det(B) is divisible by (xi−xj) if i 6= j. The Lemma follows because
Z[x1, . . . , xm] is a unique factorization domain. This finishes the proof of Lemma 4.1.1 and
Prop. 4.1.

(4.2) Corollary Notation as above, and we assume that L 6= K.

(i) Let t be the natural number such that Γ = Γt, Γt 6= Γt+1. Then

ci(R
′′
L/K , K) = ci+1(RL/K , K) =

i(t+ 1)

e(L/K)

for i = 1, . . . , [Γ : Γt+1]− 1.

(ii) We have ce(L/K)−1(R′′L/K , K) = ce(L/K)(RL/K , K) = ordK(disc(L/K))
e(L/K)

. More generally,

ce(L/K)−i(R
′′
L/K , K) = ce(L/K)−i+1(RL/K , K) =

ordK(disc(L/K))

e(L/K)
− (i− 1)(t+ 1)

e(L/K)

for i = 1, . . . , [Γ : Γt+1].

Proof. (i) Let a = [Γ : Γt+1]. We may and do assume that {1 = σ1, . . . , σa} is a set of
representatives of Γ/Γt+1. Then for k = 1, . . . , a} the minimum in the formula in 4.1 for
c1(RL/K , K) + . . . + ck(RL/K , K) is reached with I being any subset of {σ1, . . . , σa} with k

elements; it is equal to k(k−1)(t+1)
2e(L/K)

. Hence ck(RL/K , K) = (k−1)(t+1)
e(L/K)

for k = 1, . . . , a.

(ii) For i = 1, . . . , [Γ : Γt+1], the minimum in the formula in 4.1 for c1(RL/K , K) + . . . +
ce(L/K)−i(RL/K , K) is reached when Γ− I is a subset of {σ1, . . . , σa} with i elements, where
{σ1, . . . , σa} is a set of representatives of Γ/Γt+1 as in (i). We fix a subset J0 = {τ1, . . . , τi}
of Γs with i elements, let I0 = Γ− J0, and use I0 to compute the minimum. One finds that

ce(L/K)−i+1(RL/K , K) + . . .+ ce(L/K)(RL/K , K)
= i

e(L/K)

∑
1 6=σ∈Γ iΓ(σ)− 1

e(L/K)

∑
1≤k<l≤i iΓ(σk · σ−1

l )

= i
e(L/K)

ordK(disc(L/K))− i(i−1)(t+1)
2 e(L/K)

.

The statement (ii) follows.

(4.3) Corollary Assume that the residue field κ of O is perfect. Let T be a torus over K
which splits over a finite Galois extension L of K. Then

cdim(T )(T,K) ≤ ordK(disc(L/K))

e(L/K)
.

Proof. This follows from Prop. 3.2, Prop. 3.4 (i), Thm. 3.1 (ii) and Cor. 4.2 (ii).
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(4.4) Theorem Let L be a totally ramified finite Galois extension of K such that κL = κ.
Let Γ = Gal(L/K), and let Γ = Γ0 ⊇ Γ1 ⊇ · · · be the lower-numbering filtration of Γ. Let t
be the natural number such that Γ = Γt 6= Γt+1. Then c1(R′L/K , K) = t+1

e(L/K)
.

Proof. By Prop. 3.4 (ii), Thm. 3.1 (i) and Cor. 4.2 (i), we have

c1(R′L/K , K) ≤ c1(R′′L/K , K) =
t+ 1

e(L/K)
.

We will prove the inequality c1(R′L/K , K) ≥ t+1
e(L/K)

in the reversed direction by the method

in [S2] V §3–§7; we have already used a part of it in the proof of 3.3.1. According to the
description of Lie(T NR) in [dS, A1.7], the Lie algebra of R′L/K

NR can be identified with all

elements a1 ∈ OL such that there exists a formal power series of the form

u(x) = 1 + a1 x+
∑
n≥2

an x
n ∈ OL[[x]]×

such that NmL/K(u(x)) = 1. We claim that an ∈ pt+1
L for all n ≥ 1 for any u(x) as above. Of

course this claim implies that the inequality c1(R′L/K , K) ≥ t+1
e(L/K)

we need for the proof of
4.4. This will be accomplished in a series of lemmas below; the claim itself is the statement
of Lemma 4.4.5.

We introduce some notation. Let UL,0 be the subgroup of OL[[x]]× consisting of all
elements of the form u(x) = 1 +

∑
m≥1 am x

m, am ∈ OL for all m ≥ 1. For each integer
b ≥ 1, denote by UL,b the subgroup of UL,0 consisting of all elements of the form u(x) =
1 +

∑
m≥1 am x

m such that am ∈ pbL for all m ≥ 1. The quotient UL,0/UL,1 is canonically
isomorphic to the subgroup 1 + x · κ[[x]] of κ[[x]]×. Choose a generator πL of pL, we obtain
an isomorphism βb,πL : UL,b/UL,b+1

∼−→ x · κ[[x]] for each b ≥ 1. This map βb,πL sends an
element u(x) = 1 + πbL

∑
m≥1 am x

m of UL,b to the element
∑

m≥1 amx
m of x · κ[[x]], where

am is the image of am ∈ OL in κ.

(4.4.1) Lemma Suppose that Γ = Gal(L/K) is cyclic of order `, where ` is a prime number,
and κL = κ. Let σ be a generator of Γ. Suppose that iΓ(σ) = t+1, so that Γ = Γt, Γt+1 = {1}.
Then for each n ≥ 0, we have

TrL/K(πnL · xOL[[x]]) = πrK · xOL[[x]] where r =

⌊
n+ (t+ 1)(`− 1)

`

⌋
.

In particular,

TrL/K(pnL x · OL[[x]]) ⊆ pn+1 x · O[[x]] for n = 1, . . . , t− 1
TrL/K(ptL x · O[[x]]) = pt x · O[[x]]

Proof. This follows from [S2, V §3, Lemma 3].
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(4.4.2) Lemma Notation as in 4.4.1. Suppose that ξ(x) ∈ pnL x · OL[[x]], n ≥ 1. Then

NmL/K(1 + ξ(x)) ≡ 1 + TrL/K(ξ(x)) + NmL/K(ξ(x)) (mod TrL/K(p2n
L )) .

Proof. The argument in [S2, V §3 Lemma 5] works here as well.

(4.4.3) Lemma Notation as in 4.4.1.

(i) We have NmL/K(UL,n) ⊆ UK,n for each 0 ≤ n ≤ t+ 1.

(ii) Let u(x) be an element of UL,0. Let u(x) be the image of u(x) in 1+x·κ[[x]] ∼= UL,0/UL,1.

Then the image of NmL/K(u(x)) in 1 + x · κ[[x]] ∼= UK,0/UK,1 is u(x)
`
.

(iii) Let u(x) be an element of UL,n, 1 ≤ n ≤ t − 1. Let ξ(x) = βn,πL(u(x)) ∈ x · κ[[x]].

Then the image of NmL/K(u(x)) in x ·κ[[x]] under βn,πK is αn ξ(x)
p
, where αn denotes

the image of
NmL/K(πnL)

πnK
∈ O×L in κ×.

(iv) The map UL,t/UL,t+1 → UK,t/UK,t+1 induced by NmL/K can be described as follows.
Identify UL,t/UL,t+1 with x · κ[[x]] via βt,πL, and identify UK,t/UK,t+1 with x · κ[[x]] via
βt,πK . Then there exists α, γ ∈ κ× such that NmL/K sends ξ(x) ∈ x·κ[[x]] ∼= UL,t/UL,t+1

to α ξ(x)
p

+ γ ξ(x).

Proof. Use 4.4.2, 4.4.1 and the argument of [S2] V §3, Prop. 4 and Prop. 5.

(4.4.4) Lemma Let L be a finite Galois extension of K with group Γ, and assume that
κL = κ. Suppose that Γ = Γt ) Γt+1.

(i) The L/K-norm satisfies NmL/K(UL,n) ⊂ UK,n for 0 ≤ n ≤ t + 1, and induces a
homomorphism NmL/K,n : UL,n/UL,n+1 → UK,n/UK,n+1 for n = 0, 1, . . . , t.

(ii) Suppose that 1 ≤ n ≤ t. Identify UL,n/UL,n+1 with x · κ[[x]] via βn,πL, and identify
UK,n/UK,n+1 with x · κ[[x]] via βn,πK . Then

NmL/K,n : x · κ[[x]]
∼←−−−

βn,πL

UL,n/UL,n+1 → UK,n/UK,n+1
∼−−→
βn,π

x · κ[[x]]

can be described as follows. If 1 ≤ n ≤ t−1, then there exists an element δn ∈ κ× such
that

NmL/K,n : ξ(x) 7→ δn · ξ(x)
[L:K]

∀ ξ(x) ∈ x · κ[[x]] .

(iii) Notation as in (ii). For n = t, there exists an additive polynomial P (Y ) ∈ κ[Y ] of
degree [L : K] and separable degree [Γ : Γt+1] such that

NmL/K,t : ξ(x) 7→ P (ξ(x)) ∀ ξ(x) ∈ x · κ[[x]] .

Proof. The proof is similar to that of [S2] V §6 Prop. 9. One can build up the Galois
extension L/K, starting from K, by a sequence of successive cyclic extensions. Apply Lemma
4.4.3 and use induction.
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(4.4.5) Lemma Notation as in 4.4.4 Suppose that u(x) is an element of UL,0 such that
NmL/K(u(x)) = 1. Then u(x) ∈ UL,t+1.

Proof of 4.4.5 and Thm. 4.4. As explained at the beginning of the proof of 4.4, Lemma
4.4.5 implies Thm. 4.4. We have seen in 3.3.1 that u(x) ∈ UL,1. Apply Lemma 4.4.4
(ii) repeatedly, we deduce that u(x) ∈ UL,t. It remains to show that u(x) ∈ UL,t+1. Let
ξ(x) = βt,πL . Apply Lemma 4.4.4 (iii) and use the notation there, we have P (ξ(x)) = 0 in
κ[[x]], where ξ(x) ∈ x · κ[[x]] is the image of u(x) under βt,πL : UL,t/UL,t+1

∼−→ x · κ[[x]]. We
want to deduce, from the equation P (ξ(x)) = 0, the desired conclusion that ξ(x) = 0 in
κ[[x]].

There exists an additive polynomial Ps(T ) ∈ κalg[T ] of the form

Ps(T ) = bk T
pk + · · ·+ b1 T

p + a0 T with b0 ∈ (κalg)×

such that P (T ) = Ps(T
Card(Γt+1)). Notice that Card(Γt+1) is a power of p. We know that

Ps(ξ(x)
Card(Γt+1)

) = P (ξ(x)) = 0. Therefore ξ(x)
Card(Γt+1)

= 0 by Hensel’s Lemma. Hence
ξ(x) = 0.

(4.5) Corollary Let L be a finite Galois extension of K such that κL/κK is separable. Let
T be a torus over K which is split over L. Assume that T is anisotropic over the maximal
unramified extension of K. Then c1(T,K) ≥ t+1

e(L/K)
, where t is the natural number such that

Γ = Γt 6= Γt+1.

Proof. This follows from Prop. 3.4 (ii), Thm. 3.1 and Prop. 4.4.

§5. Examples
(5.1) Example Let L/K be a totally ramified extension such that Γ = Gal(L/K) is cyclic
of order p. Assume that κL = κ and Char(κ) = p.

(i) For any two anisotropic torus T1, T2 over K of with dim(T1) = dim(T2), there exists
an isogeny α : T1 → T2 of degree prime to p. Consequently ci(T1, K) = ci(T2, K) for
each i = 1, . . . , dim(T1).

(ii) Let t be the integer such that Γ = Γt, Γt+1 = {1}. Let T be an anisotropic torus over
K of dimension p− 1. Then ci(T,K) = i(t+1)

p
for i = 1, . . . , p− 1.

Proof. (i) The quotient of the group ring Z[Γ] by the ideal generated by the element∑
σ∈Γ σ is isomorphic to Z[x]/(xp−1 + . . .+x+ 1), the ring of integers in the cyclotomic field

Q(µp). Hence the localization R(p) of the ring R := Z[Γ]/(
∑

σ∈Γ σ) at the ideal generated
by p is a discrete valuation ring. For i = 1, 2, the character group X∗(Ti) is naturally an
R-module. Hence X∗(T1)(p) is isomorphic to X∗(T2)(p) as R(p)-modules. In other words there
exists a Γ-equivariant homomorphism h : X∗(T1) → X∗(T2) such that ker(h) and coker(h)
are finite groups of order prime to p.
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(ii) By (i) we may and do assume that T = R′′L/K , so we can apply 4.2 (i).

(5.2) Example Let m ≥ 2 be a natural number. Let K = Q2(µ2m), M = Q2(µ2m+1), and
L = Q1(µ2m+2). Let T ′ = RM/K , T = RL/K , and let T ′′ be the quotient torus T/T ′. Then

c(T ′, K) = (0, 2m−1), c(T ′′, K) = (2m−1, 2m), c(T,K) = (0, 2m−2, 3 · 2m−2, 2m) .

Proof. The Galois group Γ = Gal(L/K) is cyclic of order 4, canonically isomorphic to the
subgroup of Z/2m+2

Z)× generated by the image of 1 + 2m; denote this element by σ. Let ζ
be a primitive 2m+2-th root of unity. Then

iΓ(σ) = ordL(σ(ζ)− ζ) = ordL(ζ · (
√
−1− 1)) = 2m

By 4.2 (i) we get c2(T,K) = 2m−2. From 4.2 (ii) we get c4(T,K) = 2m, and c3(T,K) =
2m − 2m−2 = 3 · 2m−2.

Let ∆ = Gal(M/K), generated by the image σ̄ of σ in ∆. Then

ı∆(σ̄) = ordM(σ̄(ζ2)− ζ2) = ordM(ζ2 · (−2)) = 2m

and c1(T ′, K) = 2m−1 by 4.2 (i).

We still have to compute c(T ′′, K). By [Ch1] 4.5 and 4.8, we have a natural short exact
sequence

0→ Lie(T ′
NR

)→ Lie(T NR)→ Lie(T ′′
NR

)→ 0

which is compatible with the map on Lie algebras induced by the base change map canL/K .
We identify Lie(T ′NR) with OM , and Lie(T NR) with OL. So Lie(T ′′NR) is identified with
OL/OM . We identify X∗(T ) with Z[Γ], and the character group X∗(T ′′) of T ′′) is identifies
with the subgroup Z · (σ2 − 1) + Z · (σ3 − σ) of Z[Γ]. We use the above choice of basis of
X∗(T ′′) to identify Lie(T ′′L

NR) with OL ⊕ OL. Hence the map

canT ′′,L/K∗ : Lie(T ′′
NR

)⊗O OL → Lie(T ′′L
NR

)

is identified with the map from (OL/OM) ⊗O OL → OL ⊕ OL which sends each element
ȳ ∈ OL/OM represented by y ∈ OL to the element (σ2(y) − y, σ3(y) − σ(y)) ∈ OL ⊕ OL.
Using the O-basis {ζ̄ , ζ̄3} of OL/OM , one finds that the elementary divisors of canT ′′,L/K∗ are
(2, 4). In other words c1(T ′′, K) = ordK(2) = 2m−1, c2(T ′′, K) = ordK(4) = 2m.

(5.3) Example This example shows that if the residue field κ of O is not perfect, then the
base change conductor c(T,K) for tori may change under K-isogenies.
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The polynomial ring Z[u, v] contains subrings Z[x, v],Z[u, y], and Z[x, uv], where x =
u2, y = v2. Let OK be the (2)-adic completion of Z[x, y], OM1 be the (2)-adic completion
of Z[u, y], OM2 be the (2)-adic completion of Z[x, v], OM3 be the (2)-adic completion of
Z[x, uv], and let OL be the (2)-adic completion of Z[u, v]. These are complete discrete
valuation rings, and 2 is a uniformizing element in each of them. The residue field of OL

(resp. OM1 ,OM2 ,OM3 ,OK) is F2(u, v) (resp. F2(u, y),F2(x, v),F2(x, uv),F2(x, y).) Denote by
K,M1,M2,M3, L the fraction field of OK ,OM1 ,OM2 ,OM3 respectively. Let T = RL/K , and
let Ti = RMi/K , T ′′i = T/Ti, i = 1, 2, 3. Then

c(T,K) = (0, 1, 1, 2), c(Ti, K) = (0, 1), c(T ′′i , K) = (1, 2) .

On the other hand, let T ′i = R′Mi/K
∼= R′′Mi/K

, i = 1, 2, 3. Each T ′i is a one-dimensional torus
over K, and c(T ′i , K) = 1 for i = 1, 2, 3. Notice that T ′′1 is isogenous to T ′2×T ′3, c(T ′′1 , K) = 3,
c(T ′′2 × T ′′3 , K) = 2.

Sketch of proof. The Galois group Gal(L/K) is isomorphic to (Z/2Z)2. Let σ (resp. τ)
be the element of Gal(L/K) such that σ(u) = −v, σ(v) = v (resp. τ(u) = u, τ(v) = −v), so
Gal(L,K) = {1, σ, τ, στ}. The set {1, u, v, uv} is an OK-basis of OL. So the ci(T,K)’s are
the elementary divisors of the matrix

1 1 1 1
u −u u −u
v v −v −v
uv −uv −uv uv

 .

A simple computation shows that c(T,K) = (0, 1, 1, 2). A similar but simpler calculation
shows that c(Ti, K) = (0, 1), i = 1, 2, 3. The Lie algebra of T ′′i

NR is naturally isomorphic
to the quotient of the Lie algebra of T NR by the Lie algebra of Ti

NR according to [Ch1] 4.5
and 4.8, so c1(T ′′i , K) + c2(T ′′i , K) = 3. On the other hand c1(T ′′i , K) > 0 by 3.3. Therefore
c(T ′′i , K) = (1, 2) because there is no other possibility.

(5.4) Example We generalize 5.3 to odd primes. Let p be a prime number. Consider the
polynomial ring Z[u, v] and its subring Z[up, vp]; let x = up, y = vp. Let OK and OL be
the (2)-adic completion of Z[x, y] and Z[x, y] respectively; denote the fraction fields by K,
L. The field L is separable over K of degree p2. Let K1 = K(µp), L1 = L(µp). Then
L1/K1 is Galois with Gal(L1/K1) ∼= (Z/pZ)2. Let T = RL/K , T1 = RL1/K1 . Then each
ci(T,K) has the form i

p−1
, where i is an integer, 0 ≤ i ≤ 2p − 2. For a natural number i

with 0 ≤ i ≤ 2p − 2, the multiplicity of i
p−1

in c(T,K) is equal to min(i + 1, 2p − 1 − i).
Similarly each ci(T1, K1) is an integer i with 0 ≤ i ≤ 2p − 2. For a natural number i with
0 ≤ i ≤ 2p− 2, the multiplicity of i in c(T1, K1) is equal to min(i+ 1, 2p− 1− i). The proofs
of the above assertions are similar to the proof of 5.3, therefore omitted.

It is easy to compute the discriminants: disc(L/K) = (p)2p2
, while disc(L1/K1) =

(p)2p2
= (ζp−1)2(p−1)p2

. Notice that cp2(T1, K1) = 2(p−1), and it coincides with the formula
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in 4.2 (ii) for cdim(T )(T,K) for an induced torus T , if we interpret “e(L/K)” in 4.2 as [L : K]
when κL/κK is purely inseparable. This observation still holds if we change Z[u, v]/Z[up, vp]
to Z[u1, . . . , um]/Z[up1, . . . , u

p
m]: Then disc(L1/K1) = n(p − 1)pn, and cpn(RL1/K1 , K1) =

n(p − 1). Whether this is an accident, or is a special case of a general phenomenon, seems
unclear at present.
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actéristique 0. In the monograph Représentations des groupes réductifs sur un corps
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