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Abstract

Let k be a perfect field of characteristic p > 0. Let X, Y be isoclinic Barsotti-Tate
groups with Frobenius slopes pux, py respectively, with ux < py. The “extension part”
DE(X,Y) of the equi-characteristic deformation space Def(X,Y) of X x Y has a natural
structure as a commutate smooth formal group over k. We show that the central leaf in
the deformation space Def(X,Y), the locus in Def(X,Y) defined by the property that
the fiber of the universal Barsotti-Tate group of every geometric point of the central leaf
is isomorphic to X x Y, is equal to the maximal p-divisible subgroup DE(X,Y)piv of the
smooth formal group DE(X,Y). We also determined the Cartier module of the p-divisible
formal group DE(X,Y )piv in terms of the Cartier modules of X and Y. A “triple Carter
module” BC,,(k), defined to be the set of all p-typical curves of the Cartier ring functor,
plays an important role.

The “two-slope case” treated in this article is an essential ingredient of a general local
structure theory for central leaves, which covers both the case of a central leaf in the
deformation space of an arbitrary Barsotti-Tate group over k and the formal completion
at a closed point of a central leaf in a modular variety of PEL-type over k.
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§1. Introduction

Let k£ be a perfect field of characteristic p, p > 0. Recently Oort defined the notion of central
leaves in the moduli space A, of g-dimensional principally polarized abelian varieties over k;
see [17] for the properties of central leaves, as well as the companion notion of isogeny leaves.
Recall that the central leaf C(xg) passing through a closed point g = [(Ag, Xo)] € Ay(k¥8)
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is the smooth locally closed subset such that for every algebraically closed field K D k,
C(zo)(K) consists of all points [(A,\)] € Ay(K) such that the quasi-polarized Barsotti-Tate
group (A[p™], A[p*°]) is isomorphic to (Ag[p™], Ao[p™]) Xspec(k) SPec(K). The above point-
wise definition of central leaves has a drawback though, because it is not easy to use for
local calculation. The purpose of this article is to lay the foundation for an independent
characterization, as well as a structure theory, for the formal completion of a central leaf
C(x0) at a closed point.

The motivation of this article came from the Hecke orbit problem, conjectured in [17], that
every prime-to-p Hecke orbit is dense in the central leaf containing it. To study the Zariski
closure of a Hecke orbit at a point with a large local stabilizer subgroup, it is imperative to
characterize the formal completion C(xq)/ of a central leaf C(z¢) inside the local deformation
space Def(Ap) of (Ag, Ag). The central leaves rewarded our inquiry by revealing its beautiful
structure: The formal completion of a central leaf at a closed point is “built up” from many
p-divisible formal groups over k£ through a system of fibrations, with the p-divisible formal
groups as the fibers. On a fixed central leaf, the local completions at any two closed points
are non-canonically isomorphic, so a central leaf is homogeneous in some sense. A special case
of this phenomenon is the classical Serre-Tate coordinates for the local deformation space of
an ordinary abelian variety, discovered forty years ago. Although there is no good notion of
canonical coordinates on the formal completion of A, at an arbitrary closed point, canonical
coordinates do exist when we restrict to a central leaf. It is tempting to view each central
leaf in A4 as a sort of Shimura variety in characteristic p, because it is “homogeneous” and
exhibits many group-theoretic properties similar to Shimura varieties in characteristic 0. The
modular variety A, itself, being the reduction modulo p of a Shimura variety, is the union of
infinitely many Shimura-like subvarieties, with continuous moduli.

We will concentrate on the essential case, when the abelian variety in question has only
two slopes. It is convenient to use Barsotti-Tate groups instead of abelian varieties: According
to another classical theorem of Serre and Tate, deforming an abelian variety is equivalent to
deforming its Barsotti-Tate group. Let X,Y be isoclinic Barsotti-Tate groups over k with
Frobenius slopes p, < p,. In particular, Y is a p-divisible formal group, i.e. a Barsotti-
Tate group all of whose Frobenius slopes are strictly positive. Let DE(X,Y) be the maximal
closed formal subscheme of the local deformation space of X Xgpec(r)Y such that the universal
Barsotti-Tate groups over DE(X,Y) is an extension of the constant formal group X by the
constant formal group Y'; see 2.2 for the precise definition of DE(X,Y). The formal scheme
DE(X,Y) is smooth over k, and has a natural structure as a commutative formal group via
the Baer sum.

Every smooth formal group G over k has a maximal p-divisible smooth formal subgroup
Gpiv and a maximal unipotent smooth formal subgroup Gunip. In §3 we show that the
maximal p-divisible formal subgroup DE(X, Y )pqiv of DE(X,Y) is equal to the central leaf in
the local deformation space Def(X x Y') over k with respect to the universal Barsotti-Tate
group over Def(X x Y). In the case when Ag[p™] is isomorphic to a product X Xgpec(r) ¥’
of two isoclinic Barsotti-Tate groups as above, where X and Y are Serre-dual of each other
under the principal polarization \g, the results in §3 say that the central leaf in Def( A, o)
is the maximal p-divisible formal subgroup of DE(X,Y )pqiv fixed by an involution ¢,, where
L, is the involution on DE(X, Y )pqiv induced by the principal polarization Ag on Ay.

The maximal unipotent smooth formal subgroup DE(X,Y )unip of DE(X,Y) is also of
interest. It is the intersection of DE(X,Y) with the isogeny leaf in the local deformation



space De f(X Xgpec(k) Y)- In the case when Ag[p™] is isomorphic to a product X Xgpec(x) Y of
two isoclinic Barsotti-Tate groups as above, the fixed subgroup DE (X, Y)ilonip of DE(X,Y )unip
under the involution ¢, is the intersection of DE(X,Y’) with the formal completion at g of
the isogeny leaf passing through xg. These aspects are not addressed in this article, however
the readers can find some examples in §6 and 9.9, where the Cartier module of the formal

groups DE(X,Y), DE(X,Y )piv, PE(X,Y )unip are computed explicitly.

The bulk of this article is devoted to the properties of the smooth formal group DE(X,Y),
its maximal p-divisible formal group DE(X,Y )paiv, and its maximal p-divisible quotient
DE(X,Y )P4 of DE(X,Y). When X is étale, the formal group DE(X,Y) is naturally isomor-
phic to T;(X)Y ®z, Y, non-canonically isomorphic to several copies of Y; see Prop. 2.9. In the
rest of this Introduction, we assume that X is a p-divisible formal group. In §2, we show that
DE(X,Y )piv is isoclinic of Frobenius slope ft,, — . The module BCy(k) of p-typical formal
curves for the functor Cart, plays an important role in the computation of the Cartier module
of the smooth formal group DE(X,Y) over k. Here Cart,(R) denotes the Cartier ring for R, for
any commutative k-algebra R with 1, and Cart,, is regarded as an infinite dimensional smooth
formal group over k. The module BC,(k) has a natural structure as a (Cart,(k)-Cart,(k))-
bimodule, plus a left action of an “extra copy” of Cart,(k) which commutes with the bimodule
structure. The Cartier module M(DE(X,Y)) attached to the commutative smooth formal
group DE(X,Y) is canonically isomorphic to EXtéarth) <M(X), BCp(k) @, ) M(Y)> if X,
Y are both p-divisible formal groups over k; see 5.7.3. Here M(X'), M(Y") are the left Cart,(k)-
modules attached to X and Y respectively. The extension group is computed using the left
Carty(k)-module structure coming from the bimodule structure of BCp(k). This extension
group has a natural structure as a left Cart,(k)-module, which comes from the action of
the “extra copy” of Cart,(k) on BCy,(k). The basic properties of BCy,(k) can be found in
§5. Starting from the Cartier module M(DE(X,Y)) of DE(X,Y)), computed by the above
formula involving Ext', the Cartier module M(DE(X, Y )piv) attached to DE(X,Y)pqiy can
be characterized as a submodule of M(DE(X,Y)) in several ways; here is one: The Cartier
module M(DE(X,Y )pdiv) consists of all elements x € M(DE(X,Y') such that for every n € N,
there exists a natural number m € N such that V™ x € F"(M(DE(X,Y)); see 4.3. In §6, the
Cartier module of the formal groups DE(X,Y) and DE(X,Y )pqiv are computed in several
examples, illustrating the use of 5.7.3 and 4.3.

In §7 we give a precise structural description of BC,(k). The basic idea is that BC, (k)
can be approximated by Cart, (k) @y Cart,(k). In fact, BCy(k) is the completion of an
enlargement of Carty,(k)®yyx) Carty(k) in Cart, (k) @y ) Carty (k) ®@zQ with respect to a suit-
able topology, and we obtain an identification of BC,(k) with a subset of formal series of
the form Zi,jeZ ai;V' @ VI, with coefficients a;; in W(k), satisfying suitable growth con-
ditions; see 7.10 for a precise statement. The above result for BC,(k) in turn provides an
identification of BC,(k) @Cart, (k) N @z Q with a subset of formal series in powers of V' with
coefficients in N ®z Q. This description of BCy(k) ®cart,(x) N ®z Q allows one to compute

Ext(ljartp(k) (M, BC, (k) ® Gartp (k) N) ®Q, using the method of [14, Appendix]: The V-isocrystal

M(DE(X,Y ) pdiv) ®zQ is canonically isomorphic to V-isocrystal Homyyy (M(X), M(Y')) ®7Q;
see §8.6.

It turns out that the Cartier modules attached to the maximal p-divisible subgroup
DE(X,Y )piv and the maximal p-divisible quotient DE(X,Y )P4V of DE(X,Y) can be ex-
pressed more directly in terms of the Cartier modules M(X), M(Y), as follows. The W(k)-



submodule H := Homyy)(M(X), M(Y)) of the V-isocrystal Hg := Homyy ) (M(X), M(Y))®z
Q is stable under the action of F', but not under V. Let H; be the maximal W(k)-submodule of
H which is stable under ' and V', and let Hy be the minimal W(k)-submodule of Hg which con-
tains H and is stable under F' and V. Thm. 9.6 says that H; is the Cartier module attached
to DE(X,Y )pdiv, and Hy is the Cartier module attached to DE(X,Y )P4V, The Cart,(k)-
module Hy/H; is the covariant Dieudonné module attached to DE(X,Y ) pdiv NDE(X, Y )unip;

it is trivial only when Y is a formal torus.

Here are some basic numerical invariants of the formal groups DE(X,Y') and DE(X, Y ) pdiv-
Suppose that dim(X) = r1, codim(X) = s1, dim(Y) = r2, codim(Y’) = s2, so that the slope
of X is 7'1251, the slope of YV is 22—, and risy < r2s;. Then dim(DE(X,Y)) = rasi,

dim(DE(X,Y Junip) = r1s2), and dim(DE(X,Y )paiv) = 7251 — r1s2. When XY are Serre-

dual to each other, induced by a principal quasi-polarization A on X Xgpecr) ¥, we have an
involution ¢ on DE(X,Y). Let r = ro = s1,5s = so = r1. Then dim(DE(X,Y)") = @,
dim(DE(X, Y )t y,) = 3(32“), and dim(DE(X, Y ) 4,) = % These formulas give the
dimension of the central leaves in A, in the two-slope case; they were first proved by Oort,

using his results on minimal Barsotti-Tate groups in [18].

In this article we only treat the case when the Barsotti-Tate group in question has exactly
two slopes. As indicated before, in the general case, with no restriction on the number of
slopes, the completion of a central leaf is built up from a system of fibrations, with the groups
DE(X,Y )pdiv considered here or a subgroup of DE(X, YY),y fixed by an involution, as fibers.
The dimension formula for leaves generalize, using the local structural result of leaves above.
These results will be documented in a planned monograph with F. Oort on Hecke orbits.

It is a pleasure to thank F. Oort for explaining his idea about the foliation structure
when it was freshly conceived, for the many discussions over the years, and for his constant
encouragement. I would also like to thank C. F. Yu for the enjoyable discussions during our
on Hecke orbit in Hilbert modular varieties, one of which lead to the observation that the
maximal p-divisible subgroup of DE(X,Y’) is the central leaf in DE(X,Y"). This paper would
not have existed without them.

§2. The slope of DE(X,Y ) piiv

In this section k denotes a field of characteristic p.
(2.1) Notation for Barsotti-Tate groups and commutative smooth formal groups

(2.1.1) Barsotti-Tate groups, or BT-groups, over a scheme are understood to be of finite
height. See [11], [6] for basic properties of Barsotti-Tate groups. A BT-group G — S over a
scheme S is a system (G, — S),>1 of locally free group schemes of finite rank, together with
homomorphisms i, : Gy, — Gpnt1, [p] : Gni1 — G, satisfying suitable conditions; the group
Gy, — S is a truncated Barsotti-Tate group of level n, or a BT,-group, over S. Here we have
used the general notation that, for any sheaf of commutative groups H and any integer n,
[n]r denotes the map “multiplication by n” on H. The Serre dual of a BT-group (Gy,)n>1 is
the system (G%),>1, where G, is the Cartier dual of G,,.



(2.1.2) Every BT-group G over k of height h has a slope sequence 0 < p; < --- < py, < h,
which depends only on G Xgpec(x) Spec(k?'8). The multiplicity of any slope p is a multiple of
the denominator of . The slopes of G measures the divisibility properties of iterates of the
relative Frobenius of G. To avoid possible confusion, we sometimes use the term Frobenius
slope to emphasize that the powers of relative Frobenius are compared with powers of p.
Barsotti-Tate groups over an algebraic closure k*8 of k are determined up to isogeny by its
slopes, with multiplicity; see [10], [7], [5].

A BT-group (Gy)n>1 over k is étale iff all of its Frobenius slopes are equal to 0, and it is
of multiplicative type iff all of its Frobenius slopes are equal to 1. A BT-group (Gj,)n>1 over
k is connected, i.e. G,, is connected for every n, if and only if all slopes of (Gy,)n>1 are strictly
positive.

If pup < --- < pyp is the slope sequence of a BT-group over k, then the slope sequence of its
Serre dualis 1 — up < --- <1 — .

(2.1.3) Let R be an Artinian local ring with residue field k. Denote by BT g conn category of
BT-groups (Gy,)n>1 over R such that each G,, is connected. Denote by €§& R be the category
of commutative smooth formal groups over R. Then there are natural equivalence of categories

§: %TR,conn — €F 6, Y SR — %{ZRponny

inverse to each other. For any BT-group (Gn)n>1 in BTR conn, {((Gn)n>1) is the smooth
formal group G := hLQn G, where the limit is taken in the category of formal schemes over
R. Conversely, for any commutative formal group G in €&, let G, = Ker([p] : G — G.
Then the natural inclusions i, : G, < Gp41 and the homomorphism [p] : Gp41 — Gj
induced by [p]¢ defines a BT-group ¥(G) = (Gy)n>1. We will freely use the above equivalence
of categories to identify a connected BT-group with a smooth formal group over R, and call
them p-divisible formal groups over R. Passing to the limit, the above equivalence of categories
holds for any complete Noetherian local ring with residue field k.

(2.2) Definition Let X and Y be Barsotti-Tate groups over k.

(i) Let DE(X,Y) be the functor from the category of Artinian local k-algebras to the
category of commutative groups, defined as follows. For every commutative Artinian
local k-algebra (R, m) with 1, DE(X,Y)(R) is the set of isomorphism classes of pairs

(0 —-Y X Spec(k) Spec(R) —-G—X X Spec(k) SpeC(R) — 0, o )7

where 0 — Y Xgpec(r)Spec(R) — G — X Xgpee(r)SPec(R) — 0 is a short exact sequence
of Barsotti-Tate groups over R, and

a:GX Spec(R) SpeC<R/m) — X x Spec(k) Y X Spec(k) SpeC(R/m)

is an isomorphism which is compatible with the short exact sequence. Notice that the
set DE(X,Y)(R) has a natural structure as a commutative group, from the Baer sum
construction. The zero section in DE(X,Y)(R) corresponds to the direct product of
X Xgpec(k)Spec(R) with Y Xgpec(r)Spec(R).



(ii) The deformation functor De f(X Xgpec(r)Y') is the functor from the category of Artinian
local k-algebras to the category of sets, such that for every Artinian local k-algebra
(R,m), Def(X Xgpec(k) Y )(R) is the set of isomorphism classes of pairs (G, «), where
G — Spec(R) is a Barsotti-Tate group over Spec(R), and

a: GXSpec(R) Spec(R/m) =X ><Spev:(k)§/ X Spec(k) Spec(R/m)
is an isomorphism of Barsotti-Tate groups.

(2.3) Proposition Notation asin 2.2. Letr; = dim(X), ro = dim(Y'), s; = ht(X)—dim(X),
s9 = ht(Y) — dim(Y").

(i) The functor DE(X,Y) on the category of Artinian local k-algebras is formally smooth.
(ii) The dimension of the smooth formal group DE(X,Y) is equal to ras;.
(iii) The natural morphism of functors, which sends any pair
(0 =Y Xgpee(r) Spec(R) = G — X Xgpee(r) Spec(RR) — 0, a)

in DE(X,Y) to the element (G, ) of Def(X Xgpeck) Y)(R), identifies DE(X,Y) as a
closed subfunctor of Def(X Xgpec(r) Y )(R)-

(2.3.1) Lemma Let R be an Artinian commutative local ring. Let 0 — Hy — H — Hy — 0
be a short exact sequence of free R-modules of finite rank. Let F; be an R-submodule of H;
such that H;/F; is a free R-module, i = 1,2. Let n be an ideal of R such that n* = (0). Let
R= R/n. Let H;=H; ®rR, and let F;= F; @R R CH;, i = 1,2. Let F be an R -submodule
of H such that H is a free R-module such that F NHy=F}, and the image of F in Ho is equal
to FQ.

(i) There exists an R-direct summand F of H such that F N Hy = Fy, the image of F in H
is equal to F', and the image of F in Ho is Fs.

(ii) The set L of all liftings F of F satisfying the properties in (i) above has a natural
structure as a torsor for the group ¥ := Homp (F2,n®z (H1/F1) ). The torsor structure
is given as follows. For F' € L and ) € ¥, choose an R-linear homomorphism

h Fy > n®rpH;
such that image of h' under the natural map
Homp(Fo,n ®pHy) — Homp(Fo,n @5 (Hi/FY))

is equal to 1. Let h € Homp(F,n ®@p Hy) be the composition of h' o 7, where  is the
natural surjection m: F — F/Fy = Fy. Then the torsor structure sends the pair (1, F)
to the R-submodule

F':={x+h(z)|z € F}

in H. Notice that the R-submodule F' C H above is well-defined, independent of the
choice of h.



PROOF. We first show that the canonical map H — H' := H Xgr, H2 is surjective. Here H'
is the pull-back of Hy — Hy by H — Hy. In other words, H' is the R-submodule of H & Ho
consisting of all elements (u,v) in H @ Hs such that v and v map to the same element in Ho.
The surjectivity of H — H' follows from the commutative diagram

0——=n®rH H H 0
0 —n®g H H' H 0
with exact rows, and the five-lemma.
Let v1,...,v, be an R-basis of Fo C Hs. Let ¥1,...,0, be the image of vi,...,v, in
F, C Hy. Choose elements wy, ..., w, in F' lying above v1, ..., v, under the map F' — F5. The
surjectivity of H — H' there exist elements wy, . .., w, in H, such that w; — v; under H — Hy

and w; — w; under H — H for i = 1,...,r. Then the R-submodule F := F| + Rw; +- - -+ Rw,
of H satisfies the required properties in (i).

It is easy to see that the map (1, F') — F’ described in (ii) indeed defines an action of ¥ on
L. Conversely, given any two elements F, F’ in £, there exists an element h € Hompg(F,n®@rH)
such that F' = {x + h(z) |z € F}. Since F'NH; = F; = FN Hy, h(F1) Cn®pg F1. So the
composition
B:FLH®RH—»11®RH/F

factors through the natural surjection 7 : F' — F/Fy = Fytogiveamap b : Fy — nQ®pg H/}j
such that h = h/ow. Because the image of F' and I’ in Hs are both equal to Fy, the map A/
factors through the injection

7@y (Hi/F) < n@g (Hi/Fi) = n®g (H/F)

and gives us an element 1) € ¥ such that h/ = j01. We have (¢, F) — F' according to the
definition of the action of ¥ on £. We have proved that £ is a W-torsor under the action
described in (ii). W

PRrROOF OF PrROP. 2.3. (i) Let R be an Artinian local ring over k, and let n be an ideal of R
such that n? = (0). We must show that the map DE(X,Y)(R) — DE(X,Y)(R/n) is surjective.
An element of DE(X,Y)(R/n) corresponds to a Barsotti-Tate group G over R/n, which is an
extension of X Xgpec(x) Spec(2/n) by Y Xgpec(x) Spec(2/n). We need to lift G to a Barsotti-
Tate group over R, as an extension of X Xgpec(r) Spec(R) by X Xgpec(r) Spec(R). We will use
the Grothendieck-Messing theory of crystals attached to Barsotti-Tate groups; see [11, chap.
IV]. Let H = D(G)p—gr/n be the evaluation of the crystal D(G) at the nilpotent immersion
Spec(R/n) — Spec(R), with the natural divided power structure on n. Here Yp is short for
Y Xgpec(k) Spec(R). The R-module H is free of rank ht(X) + ht(Y). Let F' = wge be the

cotangent space of G!, a direct summand of H @ R/n. Let (Fy, Hy) = (wyé C ID)(YR)(R)>,

and let (Fy, Ha) = (LUXIt% C ]D)(XR)(R)). Both H; and Hj are free R-modules, and Fj is a
direct summand of the free R-module H;, i = 1,2. Moreover we have a short exact sequence

0—-H —H— Hy—0



of R-modules, and a compatible short exact sequence
0— FL®g(R/n) - F — F,®z (R/n) =0

of (R/n)-modules. By [11, Thm. V.1.6], lifting the given element of DE(X,Y)(R/n) to an
element in DE(X,Y)(R) is equivalent to lifting F' to a direct summand F of the R-module
H, with the property that F' N Hy; = Fj, and the image of F' in Hy is F5. The statements (i)
and (ii) follows from Lemma 2.3.1.

The statement (iii) is a consequence of the general fact that for any two Barsotti-Tate
groups (G1, G over an Artinian local ring (R, m), the natural map

HomSpec(R) (Gh GQ) - HomSpec(R/m) (Gl X Spec(R) SpeC(R/m)a Ga X Spec(R) SpeC(R/m))

is injective. N

(2.4) For any finite dimensional commutative smooth formal group G over k, we denote by
Gpiv the maximal p-divisible formal subgroup of G. The formal subgroup Gy is a smooth
formal subgroup of G such that the map Lie(Gpqiv) — Lie(G) induced on their Lie algebras
is an injection, characterized by the property that G4y is a p-divisible formal group over £,
and the quotient G//Gp4iv is a unipotent commutative smooth formal group over k. See Prop.
4.3 for a description of the Cartier module of Gp,qiy in terms of the Cartier module of G.

A finite dimensional commutative smooth formal group G as above also has a maximal
unipotent smooth formal subgroup Gynip such that the map Lie(Gypip) — Lie(G) induced on
their Lie algebras is an injection, characterized by the property that G/Gnip is a p-divisible
smooth formal group; see [21, Satz 5.36].

The homomorphism Gpqiy X Gunip — G induced by the group law of G is an isogeny; the
kernel of this isogeny is isomorphic to Gpqiv N Gunip-

The p-divisible formal group G/Gunip is the maximal p-divisible quotient formal group
of G, in the sense that every epimorphism G — G’ from G to a p-divisible formal group
G’ over k factors through G/Gynip. Similarly, the unipotent group G/Gpiv is the maximal
unipotent quotient smooth formal group of G. The kernel of the natural homomorphisms
Gpdiv — G/Gunip and Gunip — G/Gpaiv are both isomorphic to Gpdiv N Gunip-

(2.5) Lemma (i) Let a: Y — Y] be an isogeny of Barsotti-Tate groups over k. Then the
homomorphism o, : DE(X,Y) — DE(X, Y1) induces an isogeny

(6 'DE(X, Y)p-div e DS(X, Yl)p-div
between p-divisible formal groups.

(ii) Let B : X1 — X be an isogeny of Barsotti-Tate groups over k. Then the homo-
morphism * : DE(X,Y) — DE(X1,Y) induces an isogeny B* : DE(X,Y )pdiv —
DE(X1,Y )piv between p-divisible formal groups.

PROOF. There exists an isogeny o : Y7 — Y and a natural number m such that o/ oo = [p™]y
and a oo’ = [p™]y;. Then o o ax = [p™]|pe(x,v) and ax o ), = [p™]pg(x,y;)- This proves (i).
The proof of (ii) is similar. &



(2.6) We review some notation about absolute and relative Frobenius maps. Throughout this
section k is a field of characteristic p.

(2.6.1) Denote by Fy, : Spec k — Spec k the absolute Frobenius morphism for Spec &, induced
by the ring homomorphism z — z? from k to k. More generally, for any F,-scheme S, denote
by Fg : S — S the absolute Frobenius morphism for .S, induced by the ring homomorphism
x +— xP from Og to Og.

(2.6.2) For a k-scheme S, let S®) = F}'S be the fiber product of S — Speck with Fy, :
Spec k — Spec k. We have a commutative diagram

S
\' Fg
S/k\\
/;'9

S — §

oo

Speck —— Speck
Fg
The map Fg;, : S — Fj.S is called the S/ Spec k-Frobenius, or simply S/k-Frobenius. More
generally, for every natural number n > 1, denote by F}! : Speck — Speck the morphism
induced by the ring homomorphism z — xP", called the n-th iterate of the absolute Frobenius
for Speck. Let S®") .= (F™)*S, the fiber product of S — Speck and F} : Speck — Speck.
The n-th iterate F'g Ik of the S/k-Frobenius is defined by the commutative diagram

Speck —— Speck
Fk

(2.6.3) Let T'— S be a morphism of k-schemes. Then we have a commutative diagram

T T
Fr/s W3k wr Fr/s W3k

T —5% F5T —% FiT T FeT 5 FiT
NS
s — Frs E. g — L FrS

N e

Speck RN Speck



involving the relative S/k-Frobenius Fg /i, and the relative T /S-Frobenius Fr /s The following
equalities hold.

o WP oFg, =Fs, FgpoWp =Fr:s,

Wg/k oFr/s = Frp,

Wl oFp,,=Wlo WST/k oFr/g =Fr,

Frpwo Wl =W§), oFrys0 Wl =Frir,
o Wl oW, =W§,
o FrygoWE =Frygo Wl o WE, =Fryr.

(2.6.4) For every natural number n > 1, we have a big “winged diagram” similar to the one in
2.6.3, with the Frobenii replaced by their n-th iterates. The maps involved satisfy properties
similar to those listed in 2.6.3.

(2.6.5) Given Barsotti-Tate groups G, H over a scheme S, denote by EX7T (G, H) the category
of all extensions of G by H, as sheaves on the site Sg,qc. Notice that every such extension of
G by H is a Barsotti-Tate group over S. The set of isomorphism classes Ext(G, H) of objects
of EXT (G, H) has a natural structure as an abelian group, via the Baer sum. We have a
natural isomorphism Ext(G, H) = Ext5(G, H).

Let ¢ = (0 - H — E — G — 0) be an extension of Barsotti-Tate groups on S.

e For any homomorphism « : H — Hj, we have a push-forward of the extension € by «,
denoted by «a, €&, characterized by the commutative diagram

0 H E G 0
0 Hl Oé*E G 0

with exact rows.

e For any homomorphism « : G; — G, we have a pull-back of the extension E by (3,
denoted by B*FE, characterized by the commutative diagram

0 B*E G 0
o A B
0 E Gi —= 0

with exact rows.
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(2.6.6) Notation as in 2.6.5. For any morphism f : S; — S of schemes, we have a pull-back
of the extension £ by f, namely the extension of Barsotti-Tate groups

0—>51X5H—>81X5E—>51XSG—>0

over S1. In order to distinguish such pull-back with the previously defined pull-back by a
homomorphism G; — G, we will use the notation f!F for the above extension of BT-groups
on Sl.

(2.7) Proposition Let S be a scheme over k. Let 0 — H — E — G — 0 be an extension of
Barsotti-Tate groups over S. Let n be a natural number. Then there is an isomorphism

GJs <Fg/ttk(FZﬁE)) = (F?I/S>* E
between extensions of Barsotti-Tate groups over S. Here
. FZﬁE € EXT (F*G,F*H) is the pull-back of the extension E by the n-th iterate
F} : Speck — Speck

of the absolute Frobenius for Speck,

. Fgﬁk(F’;ﬂE) € EXT(F&G,F H) is the pull-back of FY*E by the n-th iterate
S S — Fp*S
of the relative Frobenius for S/ Speck. So we have

i

S/k(FZﬁE) ~FE,

where FgﬁE is the pull-back of E by the n-th iterate F'g : S — S of the absolute Frobenius

for S,
o ¥ (o (FL*E)) € EXT(G,FY H) is the pull-back of
Fyf (Fr )

by Ft)s G — F§*(G), the n-th iterate of the relative Frobenius for G g.
o <FZ/S>* E € EXT(G,F§'H) is the push-forward of E by
F?I/S :H —F¢*H,
the n-th iterate of the relative Frobenius for Hg.

So both sides of the asserted isomorphism are evtensions of G ;g by F'¢*(H g).

11



PROOF. Recall that Fgu/k (FZﬁE) = FgﬁE is the extension
0—-F¢H—-FYE—-FTG—0,
and the n-th iterate of the relative Frobenii defines a commutative diagram

0 H FE G 0
le/s l%/s ch/

with exact rows. Regarding this diagram as a map from the extension E to the extension
(Fg)ﬁE, it factors through the extension (F?I/S)*E by the defining property of the push-out.
This factorization is represented by the following commutative diagram

0 —— H E G 0
E— :

0 —= F¢¥H —— (Fpyo)E G 0
o

0 —= F¥H FE Fi*G ——> 0

with exact rows. The lower half of this diagram tells us that the extension (F’}_I/S)*E is

isomorphic to the extension F S(FL)FE. 1

(2.8) Theorem Let X,Y be isoclinic Barsotti-Tate groups over k, of Frobenius slopes ji ., i,
respectively.

(i) If py <y, then DE(X,Y )paiv is isoclinic of Frobenius slope fi,, — fiy .
(ii) If py > py, then DE(X,Y )paiv s trivial.

PrOOF. We may and do assume that the base field k is perfect. The key of the proof is to
reinterpret Prop. 2.7 geometrically. We have a commutative diagram

DE(X,Y)

Fhex,y o \ Y
(Jf) DS(}\;,Y)/k

DE(X,Y) DEX @),y ™)

DE(X, Y @)

DE(X,Y)
Wk,p"

The maps 1,,, ¢, are described below. Let £xy be the universal extension over DE(X,Y).
Recall that X ") = Specksz,SpeckX, y ") = Specksz,SpeCkY. It is clear that 8)%77;,) is the
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universal extension over DE(X,Y)®") = DE(XP") Y ®™) and F%ﬁg( xv)k€ )(?7;/) is isomorphic

to the pull-back of Exy — DE(X,Y) by the absolute Frobenius Fhexy) — DE(X,Y). Let
Exyum — DE(X, Y ®")) be the universal extension over DE(X,Y®")). The maps ¢, , 1, are
defined by

° gbi <6X?Y(p)> ~ (Fm ) 5)(?;) as extensions of X by Y (®")

X Xgpee k DE(X ™) Y (P7)) /D (x (P™) y (b))

over DE(X @)y #™)),

° d}fb (5X7Y(p)> = (F" ) Exy as extensions of X by Y®") over the

Y Xgpec kDE(X,Y)/DE(X,Y) )

formal scheme DE(X,Y).

Prop. 2.7 tells us that the diagram (f) commutes.

According to Lemma. 2.5, it suffices to prove the theorem with the Barsotti-Tate groups
X, Y replaced by X1, Y] isogenous to X and Y respectively. Therefore we may and do assume
that for some n € Ny, a := nu, and b := nu, are both integers, and we have

Fin

n F?(/k n b
Ker [ X—5Xx0" | =[p%,, and Ker | Y—5Y0" | =[], .

In other words, the homomorphism Fy Ik is equal to p® times an isomorphism from X to
X@®")_ Similarly F?//k is equal to p® times an isomorphism from Y to Y®"). Therefore
¢n is equal to p® times an isomorphism from DE(X®™) Y ®")) to DE(X,Y®")), and v,
is equal to p® times an isomorphism from DE(X,Y) to DE(X,YP")). So we conclude,

n . a . n . b s . .
from ¢, o FDS(X,Y)/k = 1, that p FDS(X’Y)/]C is equal to p” times an isomorphism from

DE(X,Y) to DEXP) Y®")) .  Passing to the induced maps between the maximal p-
divisible subgroups of DE(X,Y) and DE(X®") Y (") we deduce that the homomorphism

F%E(XY)p-div/k : DE(X,Y )paiv — DE(X, Y)gfgi)v has the property that

- F%S(X’Y)p-div/k =pb. (an isomorphism DE (X, Y )paiv — DE(X, Y)g—)di)v) )

Hence if p1,, > p,, or equivalently b > a, then

F%g(va)p-div/k = pt . (an isomorphism DE (X, Y )paiv — DE(X, Y)g_);)v) ,

therefore DE(X,Y)piv is isoclinic of Frobenius slope &% = u,. — pu,. We have proved

n
statement (i).

Suppose that p, < p,,ie. b <a. Then the homomorphism

P Fhex.y) o "
DE(X,Y ) pdiv e DE(X, V)P,

is an isomorphism. This implies that the p-divisible formal group DE(X,Y ), qiv is trivial. The
statement (ii) follows. B
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(2.8.1) Remark (i) An isoclinic Barsotti-Tate group G over a scheme S is said to be com-
pletely slope divisible in [19] if there exist positive integers r,s > 0 such that Ker([p"|g) =
Ker(F¢, /S)' The proof of Thm. 2.8 shows that DE(X, Y )paiv is a completely slope divisible
group over k if X and Y are both completely slope divisible.

(ii) A “computational proof” of Thm. 2.8 (i) will be given in 8.6.3.

(2.9) Proposition Assume that X is an étale Barsotti-Tate group over k, and Y is a p-
divisible smooth formal group over k. Then we have canonical isomorphisms

DE(X,Y) = Homy (Tp(X),Y) = Tp(X)" ®, Y,

where T((X) is the p-adic Tate module of X. Explicitly, the first isomorphism above attaches
to every homomorphism o : Tp(X) — Y (R), where (R, m) is an Artinian local k-algebra, the
push-out extension

0 — Tp(X) —= Tp(X) ®z, Qp X 0
0 Y E, X 0

E, € DE(X,Y)(R).

PrOOF. We may and do assume that k is algebraically closed. We offer two proofs.
THE FIRST PROOF. The explicit construction above gives an homomorphism

B:Ty(X)"®, — DECX.Y)

between p-divisible smooth formal groups. Both the source group and the target group have
dimension height(X) - dim(Y"). It is easy to verify that map Lie(3) between the Lie algebras
induced by the homomorphism ( is an isomorphism. Hence 3 is an isomorphism.

THE SECOND PROOF. We may and do assume that X is equal to the constant étale p-divisible

group
Z [1]/2 = [ lim Z Z
p ieN

over k, where the transition maps in the inductive system h_r)nieN Z, are “multiplication by

99

p”. Let (R,m) be an Artinian local ring with R/m — k. We must construct a canonical
isomorphism

Y(R) = Ext§en) <h_r)n /7, Y)
1€N

We have a short exact sequence

0— hLHI (Y(R))ZEN - EXtépecR (h_H} Z, Y) - 1&1 EXtépecR(Z> Y) —0
i€N ieN ieN
where (Y (R));en denotes the projective system indexed by N, all of whose terms are equal
to Y(R), and the transition maps are “multiplication by p”. Since R is Artinian, [p"] :
Y(R) — Y(R) is the trivial homomorphism for n > 0. So @3@\1 (Y(R))ien = (0), and
Y (R))ien = (0) as well.

bim, €
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We claim that Ext§..(Z,Y) = (0). Since Ext§ .. z(Z,Y) = H'(SpecR,Y), the claim
means that every Y-torsor over Spec R is trivial. The last statement holds because every
Y-torsor Z over Spec R is formally smooth, and (R/m)-rational points of the closed fiber of
Z lifts to R-rational points of Z. The short exact sequence in the last paragraph implies that
ExtS o) (lim,_ Z,Y) = 0.

—ieN

Consider the short exact sequence

0—>Z—>limZ—>(]imZ>/Z—>O.
— —
€N €N

The resulting long exact sequence

(0) = lim (Y(R))ien — Homspec r (Z,Y)

€N
- EXtépecR (( <11L)HZ)/Z> 7Y> - EXtépecR (h_H>IZ7Y> = (O)
€N 1€N

reduces to the desired isomorphism

Y = ExtS e n) (( (@Z)/Z) ,Y> :
1€EN

The Proposition follows. NI

§3. Relation with the central leaf

In this section k denotes a perfect field of characteristic p.

(3.1) Proposition Let X, Y be isoclinic Barsotti-Tate groups over k with Frobenius slopes
Ax, Ay, and Ax < Ay. Write DE(X,Y )pqiv = SpfR. Then the universal p-divisible extension
of X by Y over Spec R is canonically trivial over Spec RP®f | where RP™ is the perfection of

R.

PRrROOF. Recall the following well-known fact about Barsotti-Tate groups. For any commu-
tative ring A which is complete with respect to an ideal I, the functor which sends every
Barsotti-Tate group G over Spec A to the compatible family (G Xspeca Spec(A/I™)), o of
Barsotti-Tate groups over Spec(A/I™)’s is an equivalence of categories. In other words, every
Barsotti-Tate group over SpfA comes from a Barsotti-Tate group over Spec A, up to a unique
isomorphism. To see this assertion, observe that for each m € N, I'(G[p™], Ogppm) is the
projective limit of T'(G[p™] Xspec 4 Spec(A/I"), Ogppm) ®a (A/I™)) since G[p™] is finite and
affine over A.

Let 0 — Y Xgpec(k) SPf(R) — gumiv X X spec(k) SP(R) — 0 be the universal extension
over Spf(R). By definition, this extension E"™Y over Spf(R) is the direct limit of extensions

0 — Y Xgpece(k) Spec(R/m’) — E}lg;’ec(R/mi) — X Xgpec(k) Spec(R/m’) — 0, of BT-groups
over Spec(R/m'), where m is the maximal ideal of R. According to the fact recalled in the

previous paragraph, the extension £"V over Spf(R) comes from a unique extension Efgg’ec( R)

of X Xgpec(k) SPeC(R) by Y Xgpec(r) Spec(RR) over the affine scheme Spec(R). We denoted this
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extension again by £"™V, shortened to £ in the rest of the proof. This extension of BT-groups
& over Spec(R) is what was meant by “the universal p-divisible extension of X by Y over
Spec(R)” in the statement of 3.1.

We may and do assume that k is perfect. Since SpfR is a p-divisible formal group, RPe*f
is the direct limit of the following injective system

R=Ry— R —>Ry—--—>R,— -

of k-algebras, where each R; = R, and the transition maps are induced by [p]pe(x vy( XY )iy

Let 0 — Y[p"] — E[p"] — X[p"] — 0 be the restriction of the extension £ to the p"-torsion
points; E[p"] is an extension of truncated BT,, groups over R. From the definition of R,, one
sees that the base extension of the extension £ from R to R, “is” the Baer sum of £ with
itself iterated p" times. In particular the extension £[p"] Xgpec B Spec(Ry,) over Spec(Ry,) is

trivial.

It is well-known that there exits an m € N such that p™ - Homp(X[p"],Y[p"]) = 0 for
every n € N and for every integral domain B D k. For each n € N, pick a trivialization 7,+m
of E[p"*T™] over Ry . Let 1, be the restriction of 7,1, to E[p"], so that v, is a trivialization
of E[p"] over R4y, for each n € N. Clearly 1, is independent of the choice of 7, ,. It is easy
to see that for each N € N, the restriction of ¥, +n to £[p"] is equal to the base-change of
¥, 10 Rpyman, for every n € N. Over RP°™| the family of trivializations (¥n),en gives us a
trivialization of the extension £. We have proved the existence of a trivialization over RPe'f.
The uniqueness is obvious because Homppe:t (X, Y) = (0). N

(3.2) Proposition Let X, Y be asin 3.1. Let S be a complete Noetherian local domain over
k. Let £ be an extension of X by Y over Spec S such that the extension £ over Spec S to the
closed point of Spec S is trivial; let € be a trivialization. In other words, the extension & comes
from an SpfS-valued point of DE(X,Y). Let S be the integral closure of S in the algebraic
closure of the fraction field of S. Suppose that £ is trivial over S. Then the extension & comes
from an Spf(S)-valued point of DE(X,Y )pdiv-

PRrROOF. After a purely inseparable extension of S, we may and do assume that the classifying
map f : Spf(S) — DE(X,Y) for £ has the form f = foaiv + fu, with foaiv @ Spf(S) —
DE(X,Y )pdiv and fy : Spf(S) — DE(X,Y )unip- Here f = foaiv + fu is the sum of the two
S-valued points fp4iv and f, in the commutative group DE(X,Y)(S). The assumption that
£ is trivial over S means that the extension given by f, is trivial over S, and we want to show
that fy, is trivial. In other words we may and do assume that f = f.

We know that there is a natural number N such that the unipotent commutative formal
group DE(X,Y )unip over k is killed by p. Hence the extension £ over S is killed by p”.
Since & is trivial over S, there exists a homomorphism 1) : &€ — X over S which spits the
extension £ over S. Clearly [p"]x o1 is a splitting of [pV].&, therefore [pY]x o1 is equal to
the base extension to S of the unique splitting of [p’V],.£ over S. In particular 1 is a S-rational
homomorphism between Barsotti-Tate groups over S, and p" - 1) is rational over S. This
implies that 1 itself is defined over S, because p” -4} factors through the isogeny [p’V] : £ — &.
So the extension £ is trivial over S. &
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(3.3) In [17] Oort defined the notion of central leaf in the base S of a Barsotti-Tate group
G — S. Prop.3.1 and Prop. 3.1 say that DE(X,Y )pqiv is the central leaf in DE(X,Y) for
the universal Barsotti-Tate group over DE(X,Y). The following result 3.3.1 says that the
universal Barsotti-Tate group over Def(X x Y') over the central leaf in Def(X x Y) has a
slope filtration. Therefore 3.1 and 3.2 implies that the central leaf in Def(X x Y') defined by
the universal Barsotti-Tate group over Def(X x Y) is equal to DE(X,Y ) pdiv-

(3.3.1) Proposition Let G — S be a Barsotti-Tate group over a Noetherian normal scheme
over a field k, k D F,. Assume that G — S is geometrically fiberwise constant. Then there
exists Barsotti-Tate groups G; — S, i=1,...,m, 0 =Gy C Gy C --- C Gy, = G such that
G;/Gi-1 has exactly one Frobenius slope ;, and pq > pig > ... > [y

PROOF. According to [19, Thm. 2.1 of], there exists a completely slope divisible Barsotti-
Tate group Z over S and an isogeny « : G — Z over S. The condition that Z is completely
slope divisible means that there exists BT-groups 0 = Zy C Z; C --- Z,, = Z and an integer
N > 0 with the property that r; := p; -N € Z for i = 1,...,m, such that each Z;/Z;;; is a
Barsotti-Tate group, with the property that the N-th iterate of the relative Frobenius

N
Fré\éi/ziﬂ)/s D ZifZiyr — (Zi/Zi—H)(p )

is equal to [p"i] times an isomorphism from Z;/Z; 1 to (Zi/Zi1)®), i=1,...,m.

By étale descent, it suffices to prove the existence of such a filtration after passing to
S Xspec(k) Spec(k1) for some finite separable extension field k1 of k. In particular we may
and do assume that k contains I, for ¢ = 1,...,m. Moreover, we may assume that S is
irreducible, and has a k-rational point s.

By [19, Cor. 1.10], for each i = 1,...,m, there exists a BT-group B; over k, a smooth
sheaf of rank-one free right Endy(B;)-module F; on Set, and an isomorphism

i+ F ®Endk(Bi) (Bz X Spec(k) S) — Zi/Zi—l .

In other words, Z;/Z;—1 is a twist of the constant BT-group B; Xgpec(r) S over S by the
representation of 71 (S, §) underlying the smooth p-adic étale sheaf F;.

Denote by (G, /Gm—1)s the fiber of G,,,/G,,—1 over the k-rational point s of S, and let

L = Fin @8ndg(B;) ((Gin/Gm-1)s Xspec(k) S) 5

the twist of the constant BT-group ((Gm/Gm-1)s Xspec(k) S) by the smooth Z,-sheaf F,,, on
Set. The isogeny « : G — Z induces an isogeny o, : (G /Gm—1)s — B, which induces an
isogeny B : I'm — Fi ®@5nd, (B;) (Bi Xspec(k) S)- Consider the composition

—1
¢;11 oprpoa G 57— Zm/mel wl} Fi ®Endk(Bi) (Bz X Spec(k) S)

We claim that there exists a homomorphism 7 : G — I'),, necessarily unique, such that
Bm o = .t opr,, o«a; moreover, Ker(r) is a Barsotti-Tate group over S. This claim is a
statement about the quasi-isogeny 3! o1 opr,, o a, therefore it suffices to check it at every
geometric point of S. The point-wise statement follows immediately from Lemma 3.3.3. &
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(3.3.2) Remark The slope filtration on the universal Barsotti-Tate group on a central leaf
in A,, guaranteed to exist by Prop. 3.3.1, gives the local moduli at any closed point of the
given central leaf. See [2] for more information.

(3.3.3) Lemma Let G — S be a geometrically fiberwise constant Barsotti-Tate group over
an wrreducible normal scheme S. Then there exists a scheme T, which is the inductive limit
of a countable projective system of irreducible normal schemes

i n—&-l_’Tn_)"'_)Tl_)TO:Sa

such that all transition maps Tn41 — Ty are finite surjective, and the Barsotti-Tate group
G xgT over T is constant.

PROOF. We may and do assume that S has a k-rational point s. By [17, Thm. 1.3], we can find
a projective system of irreducible normal schemes -+ — T,y — T, —» --- =11 — T =S
such that all transition maps are finite surjective, and the truncated BT,, group G[p"] xgs T,
is trivial for each n > 1.

Let K be the perfection of the function field of T, and let Gx be the pull-back of G
to Spec(K). By [22], there exists a natural number N such that for every n > 1, every
isomorphism Gs[p"] Xgpec(r) SPec(K) — Gk [p"] which lifts to an isomorphism

Gs [pn+N] X Spec(k) SpeC(K) = GK[pn+N]
actually lifts to an isomorphism G Xgpec(x) Spec(K) = Gk.

We construct a compatible system of isomorphisms
Qnp - Gs[pn] X Spec(k) T — G[pn] XgT

inductively, as follows. Assume that «a,, has been constructed. To construct «,+1, choose any
isomorphism By, 1145 @ Gs[p" T ] Xgpeeny T — G[p" T N] x g T, then adjust it by a suitable
automorphism of G4 to make sure that the 5,414 N is compatible with a,,. Define ay, 41 to be
the isomorphism from G[p"*!] to G[p"] x5 T induced by Bni11n- B

54. Review of Cartier theory

(4.1) We review some definitions and results in Cartier theory; see [21] for an excellent pre-
sentation. Let k£ be a commutative algebra with 1. Since the commutative formal groups
considered in Cartier theory are not necessarily Noetherian, it is convenient to regard them
as functors defined on the category Milp, of nilpotent algebras over the base ring k.

(4.1.1) By definition, a nilpotent algebra over k is a commutative k-algebra N (without unit
element) such that N™ = (0). for some m € N. We say that a set-valued functor

G : MNilp,, — Gets

is smooth if and only if the map G(h) : G(N1) — G(N3) is surjective for every surjective
k-linear homomorphism h : Ny — Ny between nilpotent k-algebras. A commutative smooth
formal group over k is a smooth functor from Milp, to the category of commutative groups.
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(4.1.2) Denote by k[[z]]" the augmentation ideal in the formal power series ring k[[x]], con-
sisting of all formal power series over k whose constant term is 0. Clearly k[[z]]" can be
naturally identified with lim = &[[z]]*/(z™), a pro-object in Milp;,. For any set-valued functor

G : Nilp,, — Gets,

define G(k[[z]]") by
G(k([=]]") = lim G (k[[z]]"/(=")) -

pi—
n

[y

Similarly, we can extend a functor G as above to the category of pro-objects in Milp,.

(4.1.3) Denote by A the smooth commutative formal group such that
ANN)={l+a1 4+ +ant"|a1,...,ap € NNn € N>} C (K N)[t])"

the group of “principal units” of the commutative ring (k@® N)|t], for every nilpotent k-algebra
N € Milp,. This infinite dimensional smooth formal group A is a “restricted version” of the
group of universal Witt vectors. The latter is the group-valued functor 20 on the category
of commutative algebras, such that 20(R) is the subgroup of R[[t]]* consisting of all formal
power series with coefficients in R with constant term 1.

(4.1.4) For every smooth formal group G over k, we have a Yoneda-type bijection

Hom(A, G) = G(k[[z]]T) := lim G(k[[]]"/(=")),

n

which sends any homomorphism of group-valued functors h : A — G on the category Milp;, to
the element
h(1 - xt) € lim G(k[[z]]*/(z")) = G(k[[z]]")

n

the image of the element 1 — xt of A(k[[z]]") under h. Here k[[x]]" denotes the augmentation
ideal x k[[x]] of k[[z]].

(4.1.5) By definition, the “big Cartier ring” Cart(k) is equal to be End(A)°P, the opposite
ring of the ring of endomorphisms of A. According to 4.1.4, the set underlying Cart(k) is
identified with A(k[[z]]T). In the ring Cart(k) we have the following elements:

o F, o 1—uat", n>1,
oV, —=1—-2a",n>1,
o [] = 1—cat,cek.

The right ideal V" Cart(k) of Cart(k) consists of all elements of A(k[[z]]") which maps to the
unit element of A(k[[z]]*/(z")). The right ideals V" Cart(k) defines a topology on Cart(k),
called the V-adic topology, and the ring Cart(k) is complete for the V-adic topology. The
elements F,, V,, [c] is a set of topological generators of the topological commutative group
Cart(k).

For any commutative formal group G over k, the set Hom(A, G) = G(k[[z]]") has a natural
structure as a right End(A)-module, by pre-composition. So G(k[[z]]T) has a natural structure
as a left Cart(k)-module.
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(4.1.6) A V-reduced Cart(k)-module is a left Cart(k)-module M together with a separated
decreasing filtration of M

M =Fil'M D> Fi’M > ---FilI"M D Fil"*'M > - -
such that each Fil" M is an abelian subgroup of M and
(i

)
(ii) Vi, - FiI"M C Fil™ M for all m,n > 1.
)
)

(M, Fil* M) is complete with respect to the topology given by the filtration Fil®*M.

(iii) The map Vj, induces a bijection Vj, : M/Fil2M = Fil"M/Fil" ™' M for every n > 1.

(iv

(v) For every m,n > 1, there exists an r > 1 such that F, - Fil"M C Fil" M.

[c] - Fil"M C Fil"M for all c € k and all n > 1.

A V-reduced Cart(k)-module (M,Fil*M) is V-flat if M/Fil>M is a flat k-module. The k-
module M/Fil2M is called the tangent space of (M, Fil®M).

(4.1.7) The main theorem of Cartier theory says that the functor
G~ (G(k[[z]]7), Fil*G(k[[z]]7)) ,

where Fil" := Ker (G(k[[z]]T) — G(k[[z]]"/(z™))) for each n > 1, establishes an equivalence
between the category of smooth formal groups over k and the category of V-reduced V-flat left
Cart(k)-modules; see [21] for the functor giving the inverse of the equivalence of categories
above.

(4.2) In this subsection, k is assumed to be an algebra over Z,y. Then the previous equiva-
lence can be simplified, with the big Cartier ring Cart(k) replaced by a much smaller Cartier

ring Cart, (k). Let
oo TL (-t = Y v,

(¢,p)=1 (n,p)=1
£ prime n>1

The element ¢, has the property that 6120 = ¢p. The Cartier ring Cart, (k) is defined to be the
subring
Cart, (k) := €,Cart(k)ep

of Cart(k), with €, as its unit element.

(4.2.1) Denote by W = Wp the smooth formal group of restricted Witt vectors over k. For
every nilpotent k-algebra N, the group W(IV) consists of all p-adic Witt vectors (b;);en such
that b; € N for every i € N and b; = 0 for all but finitely many ¢’s. One can identify W(N)

with €, A(N), where
o= ] O-tvir)= Y *“Mv.F,.

(¢p)=1 (n,p)=1
¢ prime n>1

—~

Moreover Carty(k) can be identified with End(W)°P, the opposite ring of the endomorphism
ring of W.
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(4.2.2) Some notable elements of the ring Cart,(k) include
o V:i=¢,Vpep,
o [':=¢,Fpep, and

o (c):=¢€p[cep, c € k.

(4.2.3) The ring Carty,(k) is complete with respect to the filtration by the right ideals
(V" Cartp(k)),cy- Every element of Carty(k) can be expressed as a convergent sum

> V™amn)F"; amn €k Vm,n € N,Ym 3Cp > 0 8.4, aymp = 0if n > Cpp

m,n>0

in a unique way.

(4.2.4) The set of all elements of Cart,(k) which can be represented as a convergent sum of
the form

Z V™(am)F™, am €k

m>0
is a subring of Carty(k), isomorphic to the ring of p-adic Witt vectors W(k) = W),(k) with
entries in k. The element of W(k) corresponding to > <o V"™ (am)F™ is (ag,a1,a2,--+),
the Witt vector with coordinates (am)men. Therefore Cart,(k) contains W(k) as a unitary
subring.

(4.2.5) By definition, a V-reduced Cart,(k)-module M is a left Cart,k-module such that the
map V : M — M is injective and the canonical map M — lim (M/V"M) is an isomorphism.

A V-reduced Cart,(k)-module M is V-flat if M /V M is a flat k-module. The k-module M/V M
is called the tangent space of M.

(4.2.6) For any smooth formal group G over k, the Cart,(k)-module €,G(k[[z]]") is V-reduced
and V-flat; it consists of all p-typical elements in G(k[[x]]T), that is, elements killed by F,
for all n prime to p. We call €,G(k[[x]]T) the Cartier module of G in this article, denoted by
M(G).

(4.2.7) An important fact is that the Cart(k)-module G(k[[z]]*) can be recovered from the
Carty,(k)-module €,G(k[[z]]"). So we have another version of the main theorem of Cartier
theory, when the base ring k is a Z,)-algebra. It says that the functor which sends a com-
mutative smooth formal group G to its Cartier module M(G) := €,G(k[[z]]") establishes an
equivalence from the category of commutative smooth formal groups over k to the category of
V-reduced V-flat Cart,(k)-modules. The Lie algebra of a commutative smooth formal group
G over k is canonically isomorphic to M(G)/VM(G).

(4.2.8) Suppose that k is a perfect field of characteristic p. Under the equivalence of category
in 4.2.7, a V-reduced V-flat Carty(k)-module M is the Cartier module attached to a finite-
dimensional p-divisible formal group over k if and only if the following conditions hold.

(i) M/V M is a finite dimensional vector space over k.
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(ii) The Frobenius map F : M — M is an injection.

Equivalently, M is a free W(k)-module of finite rank.

If G is the p-divisible formal group with Cartier module M = M (G), then rkyy, (M) is
equal to the height of the Barsotti-Tate group lim G[p"] over k, where G[p"] is the kernel of
p"]: G — G.

(4.3) Proposition Let k be a perfect field of characteristic p > 0. Let G be a finite di-
mensional connected smooth formal group over k. Let M = M(G) be the V-reduced V-flat
Carty(k)-module attached to G, consisting of all p-typical curves in G. Let Gpqiv be the
mazimal p-divisible subgroup of G. Then the Cart,(k)-module attached to Gpaiy s

M(Gpaiv) ={x e M |VYneN, 3meNs.t. V"'z e F"M} .

PROOF. Let My :={x € M |VneN, 3m € Ns.t. V™ x € F"M }, the right-hand-side of the
displayed formula above. It is easy to see that M is a Cart,(k)-submodule of M. Moreover
since Gpqiv is a p-divisible formal group over a perfect field £, we know that for every = &

M(Gpiv) and every natural number n, there exists a natural number m such that V'™ -z €
F™ - M(Gpiv). Hence M(Gpaiv) € My. It remains to show that M; € M(Gpiv)-

By definition, for every m € N, we have V"M N M; = V™M;. Hence V induces a
bijection My/VM; = V™M;/V™H M. So M is a V-reduced Cart,(k)-submodule of M,
and M is the Cartier module attached to a formal group G over k. The inclusion My — M
corresponds to a homomorphism « : G; — G. Since the map My /V My — M/V M induced by
the inclusion M; < M is an injection, the inclusion M; — M of V-reduced Cart,(k)-modules
corresponds to an embedding G; — G of smooth formal groups over k. We must show that
(G1 is a p-divisible formal group over k.

Let My = {x € M |3n € Ns.t. F"x =0}. Clearly M, is a Cart,(k)-submodule of M.
Moreover V™M N Mo = V™ My for every m € N; since V : M — M is injective. So M is a V-
reduced Cart,(k)-submodule of M, and V™ induces a bijection Ma/V My = V™ My /V™ LM,
for every m € N.

We know that dimy(Ms/V My) < dimg(M/VM) < co. Let mq,...,mqg € My be a finite
set of elements in My whose image in My/V My is a set of generators of the k-vector space
M5 /V Ms. Then every element of My can be written as a convergent sum of the form

S VMbuymi,  bu€kV¥neN, Vi=1,...,a.
neN i=1

So there exists a natural number N € N such that FY . My = (0); in fact it suffices to pick an
N € Nsuch that FN -m;=...=FN -m, =0.

Now we show that F' : M; — M; is injective. Suppose that x is an element of M; such
that Fz = 0. Then there exist y € M and m € N such that V™z = FNy. Since Fz = 0, we
get FN+ly = 0. So y € Mo, therefore FNy = 0 and V"x = FNy = 0. Since V : M — M is
injective, x = 0. We have proved that F' : My — M is injective. Hence G is a p-divisible
formal group. N
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(4.3.1) Remark (i) Notation as in 4.3. Then the V-reduced Cart,(k)-module attached to

(iii)

the maximal unipotent subgroup Gunip of G is
M(Gunip) ={zx € M |In e Nst. Flz =0},
denoted My in the proof.

The Carty(k)-module M(Gpiv) attached to Gpaiv can also be expressed as
M(Gpaiv) ={z € M |VneN, 3m eNst. V*z € p"M} .

To see this, denote by M] the right hand side of the above displayed formula. Then
M C Mj because p"M C F"M. On the other hand, if V™ z € F"M, then V"7 €
p"M. So My C Mj.

There exists a natural number ng € N such that

M(Gpdiv) = {zeM|[ImeNst. V'ze F'M}
= {xeM|ImeNst. V"zep"M}

for all n > ng. One can take ng to be dim(Gunip). A better choice of ng is
Min {n € N| F" M(Gunip) = (0)} = Min{n € N| F" M(Gunip) = (0)} ,
which is smaller than or equal to dim(Gunip)-

If the field k£ is not perfect, then the statement of Prop. 4.3 fails. More precisely, the
inclusion My € M(Gpiv) still holds, by the same proof, but the inclusion M(Gpqiv)
M; may be false. For instance if G is G, then M = M (Gpiv) is equal to Wy (k) with
the usual action of F' and V. In this case M7 = W(kg), where kg is the largest perfect
subfield of k, and W(ky) is the ring of (p-adic) Witt vectors with entries in k.

The “sum homomorphism” f : Gpdiv Xspec(k) Gunip — G between smooth commutative
formal groups over k is faithfully flat with finite kernel. The kernel of f is isomorphic
to Gpdiv N Gunip- The natural map Gpaiv — G/Gunip from the maximal p-divisible
subgroup of G to the maximal p-divisible quotient of G is an isogeny, whose kernel is
isomorphic to Gpdiv N Gunip-

(4.3.2) Lemma Notation as in Prop. 4.8. Suppose that M’ is a Cart,(k)-submodule of M =
M(G) which satisfies the following conditions.

(i)

(i)
(iii)

The map F : M' — M’ is injective. In other words, My is the Cartier module of a
p-divisible formal group.

rkyyir) (M) = rkyyy (M(Gpaiv)). Equivalently, (M/M') @z, Qp = 0.

The natural map M'/VM' — M/V M is injective. Equivalent, M' "M =V M'.

Then M1 = M(Gp-div)~
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PROOF. Let M" = M/M'. Since V : M — M is injective, we have an exact sequence
0—Ker(V:M"—M'")— M/VM — M/VM — M"/VM" - 0.

Condition (iii) implies that V : M"” — M" is injective, so M" is the Cartier module of a
smooth commutative unipotent p-divisible formal group by (ii). Cartier theory tells us that
the short exact sequence 0 — M’ — M — M" — 0 corresponds to a short exact sequence of
smooth commutative formal groups 0 — G’ — G — G” — 0, in which G’ is p-divisible, and
G' is unipotent. Therefore G’ = Gpqiv. N

Remark (i) It is clear the M(Gpiv) satisfies the conditions (i)—(iii) of 4.3.2
(i) Lemma 4.3.2 characterizes Gpaiv as the p-divisible formal subgroup G’ of G of the
same height as Gpaiv such the map T(G’) — T(G) on tangent spaces is injective.

§5. A triple Cartier module

(5.1) Definition Let k be a ring over Z,). Let @ be the commutative smooth formal

group over k such that -
Carty(N) := Carty(k & N)

for every nilpotent k-algebra N. Define BC(k) to be the set of all formal curves in the functor
Carty. In other words,

BC(k) := Carty(k[[z]]") = lim Ker (Car%(k[[az]]/(:p”“)) — Carty(k))
= lim ¢,Ker (Cart(k[[2]]T/(z"")) — Cart(k)) €, = €, - Cart(k[[z]]T) - ¢,

n

The set BC(k) carries an obvious (Carty(k)-Carty(k))-bimodule structure, since BC(k) is
an ideal in the ring Cart,(k[[z]]) := lim Cart,(k[[z]]/ (z"*1)) and the canonical inclusion
Carty (k) — Carty(k[[z]]) is a homomorphism of rings.

(5.1.1) Since the bimodule BC(k) is the set of all formal curves in the functor Cart,, there is
a natural action of the big Cartier ring Cart(k) on BC(k), because Cart(k) operates naturally
on the set of all formal curves of any smooth commutative formal group. Recall that Cart, =

—

End(W)°P as a functor on the category of nilpotent k-algebras. The (Cart,(k)-Cart,(k))-
bimodule structure of BC(k) comes from pre-composing and post-composing with elements of
Endy, (W)Op, hence the above action of elements of Cart(k) on BC(k) are homomorphisms of
(Cart,(k)-Carty(k))-bimodules. To avoid confusion with operators coming from the bimodule
structure, we will append an “z” in superscript or subscript to the standard notation for
elements in Cart(k) when we consider the above action of Cart(k) on BC(k) which commutes
with the operations coming from the (Cart,(k)-Cart,(k))-bimodule structure; superscript will
be used if there is already a subscript in the symbol. For instance we have the operators

VI FY n €N, and the projector

=TI (-{vr) = Y “Pvir.
(ep)=1 (np)=1
£ prime n>1

to the set of all p-typical elements in BC(k).
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(5.2) Definition Let k be an algebra over Z,. Define a (Cart,(k)-Cart,(k))-sub-bimodule
BC,(k) of BC(k) by
BCy(k) = €,BC(k) = egCartp(k[[:U]]+) .

—

In other words, BC,(k) is the Cartier module of the commutative smooth formal group Cart,,
over k.

(5.2.1) Since the sub-(Cart,(k)-Carty(k))-bimodule BC,(k) of BC(k) is equal to the set of all
p-typical elements in BC(k), there is a natural left action of Cart,(k) on BC,(k), compatible

(13

with the (Cart,(k)-Cart,(k))-bimodule structure. As before, we will append an “x” in sub-
script or superscript when considering this action of Cart,(k) on BC,(k). In particular, the
elements

. T xr T e X xr X
F, .= epr €ps Ve = e/ijp €p

operate on BC,(k) as endomorphisms of the bimodule BCp(k).

(5.3) We would like to understand BC(k) and BC,(k) more concretely. Since the variable

[1P%2)

z” is already occupied, we will change the notation for elements of A(k[[x]]T) in 4.1.5, and

({5

replace the variable “x” there by the variable “y”. According to the newly modified notation,
for any k-algebra R, the set underlying Cart(R) is

A(R[[y]]") == lim AR[[]]*/(y™).

n

Both BC(k) and BC,,(k) are subsets of
Cart(k[[2]] ") = A(k[[z, y)]"),
where k[[z, y]]* denotes the subset of k[[z,]] consisting of all power series of the form

Z amnx " Y" Umn € kVm,n > 1.

(5.3.1) Inside the ring Cart(k[[z]]) = A(y - k[[x, y]]), we have elements V,,, F},, n € N, where
F, < 1—yt", Vi = 1—9y"t.
In the (Cart(k)-Cart(k))-bimodule Cart(k[[z]]*), we also have elements
[a(z)] < 1—a(@)yt,  a(z) € kll2]]".
In particular we have the elements
(2] — 1 — 2yt i>1.

In the subring Cart, (k) C Cart(k) C Cart(k[[z]]) we have elements

Fi=epFpep, Vi=eVpep, (0) :=¢plclep, c €k,

where

o= 1 (-1m)= ¥ v,

(¢,p)=1 (n,p)=1
£ prime n>1

and [c] <> 1 — ¢yt for c € k.
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(5.3.2) Lemma We have the following description of the elements of BC(k).

BC(K) = ¢ lim A (kffw, gl /("4 5™+ - ¢,

m,n>0

Amni €k Ym>0,Vn>1,Vi>0
Vm>0,Vn>1 3C(m,n) s.t. amni =01if i > C(m,n)

= Y V™) (2™ F
n>1
m,i>0

PRroOOF. The first equality is immediate from the definition. To prove the second equality, it
suffices to prove that for every N > 1, every element in Cart,(k[[z]]*/(zV 1)) can be written
in a unique way in the form

> V™amni) @ F, ammi €k Ym >0, V1<n< Ny, Vi>1,

1<n<Ng
m,i>0

where 2™ denotes the image of ™ in k[[z]]*/(zV*1), and Ym > 0, V1 < n < Ny, 3C(m,n)
such that anmn; = 0if i > C(m,n). For N = 1, a basic property of Cartier rings says that
every element u in Cart,(k[[x]]/(z?)) can be written uniquely in the form

>V ™ami)F', ama € k[2]]/ (@) Vm,i> 1,

m>0

and Ym > 1, 3C(m, 1) such that ap; =0 if ¢ > C(m, 1). Since the image of u in Cart,(k) is
trivial, we have a,,; € k[[x]]"/(2?) for all m,i > 1. This finishes the case when N = 1. By
induction, we can assume that this assertion holds for NV = Ny. Then we only have to show
that every element of

Ker (Cartp (l{:[[m]ﬁ/(mNOJFQ)) — Cart,, (k[[:c]]Jr/(xNOJrl))) = Cart, (a:N°+1k[[az]]/a:N°+2k[[:z]])
can be written uniquely in the form

Z V™ (@ Not1,4) (xNoH Y am,Nyi €k Ym >0, Vi>0,
m,i>0

and VYm > 0, 3C(m, Ny + 1) such that ap, n,+1,; = 0 if ¢ > C'(m, No + 1). This follows from
the case N = 1, since the nilpotent k-algebras xNot1k[[z]]/zNo2k[[z]] and k[[z]]T/(2?) are
isomorphic. N

(5.3.3) Lemma The following equalities hold in BC(k).

() F2-[zi] =7V, [z7]F, Yn>1,Yi>1, r = g.cd.(n,i).

ra

(ii) € - (2") =0 if i > 1 and i is not a power of p.

(iii) F*-(a?’)y =0 Vn>1st (n,p)=1, Vj>0.

n

(iv) € - (xP') = (2P’ for all j > 0.
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PROOF. (i) By definition, we have
n—1 ) ) .
F®. [z = H (1 — (C%xﬁ)zyt) = (1 — x%y%t%> =rV, [z F, .
j=0
In the above, (, is a “formal primitive n-th root of 1”. In other words, the above equalities take
place in BC(k[(,]), where k[G,] = k[u]/(Pn(u)), and @, (u) is the n-th cyclotomic polynomial
in the variable u.
(ii) Suppose that £|i, £ # p, where ¢ is a prime number. Then (z%) = V* - (zt). Since
€2 -V =0 in Carty(k), we get € - (x) = 0.
(iii) Apply the formula in (i) to the case when i = p?, (n,p) =1, n > 1. Then r = 1, and
we get _ _ _ _
F2-(a”) = F2 e [1”) ¢y = 6 F2 [0 ] 6 = € Vi [a7' Fu 6 = 0.
The last equality follows either from €, V,, = 0, or from F, ¢, = 0.
(iv) The statement (iv) follows immediately from (iii). =

(5.4) Proposition Let k be an algebra over Ly For every integer n > 0, define an element
Un € BCy(k) by . 4 ‘
U, = (xp7> = ep[xp]]ep =€ ep[xp]]ep.

(i) We have the following explicit description of BCp(k).

Gmni €k Ym,n,1 >0

Cp(k) Z V™ {amni) U, VmVn3Cun st. amni =0 1if 4 > Chun,

m,n,i>0

In the formula above, the element zm,n,iZO V™ {amni) Un F' represents the element

T n m 7
€ €p H (I —amniz? y? ') | - e

m,n,i>0
in A(K[[z, y]]*).
(ii) Two elements of BCy(k) of the form
> V™ (tmni) Un F* and > VT (byni) Un F
m,n,i>0 m,n,i>0

With Gmni, bmni € k for all m,n, 1 € N, are equal if and only if

Amni = Dmni Vm,n,i € N.
(iii) The copy

amn €k Ym,n >0

m,n>0

of Carty(k) operates as a ring of endomorphisms of the (Cart,(k)-Cart,(k))-bimodule
BC,(k) on the left of BCy(k).

PRrROOF. The statements (i) and (iii) are immediate from 5.3.3 and the definition of BC,(k).
The statement (ii) is left as an exercise. N
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(5.5) Proposition The following identities hold in BC,(k).
(i) (@)U, =Up{a) Ya€k,Vn>D0.
(i) FUp=Up1 F ¥n > 0.
(iii) U, V=V U,y1 VYn>0.
(iv) (a)y -Up = (a*" YU, VYa €k, V¥n>0.
(v) Vi

. [ pUp_1=VU.F  if n>1
(vi) FpUp = {VUOF if n=0

n:Un—i-l \V/TLZO

(vii) If k is an algebra over ¥y, then FpU, = VU, F Vn > 1.
PRrROOF. The statements (i)—(iv) are immediate from the standard relations in the Cartier
ringCart,(k[[z]]). For (v), we have
Vo Up=Vy- (@)= (a"""") = Upyy
by definition. It remains to prove (vi) and (vii).
If n > 1, then by (v) we have
Fo Uy, =F, -V, - Uy_1=pU,_1=VU,F.
For n = 0, we have
Fy Uy = e, Fy (eplxlep) = epey Fy [z]6p = epep Vi o] Fpep =V e Ug F =V Ug F

where we have used 5.3.3 (i) and (iv) in the third and the last equality. We have proved (vi).
Notice that V Uy F represents the element €2 ¢, - (1 — zyPt?) in A(k[[z, y]]}).

If k is an algebra over [F,, n > 1. Then we have
F,-U,=pU,1=VFU, 1 =VU,F.
by (vi) and (ii). We have proved (vii). W

(5.6) Let k be a commutative Artinian local Z,-algebra. Let X,Y be a finite-dimensional
smooth formal groups over k. Let M and N be the Cartier modules attached to X and Y
respectively. It is well-known that the left Cart,(k)-module M has a resolution of the form

0 — Carty (k)" — Carty(k)" — M — 0,

see [21, IV §8]. It is possible to choose n to be dim(X) in the resolution above, but sometimes
the height of X is a more convenient choice of n. A short exact sequence as above corresponds
to a short exact sequence
0> W' > W: - X -0

of smooth formal groups over k. Suppose that X,Y are p-divisible smooth formal groups
over k, we have seen that DE(X,Y) is a smooth formal group over k as well. Prop. 5.6.1
and Lemma 5.6.2 below say that one can compute the Cartier module of DE(X,Y) using a
resolution of M as above, and the triple Cartier module BC, (k) enters the picture in a natural
way.
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(5.6.1) Proposition Let X,Y be p-divisible smooth formal groups over k as above, and let
M, N be their Cartier modules. Let

0-Wr LW - X -0

be a short exact sequence. Assume that Homy(X,Y) = (0). Then the smooth formal group
DE(X,Y) over k is isomorphic to

Coker <Ho_m(wn, Y) r, }m_m(wn, Y) ,)
where Ho_m(W",Y) is the smooth formal group over k, which to every nilpotent k-algebra R
assigns the commutative group
Hom(W", Y)(R) = Ker (Homk®R (W",Y) — Hom, (W", Y))
as its R-valued points.

PROOF. It is a standard fact that the group Ext A(W,Y) of isomorphism classes extensions
of W by Y is trivial for every commutative k-algebra A with 1. So we have a commutative
diagram

k@R(wn’Y) - Hom Wn’y) - Eth@R(‘X?Y) — 0

l l

0 —— Hom, (W", Y) Hom, (W“,Y)

0 —— Hom k@R(

Ext, (X,Y) — 0

with exact rows. The Proposition follows from the snake lemma. §

(5.6.2) Lemma Notation as above.
(i) The Cart(k)-module attached to Hom(w, Y), i.e. the set of all formal curves in the

smooth formal group Hom(W,Y) over k, is

Hom(W. Y)(k{fe]*) = lim (Hom(W. ¥)(k{fa]}* /(1))

n

= lin (Cartp(k[[x]]+/(g;n+l)) ®Cartp(k) N) % (lil’l Cartp(k[[gj]]+/(gjn+l))> ®Cartp(k)N

n n

= BC(k) ®cart, k) IV -

(ii) The Carty(k)-module attached to Hom(w,Y), i.e. the set of all p-typical formal curves
Hom(W,Y) is

lim (Carty (k[[2]]*/ (")) @car,m) N)

M <e£ . m Cartp(/{[[x”""/(q;n—i-l))) ®Cartp(k) N = Bcp(k‘) ®Cartp(k) N.

n
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PROOF. The displayed formula in (ii) follows from the formula in (i), by applying the projector
€5- The second equality in (i) is a special case of the general statement that for any smooth
formal group G and any k-algebra R with 1, Hom R(W Y) = Carty(R) ®car, (k) IV, because N
is a finitely generated left Cart,(k)-module. It remains to prove the map « in (i) is a bijection.

Observe that the source of 7, regarded as a functor of the V-reduced left Cart,(k)-module
N, is right exact. The target of +, regarded as a functor of the V-reduced left Cart,(k)-
module N, is right exact, because N — Cart,(k[[z]]"/(2"")) ®cart, k) N is right exact in
N and the transition maps in the projective system (Cart,(k[[z]]*/(z"*1)) ®car, k) N)neN
are surjective. Clearly, if the V-reduced Carty(k)-module N is replaced by the free module
Carty(k), then the resulting map v = 7, is an isomorphism. We deduce from the right
exactness of both the source and the target implies that v is an isomorphism. N

(5.7) Notation as in 5.6.1. We would like to make Prop. 5.6.1 more explicit using Lemma
5.6.2.

(5.7. 1) We will represent points of W as row vectors with points of W as entries, so the map
r: Wr — Wn corresponds to multiplying row vectors with entries in wn by an n X n-matrix
I' € M,,(Cart,(k)), on the right. This convention is natural because Cart,(k) acts on the right
of W; more explicitly, Carty(k) = Endy (W)Op, and the natural left action of Endy (W) on W

transports to a right action of Cart,(k) on W. The map
r* : Hom(W", Y)— Hom(W",Y)

is a homomorphism of smooth formal groups over k. On the level of p-typical formal curves,
the map r* give the map

r: Bcp(k)n ®Cartp(k‘) N — BCp(k)" ®Cartp(k‘) N

where BCp (k)" ®@cart, (k) IV is identified with the set of all column vectors of length n, with
entries in BC,(k) ®car, (k) IV, and the map r® is multiplication on the left by the same matrix
I' € M,,(Cartp(k)). Here the multiplication by I' is performed through the left/first factor
Cart,(k) in the (Cart,(k)-Cart,(k))-bimodule structure of BCy (k).

(5.7.2) The set BCy (k)" ®cart, k) IV has two mutually compatible Cart,(k)-module structures;
one from the left/first factor in the (Cart,(k)-Cart,(k))-structure of BC,(k), the other from
the action of the “extra copy” of Cart,(k) operating on BC,(k), whose elements are decorated
with “x” in subscripts. When passing to the quotient, we have “used up” the first Cart,(k)-
module structure of BCy(k)" @cart, k) N, but (BCp (k)" @cart, (k) V) /(L' (BCp (k)" @cart, (k) V)
still has a natural structure as a Cart,(k)-module through the action of the “extra copy”. Of
course the action of this “extra copy” of Cart, (k) corresponds exactly to the Cart,(k)-module
structure of the smooth formal group DE(X,Y) over k. We record our discussion in the
Proposition below.

(5.7.3) Proposition Notation as in 5.6.1.

(i) The Carty(k)-module of all p-typical formal curves in the smooth formal group DE(X,Y)
over k is canonically isomorphic to

EthCartp(k:) (M7 Bcp(k) ®Cartp(k) N) :
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Here the extension group is computed using the Carty,(k)-module structure coming from
the left factor of the (Carty(k)-Carty(k))-bimodule structure of BC,(k), and the Cartier

ring Cart, (k) operates on the left ofExtéartp(k)(M, BCy(k)®cart, (k) N) through the action
of the “extra copy” of Cart,(k) on BCy(k).

(ii) More explicitly, suppose we have a resolution
0 — Cart, (k)" = Cart, (k)" — M — 0

of the left Carty(k)-module M, and the map r is given by multiplying row vectors
with entries in Cart,(k) by a matriz I' on the right, with entries in Cart,(k). Then
Extéartp(k) (M, BCy(k) @cart, (k) IV) is naturally isomorphic to

(BCp(k)" @cart, (k) N) / (T - (BCy(k)" @cart, ) N))

with the left Cart,(k)-module structure coming from the action of the “extra copy” of
Carty(k) on BCy(k). In the above displayed formula, BCy(k)" ®@car, k) N denotes the
set of all column vectors of length n with entries in BC,(k) ®@Cart, (k) V-

PrROOF. Compute Extéartp(k)(M , BCp(k) ®cart, (k) IV) using the finite free resolution

0 — Cart, (k)" = Cart,(k)* — M — 0

of the left Cart,(k)-module M, we get

EXtéartp(k) (M7 Bcp(k) ®Cartp(k) N) = (Bcp(k)n ®Cartp(k) N) / (F ’ (Bcp(k)n ®Cartp(k) N))
= the Cartier module of DE(X,Y).

A standard argument shows that the isomorphism is independent of the resolution of M. R

(5.7.4) Remark (i) The case when Y = Gy has been extensively studied in the literature,
starting with Mumford’s seminal paper [12]. What we recorded in Prop. 5.7.3 is a gener-
alization of the computation of the Cartier module of the Serre dual of a given p-divisible
group.

(ii) Propositions 4.3 and 5.7.3 allows one to compute the Cartier module of the p-divisible
formal group DE(X, Y )paiv in principle. In the rest of this section we provide some properties
of the module BC,,(k) to facilitate the computation.

§6. Examples

In this we present some examples to illustrate Prop. 5.7.3.

(6.1) Example Let k be a perfect field of characteristic p > 0. Let X be a one-dimensional
p-divisible formal group of height three, and let Y be a one-dimensional p-divisible formal
group of height two. Let M and N be the Cartier module of X and Y respectively. One
knows that

M = Cart,(k)/Cart,(k) - (F — V?), N = Cart,(k)/Cart,(k) - (F — V).
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The Frobenius slopes of X and Y are % and % respectively. According to 5.7.3, the Cartier
module of DE(X,Y) is

((F = V?) - Carty(k)\Carty(k)) @cart, (1) BCp (k) @ cart, () (Carty (k) /Carty (k) - (F — V) =: D,

and Cart, (k) operates on D via the action of the “extra copy” of BC,(k) on BC,(k). Through-
out this example, we denote by B the image of B € BC,(k) in D, for any element B € BC,(k).
The following statements about D can be verified without difficulty; the details are omitted.

(1) The left Cart,(k) module D is generated by Uy and VU, and the tangent space D/V D
of D is a two-dimensional vector space over k, generated by the image of the above two
elements as a k-vector space.

(2) Every element d € D can be written in the form

d="> {am)Unm+ > _ Vibm)Un

m>0 m>0

with a,,, b, € kK Vm € N. Moreover the a,,’s and b,,,’s are uniquely determined by d.

(3) The action of V, (c), and F; is given by

Va - Zm20<am>Um + Zmzo Vibp)Un = Zm20<am>Um+l + ZmZO V (bim)Um+1

(c)y - EmZO {am)Up, + Zmzo V{bp)Upy = Zmz()(amcpm)Um T Zmzo V(b Uy,

4 6
Fy - Emzo<am>Um + Zmzo V) Up = Emzo V<a$n>Um+3 + Emzo V<b7‘2z>Um+5
= 0 V{em)Un for suitable elements ¢, € k

The first equality in the displayed formulas above follows from 5.5(v), while the second
equality follows from 5.5(iv).

(4) Fx . (VU() — Ug) = 0, and

Duwip = | Ker (FZp) = { Y (V{ah WU — (b

neN n>0

Whi2) | an €k Vn >0

Notice that F} - Dynip = (0), and VU — Uy generates D as a left Cart,(k)-module.
(5) The Cartier module of DE(X,Y )iy is

Dpdiv =3 > Vbm)Un | bm €k ¥m >0

m>0

As a W(k)-module, Dygiy is free of rank six, with VUjy,...,VUs as a basis. We also
have pVU,, = VUn4¢ for all m > 0.

(6) On the Cartier module Dy, 4, we have
Vm . VUi = VUi+17 0 S ) S 4, and Vm . VU5 = pVUg,
by (3). So DE(X,Y )piv is a one-dimensional p-divisible formal group of height six, and

its Frobenius slope is %.
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(7) The maximal unipotent subgroup DE(X,Y )unip of PE(X,Y) is isomorphic to G,. Its
Cartier module is D yip.

(8) The quotient DE(X,Y)/DE(X,Y )unip is a one-dimensional p-divisible formal group of
height six. The quotient DE(X,Y)/DE(X,Y )piv is isomorphic to G,.

(9) The covariant Diudonné module of the intersection DE(X,Y )unip N DE(X,Y ) pdiv is not
trivial. So the intersection is isomorphic to the kernel of the second iterate of the relative
Frobenius Fréa /. On Gg.

—

(6.2) Example In this Example, we give an explicit description of BCy(k) ®cart, (k) M(Gm),
and elaborate on a Remark 5.7.4 (i) that 5.7.3 generalizes a part of [12].

Let k be a commutative ring over IF,,. Let N = Cart,(k)/Cart,(k) - (F' — 1) be the Cartier
module of the formal torus G,, over k. Let

B = BC, (k) @cantys) N = BC,(k)/BC, (k) - (F — 1).

(6.2.1) The filtration Filf; on BC,(k) induces a filtration Fily), on B = BC,(k)/BCp(k) -
(F — 1), and B is complete with respect to the topology defined by the filtration Fil?,,. See
7.2 for the definition of Filf;.

Denote by 3, .. i>o V"™(@mni)UpF" the image in B = Cart,(k)/Cart,(k) - (F — 1) of the
element 3 . .~ V™ @i ) Up ' € BCp(k). Clearly > ommizo V™ {@mni)Un I is equal to the

convergent sum »_ <o V™ @mni)Up F*.

The subgroup BC,(k) - (F' — 1) of BC,(k) consists of all elements in BC,(k) of the form

- Z Vm<am,n70>Un + Z Z (Vm<am,n,i—1>Fi - Vm<am,n,i>UnFi)

m,n>0 m,n>0 i>1

where ay, i € k for all m,n,7 € N, and Vm, Vm, there exists C(m,n) > 0 such that a,, ,,; =0
if i > C(m,n). From the above description of BC,(k) - (F' — 1) one sees that every element of
BC,(k)/BCy(k) - (F — 1) can be expressed as an infinite sum in the form

Z Wa Gmn € kVm,n € N.

m,n>0
(6.2.2) We have
i v Zm,nZO V™) Uy = Zmnzo W
(i) F- > ns0 V™ amn)Un = 3200 050 Vi (ahin)Unia
(iii) (c) - Zm,nzo V() Up, = Zm,nZO V(™" amn) Un
() Ve Sonnzo ViamdUn = Yz Ve U
(v) Fo- Zm,nzo W = Zm,nzo W

(vi) () - mezo V™ @)Uy, = Zm,nzo V@, P YU,
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(6.2.3) The structure of BC,(k)/BCy(k) - (F' — 1) can be conveniently described in terms of
the ring Cart,(k)", the completion of the ring Cart,(k) with respect to the filtration Filf;, on
Carty(k), defined by the ideals

Fil¥, Cart, (k) = > V™ amn) F™ € Cart,(k)
m,neENm+n>N
We have
Cart, (k)" = Z V™ amn)F" | amn € kK Ym,n € N
m,neN

See 7.1.1 for more information about the completed Cartier ring Cart,(k)".

The left action of Cart,(k) on BCy(k), coming from the left factor of the bimodule struc-
ture, extends to a left action of the completed Cartier ring Cart,(k)" on BC,(k); see 7.2.2.
The action of Cart,(k) on

B = BC,(k)/BC, (k) (F — 1),
inherited from the bimodule structure of BC,(k), extends to a left action of the completed
Cartier ring Cart,(k)" on the quotient module BC,(k)/BC,(k)-(F — 1), making B a free
left Cart, (k)" generated by the element Uy € BCp(k)/Cart,(k)-(F — 1). The action of the
“extra copy” of the Cartier ring Cart,(k) on B < Cart,(k)" commutes with the left action
of Cart,(k)", and induces an ring homomorphism * : Cart,(k) — (Cart,(k)")°PP. It is easy

to see that * extends to an involution on Carty(k)", i.e. an anti-automorphism of order two,
such that

* Z V™ ) F™ — Z V™) F™ .

m,neN m,neN

In other words, if we identify B with Cart, (k)" as above, then the left action of the “extra
copy” of Cart,(k) on B becomes

w:v —ov-u* Vu € Carty(k), Vo € Carty(k)".

(6.2.4) Remark (i) The completed Cartier ring Cart,(k)", together with the involution *
on it, appeared in [12, p. 316], where it was called Ag. It is crucial for calculating biextensions
and the Cartier module of the dual of formal groups.

(ii) In view of the identification of B with Cart,(k)" explained above, when Y = G, k
is a perfect field, and X is a smooth formal group of local-local type, the explicit formula for
Extéartp(k)(M(X), B) in Prop. 5.7.3 reduces to the combination of the Theorem on p. 503 and

the Proposition on p. 504 of [13]. At the same time, the fact that Extéartp(k)(M(X),E) is the
Cartier module of the Serre-dual of X for any commutative ring k over Z,) can be regarded
as an answer to the observation in the last paragraph of the Introduction of [14].

(6.3) Example Here is a generalization of Example 6.1.
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(6.3.1) Let k be a perfect field of characteristic p. Let n be a positive integer. Let
M =M(X)=Cart,(k)/Carty(k)-(F — V"), N=M(Y)=Cart,(k)/Cart,(k)-(F — V"),

so that X, Y are one-dimensional smooth formal groups over k of height n + 1 and n respec-
tively. We have

M(DE(X,Y)) = (F — V™)-Cart, (k)\BC,(k)/Cart,(k)-(F — V") = D.

(6.3.2) As before, denote by

> Vilaim)U™

the image in D of the element >, V¥« aim)U™ € BCp(k), aim € k. One can check that every
element of D can be written in the form

n—1
szz<alm>Um’ aszk‘VZ:O,,nfl, vmzo
i=0 m>0
in a unique way.
(6.3.3) The action of V,, (¢), and Fj on D are determined by continuity and the following
equalities:
Ve - Vila) Uy, = Vi{a)Up+
(€)y - Vi a)Upy = Vi{acP™)Up, VYeeck
Fy - Vi{a)Up = V(@) Uy (i42)n1

fori=0...,n—1,all m >0, and all a € k.

(6.3.4) From the above formulae and Prop. 4.3, one sees that the Cartier module of the
maximal p-divisible subgroup of DE(X,Y) is

M(DE(X, Y )paiv) = > V" {am) Un | am €k Ym >0

m>0

It is generated by the element V"~1Uj € D as a left Cart,(k)-module; this generator gives an
isomorphism

Cart,(k)/Cart,(k)-(F — VP D=1 ZM(DE(X, Y ) praiv) -

(6.3.5) The Cartier module of the maximal unipotent subgroup of DE(X,Y) is generated by

the subset
(7o 13)

of M(DE(X, Y )unip). Each of the above generator is killed by F,, so M(DE(X, Y )unip) is killed
by Fy. It is easy to see that the image of the above n generators of M(DE(X,Y )unip) in
M(DE(X,Y )unip)/V -M(DE(X, Y )unip) is a k-basis of M(DE(X, Y )unip)/V -M(DE(X, Y )unip),
so M(DE(X,Y )unip) is isomorphic to G.

i:L”wn—l}
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(6.3.6) The covariant Dieudonné module of the finite group scheme
Dg(X, Y)p—div N DE(X, Y)unip

over k is the quotient of M(DE(X,Y)) by the sum M(DE(X,Y )pdiv + PE(X,Y )ynip. In the
present case, it is an n(n — 1)-dimensional k-vector space generated by the images of

7Oa 71a SER) Un(n—l)—l .

As a left Cart,(k)-module, it is isomorphic to Cart,(k)/(Cart,(k)F + Cart,(k)V™("=1), with
the image of Up as a generator. In other words, DE(X,Y )pdiv N DE(X,Y )unip is isomorphic

, n(n—1)
to the kernel of the iterated relative Frobenius Frg(ar;kl) G, — G((lp “Y) on Gg.

(6.4) Example Let k be a perfect field of characteristic p. Let X, Y be p-divisible formal
groups over k such that

M(X) = Cart,(k)/Cart,(k)-(F —V?), M(Y) = Cart,(k)/Cart,(k)-(F* — V).
So the Cartier module of DE(X,Y) is isomorphic to

(F —V®)- Cart,(k)\BC,(k)/Cart,(k)-(F* — V) =: D.

(6.4.1) It is easy to see that every element of D can be written in the form

SN V() UnF' i €k YVm=0,...,4, Yn >0, Vi=0,1
m=0n=0 7=0

in a unique way, where V™ (a,,,,;) U, F* denotes the image of V™ (@) UpF? in D, and D is
given the quotient topology.

(6.4.2) The action of V; and (c), on D, ¢ € k, are given by the following formulae.

Ve - V(@) UpF' = V™ (a) Upyr F
(€)g - VM {a) U F? = V™{a-c?")U,F?

forallae k,m=20,...,4,alln >0, and i =0, 1.

The action of F,, on D is given by the following formulae.

F, - Vm<a> = Vmtl{aP) U, m=20,...,4, n>0
Vi) U, = m n>0

F, - Vm(a>UnF = Vmt2(@P*) U, 44 m=0,1,2, n>0

Fy V3@ U,F = (a7) UpsoF n>0

Fy - V@YU, F = V{(a?)UpsoF n>0
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(6.4.3) Using Prop. 4.3 and the above formulae, one sees that the Cartier module of the
maximal p-divisible formal subgroup consists of all elements of D of the form

4 o0 4 oo
szm<amn0>+zzm Amni € kY m,n,i.

m=1n=0 m=0n=0

The tangent space of DE(X,Y )iy, canonically isomorphic to
M(DE(X, Y )paiv)/V -M(DE(X, Y )paiv) ,
is a 9-dimensional vector space, generated by the images of the following elements
Vs (m=1,...,4); V"UF (m=0,...,4)
of M(DE(X,Y ) pdiv-
(6.4.4) The left Carty(k)-module
M(DE(X,Y )pdiv/ (V- M(DE(X,Y ) pdiv) + F-M(DE(X,Y )paiv)) »

canonically isomorphic to the covariant Dieudonné module of the maximal a-subgroup of
DE(X,Y )pdiv, can be identified with

(o ) /(7).

m=1 m=0 i=1
where T denotes the image of an element @ € M(DE(X,Y )pdiv) C D in the quotient space
M(DE(X,Y ) paiv/V -M(DE(X, Y ) paiv) + F-M(DE(X, Y ) paiv) -

In particular it is a 6-dimensional vector space over k. Therefore DE(X,Y ), div is not minimal,
i.e. DE(X,Y )pdiv is not isomorphic over k to the self-product of 9-copies of the formal group
of a supersingular elliptic curve.

(6.4.5) The Cartier module of DE(X,Y )ynip is the Cart,(k)-submodule of M(DE(X,Y)) gen-
erated by the element U; — VAUGF of M(DE(X,Y)). This generator gives an isomorphism

Cart,(k)/Carty(k)-F = M(DE(X,Y )unip)

and also an isomorphism G, — DE(X,Y )unip-

(6.4.6) The covariant Dieudonné module of DE(X, Y )pqiv N DE(X,Y )unip is isomorphic to
Cart,(k)/(Cart,(k)-F + Cart,(k)-V?). In other words, DE(X,Y )pdiv N DE(X,Y )unip is iso-
®?)

a O

morphic to the kernel of the second iterate of the relative Frobenius Fréa E Gy, — G n

Ga.-
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(6.4.7) The quotient M(DE(X,Y))/M(DE(X,Y )unip is the Cartier module of the maximal
p-divisible quotient of DE(X,Y). The quotient

M(DE(X,Y))/ (M(DE(X,Y Jumip) + VM(DE(X,Y)) + FM(DE(X, Y)))

is a 6-dimensional vector space over k. So the maximal p-divisible quotient of DE(X,Y) is
not minimal either.

§7. The structure of BC,(k)

In this section we study the structure of the module BC,(k), where k is a perfect field of
characteristic p. A crude first approximation of BC,(k) is the tensor product of Cart,(k)
with itself over the ring W(k) = W) (k) of p-adic Witt vectors. The module BC,(k) can be
identified with a completion of a suitable W(k)-submodule of Cart,(k) @y Cart,(k) @z Q,
with respect to the topology defined by a suitable filtration.

(7.1) Definition (i) The Cartier ring Cart,(k) has a decreasing filtration Fil}, by right
ideals, called the V-adic filtration, defined by

Filj,Cart, (k) = V" Cart,(k),
for all n > 0.

(ii) The Cartier ring Cart,(k) has a decreasing filtration Filf,;, called the “total filtration”.
It is defined by

FillY, Cart,, (k) = Z V™ (amn)F" € Carty(k) | amp €k Vm,n p |
m,n>0
m+n>N
for all N € N.

(7.1.1) Lemma (i) Fil{/Cart,(k) - Fil{;Cart,(k) C Fil} ™" Cart,(k) for all m,n € N. In
particular, each Fil{}Cart, (k) is an ideal of Carty(k).

(ii) The Cartier ring Cart,(k) is a complete and separated topological ring for the topology
defined by the V-adic filtration Fil3,.

(iii) Filf Cart,(k) - Filft, Cart, (k) C Filf"Cart,(k) for all m,n € N. In particular, each
Fil{} Cart, (k) is an ideal of Carty(k).

(iv) The Cartier ring Cart,(k) is a separated topological ring for the topology defined by the
filtration Filg,,.

(v) The m-th graded piece gri;Carty(k) is a k-vector space with basis (€mn),>q, Where emy,
is the image of the element V'™ F™ € Filj;Cart, (k) in gri?Cart, (k).

(vi) The N-th graded piece griy,Cart,(k) is a finite-dimensional k vector space with basis

{ viFv

i:O,l,...,N} ,
where VIFN=t is the image of the element VIFN~* € Fill¥ Cart, (k).
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(vii) The filtration FilS, on Cart,(k) is coarser than the V-adic filtration Fily,. We have a
natural identification

Cart, (k)" = V™ am)F" | amn €k Ym,ne N3 |
P

m,n>0
where Cart, (k)" is the completion of Cart,(k) with respect to the filtration Filf,,.
P P tot

(viii) The total filtration Filg Cart, (k) on Cart,(k) extends by the closure operation to a filtra-
tion Fil§ Cart, (k)" on Cart,(k)", by open-and-closed ideals, which is strictly compatible
with Filf; Carty, (k).

ProoFr. Exercise. 1

(7.2) Definition (i) The V-adic filtration on BCy(k) is defined by

FilPBCy(k) = V™ -BCy(k) = > V¥ {ains) Un Fj € BC,(k) ing SF L=

i>m vn"] Z 0
n,j>0
for all m > 0.
(ii) The filtration Filf,; on BC,(k) is defined by
FiliBCp(k) = Y V™ (tmnj) Un Fj € BCp(k) | amnj € k Ym,n, j
m—+n>N
m,n,j>0

for all N > 0.

(7.2.1) Lemma (i) We have

V-FilyBC,(k) C FilM'BCy(k), Ym >0
F - FilBCy(k) C Fily!BCy(k), Ym >0
(c) - Fil!BCy(k) C FilPBCy(k), ¥Ym>0, Vce€k
Fil’BC,(k) -V C FilPt'BC,(k), Ym >0
Fil!BC,(k)- F C FilPBC,(k), Vm >0
FilPBC,(k) - (¢) C FilBCy(k), Ym >0, Vcek
V. -FilPBC,(k) C FilPBC,(k), ¥Ym>0
F, -FilyBC,(k) C Fil'BCy(k), Ym >0
(¢)r - FiIPBC,(k) C FiPBC,(k), Ym >0, Vcek
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(ii) We have
Fil{? Cart, (k) - Fily,BC, (k)
Fil{,BC, (k) - Filj; Cart,, (k)

Fil’™"BCy(k), VYm,n >0
Fil"™"BCy(k), VYm,n >0

N 1N

and
Fill, Cart, (k) -5 Fil'BC, (k) C Fi'BC,(k), Vm,n >0
where -, denotes the action of the “extra copy” of Cart,(k) on the bimodule BC,(k).

(iii) For each m > 0, Filj;BCy(k) is a sub-(Cart,(k)-Cart,(k))-bimodule of BC,(k), and is
also a submodule with respect to the action of the “extra copy” of Carty(k).
(iv) The m-th graded piece gri}BC,(k) of BCy(k) for the V-adic filtration is isomorphic as
a k-vector space to the set of all formal series of the form
Z Qmnj €Emngj
n,j >0

where ampj € k for all n,j > 0, and for each n > 0, there ewists a constant Cy, , such
that amnj = 0 for all j > C(m,n). A series ijzo Qmnj €mnj S above represents the
image of the element

D VTl AULFY € FilpBC,(k)

n,j>0
in griPBCy(k).

(v) BCp(k) is a complete and separated topological (Carty,(k)-Carty(k))-bimodule, with re-

spect to the topology defined by the V-adic filtration Fily, on BC,(k), and the topology

defined by the V-adic filtration on both the left and the right factor of Carty(k) in the
bimodule structure.

PROOF. The proofs are straight-forward, therefore omitted. We illustrate an instance of (i):
Vi Up = U1, Umy Ui € Fil),BC,(k), but Uy,qq ¢ Fili, BC,(k). B

Remark The action of the “extra copy” of Cart,(k) on BC,(k) is not continuous with respect
to the V-adic filtrations on Cart,(k) and BC,(k).

(7.2.2) Lemma (i) We have

V-FilBCy(k) C FilmMBC,(k), Ym >0
F-Fil,BCy(k) C Fil™'BC,(k), ¥Ym>0
(c) -FilBCy(k) C TFilBC,(k), Ym>0, Veck
Fil, BC,(k) -V C FilrF?BC,(k), ¥Ym >0
Fil,BC,(k) - F C FilBC,(k), Vm >0
Fil, BCy(k) - (¢) C Fil,BC,(k), Vm >0, Vceck
V. -FilBCy(k) C FilHBC,(k), ¥Ym >0
F,-Fi’.BC,(k) C Fil'BC,(k), ¥Ym>0
() - Fil,BCy(k) C Fill\BCy(k), Ym>0, Veck
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(i)

(iii)

(iv)

We have
Filj?, Cart, (k) - Fil BC,(k) € Fillf"BCy(k), Vm,n>0
Fil", BC, (k) - Fil}:Cart, (k) C Fill""BC,(k), VYm,n >0
Fil",BC, (k) - Fil Cart,(k) C Fill’, BC,(k), Vm,n >0
and

Fili?, Carty(k)y -5 Fili, BC,(k) C Fil’"BC,(k), Vm,n >0
where -5 denotes the action of the “extra copy” of Cart,(k) on the bimodule BCy(k).

For each m > 0, Fil{, BC,(k) is a sub-(Carty,(k)-Carty(k))-bimodule of BC,(k), and is
also a submodule with respect to the action of the “extra copy” of Carty(k).

For each N >0, gr . BC,(k) is a k-vector space with basis
{ViUN_Z-FJ' ‘ i=0,1,...,N, j:0,1,2,...} ,

where Villy_;Fi is the image of the element V'Uy_;FI € FillY BC, (k) in grl¥,BC, (k).

The module BCy,(k) is a complete and separated topological (Cart,(k)-Carty(k))-bimodule
with respect to the topology defined by the filtration Filg,, on BCy(k).

The (Cart,(k)-Cart,(k))-bimodule action BC,(k) is continuous, for the topology defined
by the filtration Filf Cart,(k) on the left factor of Cart,(k) in the bimodule structure, the
topology defined by the V-adic filtration on the right factor of Carty(k) in the bimodule
structure, and the topology defined by the by the filtration Fil§ . BC,(k) on BC,(k).

The action of the “extra copy” of Cart,(k) on BCy(k) is continuous, for the topology
defined by the filtration Filf, Cart, (k) on Cart,(k) and the topology defined by the filtra-
tion Filg;BC, (k) on BC,(k). Therefore BCy(k) has a natural structure as a continuous
(Cart,(k)"-Cart,(k))-bimodule, plus a continuous left action of Cart,(k)", commuting
with the (Cart,(k)"-Cart,(k))-bimodule structure.

ProoF. We only illustrate an example of (i). We have F,U,, = VU,F, Uy, € Fil{;,BC,(k),
and Upy4q € Fil ' BC,(k), for all m € N. The rest is left as an exercise. B

Remark The right action of Cart, (k) on BC,(k) coming from the right factor Cart,(k) of the
bimodule structure is not continuous for topology defined by Filf,(BC, (k) and Fil{  Cart, (k).

7.3) Definition i) The V-adic filtration of Cart, (k) @y k) Cart,(k) is the tensor product
P (k) P

filtration of the V-adic filtration of Cart,(k):

Fil{, (Carty (k) ) Cartp(k))
= Z Image (ViCartp(k:) QWwi(k) VICart, (k) — Cart,(k) Swy (k) Cartp(k))
i,j>0
iti>n

for all n € N.
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(ii) The decreasing filtration Filf,; on Cart,(k) ®yyr) Cart,(k) is defined by

Fill¥, (Carty (k) @) Carty(k))
= Z Image (Fil{y Carty, (k) @yyx) FilisCarty, (k) — Carty (k) @k Carty(k)) |
m,n>0

m+2n>N

for all N € N.
(7.3.1) Lemma (i) There exists a unique homomorphism
a : Carty (k) @y Carty(k) — BCy(k)

of (Cart,(k)-Cart,(k))-bimodules such that a(a®b) = a-Uy-b for all a,b € Cart,(k). The
right hand side of the above equality refers to the (Cart,(k)-Cart,(k))-bimodule structure

of BCy(k).

(ii) We have
o (Filf? (Carty (k) @py Carty(k)) C FiliPBC, (k)

for allm e N, and
a (Fﬂé\ét(Cartp(k:) Sw) Carty(k)) C FillY,. BC, (k)
for all N € N.

PrOOF. To prove (i), it suffices to show that A-Uy = Up- A in BC, (k) for every A € W(k). We
know that every element of W(k) can be written as a convergent sum ) V" (a,)F™ with
an € k for all n > 0. First we show that

V"(a)F” . U[) = Uo . V"(a)F” .

This is clear since both sides are equal to V" (a)U,F™. An easy continuity argument, with
BC,(k) given the V-adic filtration in 7.2, finishes the proof of (i). The statement (ii) is
immediate from the definition of the filtrations, Lemma 7.2.1 and Lemma 7.2.2. §

(7.4) Proposition Let
gria : gryy (Carty (k) @pyp Carty(k)) — gryyBC,y (k).

be the map induced by o, between the graded pieces of Carty(k) Q) Carty(k) and Carty(k)
for the V-adic filtration. Let

grioc : 8toy (Carty (k) @wir) Carty(k)) — griyBCp(k) .

be the map induced by v, between the graded pieces of Carty(k) @yyx) Carty(k) and Carty(k)
for the filtration Filg ;.

(i) The map gri}a is an injection for each m > 0.

ii) The map grl.« is an injection for each N > 0.
tot
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ProoOF. (i) Fix a natural number m € N. We have seen in 7.2.1 that the group gr{?(BC,(k))
is isomorphic to the k vector space of all formal linear combinations of the form

Z apjenj, Ganj €kVn,j >0, andVn3C(n)s.t. a,; =0if j > C(n);

n,j=0

where a typical formal series ) j>0 Gnj€nj N the form above represents the image of the
element } ., .~ Vm(aﬁ;m>UnFj of gri(BC,(k)) in gri?(BCy(k)). As for the source of the map
griza, it is easy to see that gr{’ (Cartp(k) Qw(k) Cartp(k)) is spanned by the image of the

subset
(A)={F"@V"F | n,j>0tu{V' @ V" F/ | 1<i<m,j >0}

of Filj} (Cart,(k) ®uyx) Carty(k)). The image of (A) under « is the following subset
B) = {V"Upsn F" | 1,5 > 0} U{V""UppiF7 | 1 < i <m,j >0}

of Filf?(BCp(k)). By 7.2.1 (iv), the image of the elements of (B) in gr™(BC,(k)) are lin-
early independent over k. Hence the image of the elements of (A) in the graded piece
gry; (Cartp(k) wik) Cartp(k)) are linearly independent, and the map gr{? is injective. This
proves (i).

(ii) It is easy to see that the N-th graded piece griv; (Cart,(k) @) Carty(k)) of the tensor
product Cart,(k) @y Carty(k) is spanned by the image of the subset

(C)={F'"®@V™F/|n>1,m,j>0, n+2m=N}
U{V'@V'F|i>1,1j>0,i+2r=N}
of FillY, (Cart, (k) @wk) Carty(k)). The image of (C) under « is the following subset
(D) = {VmUm+nF”+j | m>1,n,7>0,2m+n=N}
U{VHUF7 | i>1, 1,j>0, i+2r =N}

of Filj*(BC,(k)). By 7.2.2 (iv), the image of the set (D) in grly, BC, (k) is linearly independent
over k, therefore the map grf), is injective. R

(7.4.1) Corollary Let Cartp(k)®§,/v(k)0artp(k) and Cartp(k)®§,?/zk)Cartp(k:) be the completion

of the tensor product Carty(k) @) Carty(k) for the V-adic filtration Filj, and the total
filtration Filf,, respectively.

(i) The map «a : Carty(k) @pr) Carty(k) — BCy(k) extends uniquely to a continuous map
&, + Carty(k) @y Carty (k) — BCp(k)

with respect to the V-adic filtrations. The map &y is an injection, and is a homomor-

phism of (Cart,(k)-Carty(k))-bimodules.

(ii) The map o : Carty(k) @) Carty(k) — BCy(k) extends uniquely to a continuous map
Aot Cartp(k:)®¥/?/zk)Cartp(k) — BC,(k)

with respect to the total filtrations Fil ;. The map Guot is an injection, and is a homo-
morphism of (Cart,(k)"-Cart,(k))-bimodules.
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PROOF. The injectivity of &y and dyor follows from 7.4 (i) and (ii) respectively. The ho-
momorphism « is a homomorphism of (Cart,(k)-Cart,(k))-bimodules by construction. The

completion Cartp(k:)@tv?/zk)(]artp(k) is a (Cart,(k)"-Cart,(k))-bimodule, because the total fil-
tration Filf,; on Carty(k) @k Carty(k) is the tensor product of the filtration Filf, on the
left factor of Cart,(k) and the filtration Fil§ on the right factor of Cart,(k), defined by

Fil} Cart, (k) := Fill"/?! Cart, (k) .
The last sentence of statement (ii) follows from continuity. =
In the rest of this section K = frac(W(k)) denotes the field of fractions of the ring W(k) of
p-adic Witt vectors with entries in k, and o : W(k) — W(k) denotes the ring automorphism
induced by Fr, : £ — k. The “Frobenius automorphism” ¢ extends to an automorphism of

the fraction field K of W(k), again denoted by o. Let ord, be the discrete p-adic valuation on
K, normalized by ord,(p) = 1.

(7.5) Definition (i) Denote by W(k)[V, F] the W(k)-module consisting of all finite series
of the form '
Z a; V', a; € K, ordy(a;) > max(—i,0), Vi € Z,
1EL
such that a; = 0 for all but finitely many i’s. The set
{1=vovi vz . pv i V2 ..}
is a basis of the free W(k)-module W(k)[V, F].
(ii) Define a ring structure on W(k)[V, F] by
(s () -5 5w
i j neZ n=i+j
for elements >, a; V?, > bj Vi of W(k)[V, F].
(iii) Let Fil},W(k)[V, F] be the decreasing filtration on W(k)[V, F], defined by

FilyW(k {Zanﬂew [V, F]

ordy(a;) > max(m —i,0) Vi }
for m > 0. The condition on ord,(a;) is equivalent to: ord,(a;) > max(—¢,0) and
ordy,(a;) +1i > 0. Notice that each FiljyW(k)[V, F] is an ideal of W(k)[V, F].

(iv) Let Fil} ;W(k)[V, F] be the decreasing filtration on W(k)[V, F|, defined by

ord,(a;) > Max <—i, ?, 0) Vi }

for m > 0. The condition on ordp(a;) is equivalent to: ord,(a;) > max(—i,0) and
2ord,(a;) + i > m. Each Fil{}, W(k)[V, F] is an ideal of W(k)[V, F].

Fill" W(k) {Zalwew [V, F]
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(7.5.1) Lemma Let n: W(k)[V, F| — Carty(k) be the W(k)-linear homomorphism such that
(Vi) =V for all i >0, and n(p'V ") = F' for all i > 1.

(i) We have

n Z a; Vi + Zbipz‘v—i _ szn+i<a€;>Fn + szn<bm>Fn+i

>0 i>1 120 n>0 i>1 n>0

for all elements ;- a; Vi D1 bip'V=t € W(k)[V, F], where a; = (ain)n>0, bi =
(bin)n>0 as Witt vectors. In other words, the a;,’s and the by, ’s are the Witt components
of the Witt vectors a; and b; respectively.

(ii) The map n above is an injective ring homomorphism.

(iii) The homomorphism n is strictly compatible for the V-adic filtrations on the source and
the target, i.e. n~L(Filj,Cart,(k)) = Fili, W(k)[V, F]. Similarly, n~ (Fil{, Cart,(k)) =
Fill, W(k)[V, F].

Proor. Exercise. §

(7.5.2) Lemma (i) The completion W[V, F)) of W(k)[V, F| with respect to the filtration
Fily, W(k)[V, F| is the set of all formal series of the form

Z a V', aeK, ord,(a;) > max(—i,0), Vi€ Z,
€L

such that lim;_, o ord(a;) + 1 = oo.

(ii) The V-adic filtration Fil},W(k)[V, F| gives rise to a filtration Fil},W(k)[[V, F')) by open-
and closed ideals, via the closure operation. The filtration Fil},W(k)[[V, F)) is strictly
compatible with Fil, W(k)[V, F].

(iii) The completion W(k)[[V, F]] of W(k)[V, F] with respect to the filtration Filg,,W(k)[V, F|
is the set of all formal series of the form

Z a; V', a; € K, ordy(a;) > max(—i,0), Vi € Z.
1€Z

Notice that lim;_._ 20rd(a;) +1i = 0o, because ordy(a;) > —i for all negative integers i.

(iv) The total filtration Fil§ ,,W(k)[V, F| gives rise to a filtration Fil§,,W(k)[[V, F)) by open-
and closed ideals, via the closure operation. The filtration Fili [ W(k)[[V, F)) is strictly
compatible with Filg,, W(k)[V, F].

(v) The injective homomorphism n : W(k)[V, F] — Cart,(k) extends to an isomorphism

n: W(E)[[V, F)) = Carty(k)

of rings which is strictly compatible with the V-adic filtrations.

45



(vi) The homomorphism n : W(k)[V, F| — Cart,(k) extends to a ring isomorphism
n: W(k)[[V, F]] = Cart,(k)"
which is strictly compatible with the filtrations Fil§, W(k)[[V, F|] and Fil§,,Cart,(k)".

Proor. Exercise. 1

(7.5.3) Corollary (i) Multiplication in W(k)[[V, F)) is given by the familiar formula

<ZaiVi>- STovi | =31 Y wry | v

€T jez nez \it+j=n
The infinite sum
DTSN ST SPNRTE
i+j=n 7>0 7>0
in the above formula is convergent because ap_; b‘;jw = 0 (mod p/~™) for all j € N,
j>mn, and anﬂbi;nﬂ =0 (mod p?) for all j > 1. Moreover ord(ziﬂ:n a; b?ﬂ)—l—n >0

if n <0, so that ), (Zz’ﬂ':n a; b?‘i) V™ is an element of W(k)[[V,V~1)). Notice

that u -V = Vu? for every u € W(k).
(il) Multiplication in W(k)[[V, F]] is given by the same formula
(o) (Sov) -5 (£ v
1EZ JEZ n€eZ \i+j=n

Notice that the infinite sum

Z a; b?_i = Z Qp—j b?-j_n + Z an_,_jbi;n_j

i+j=n §>0 §>0
in the above formula is again convergent, for the same reason as in (i).
(7.5.4) Corollary The inverse & : Cart, (k) — W(k)[[V, F)) of
n: W(k)[[V, F)) = Carty(k)

is given by the formula

§1 2 VMaw)F" = 3 | 3 e ) |V
m,n>0 €7 m*n;()i

Under the isomorphism §, the V-adic filtration of Cart,(k) corresponds to the filtration of
W(E)[[V, V1)) defined by

Fily, (W(k)[V, V1)) = {Z a; Ve WE)[[V, V1) | ordy(a;) +i>n Vie Z} .
€L
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(7.6) Definition (i) Let Fily,(W(k)[V, F] @y W(k)[V, F]) be the filtration on the tensor
product W(k)[V, F| @y W(k)[V, F| induced by the filtration Filj, on

Cart, (k) @pyry Carty(k)
and the natural injection

W(K)[V, F] @wie) W)V, F] — Carty (k) @w) Carty(k)

Denote by W(k)[V, F]@K/(k)W(k) [V, F'] the completion of W(k)[V, F| @y W(k)[V, F] for
the filtration Fily, (W(k)[V, F| @uw ) W(k)[V, F]).

(ii) Let Filg,, (W(k)[V, F] @wk) W(k)[V, F]) be the filtration on W(k)[V, F'] @y W(k)[V, F]
induced by the filtration Filg,; on Cart,(k) @) Carty(k) and the natural injection

W(E)[V. F| @wuy Wk)[V, F] — Carty(k) Q) Carty(k)

~tot

Denote by W(k)[V, F|@yy ) W(k)[V, F] the completion of W(k)[V, F| @) W(k)[V, F] for
the filtration Filf,(W(k)[V, F] @wr) W(k)[V, F]).

(7.6.1) Lemma (i) For every n > 0, Fily,(W(k)[V, F] @) W(k)[V, F]) is the W(k)-sub-
module of W(k)[V, F] @y W(k)[V, F] generated by elements of the form

aV'e Vi, acWk),
such that

ordp(a) > max(0, —i) + max(0,—j), and ordy(a)+i+j>n.

(ii) For everyn > 0, Filg, (W(k)[V, F] @y W(K)[V, F]) is the W(k)-submodule of the tensor
product W(k)[V, F| @) W(k)[V, F] generated by elements of the form

aV'e Vi, acWk),
such that
ordy(a) > max(0, —i) + max(0,—j), and 2ordy(a)+i+2j >n.
PROOF. Omitted. B

(7.6.2) Lemma (i) The V-adic completion W(k)[V, F]‘%I‘//V(k) [V, F] of the tensor product
W(E)[V, Fl@wa [V, F] can be naturally identified with the set of all formal double series

of the form
> aViev
1,JEZL
satisfying the following conditions:
— a;; € W(k) Vi, j €Z,
— ordp(a;j) > max(0, —i) + max(0,—j) Vi,j € Z,

= limy (ordp(aiz) +i+j) = .
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Clearly W(k)[V, F]@)‘I;/(k) [V, F] is a (W(E)[[V, F))-W(k)[[V, F)))-bimodule.
(ii) The natural embedding
W(E) [V, Fl®wu [V, F] — Carty(k) @) Carty(k)
extends to an isomorphism
WR)V, Fl@yy [V, F] = Carty (k) @y Carty (k)
PROOF. Omitted. 1

~tot

(7.6.3) Lemma (i) The completion W(k)[V, F|@yu [V, F] of W(k)[V. Fl@w, [V, F] with
respect to the filtration Filg, (W(k)[V, F] @wu) W(k)[V, F]) can be naturally identified
with the set of all formal double series of the form

2{: am‘/i@DV”
1,JEZL
satisfying the following conditions:
— Qi € VV(k)\Vi,j €z,
— ordp(a;j) > max(0, —i) + max(0, —j) Vi,j € Z,
2ordy(aij) + 1+ 2j) = oc.

=l

Morcover, W(k)[V: 1}y [V. F) is a (W(k)([V, F[|-W()IV, F)))-bimodae.
(ii) The natural embedding
W(k)[V, F]@ww [V, F] = Carty(k) @y Carty(k)

extends to an isomorphism

~tot

~ ~tot
W(E)[V, Fl@y [V, F] — Carty (k) @y, Carty (k) -
Proor. Exercise. J

(7.7) We would like to give a more explicit description of BC,(k), similar to what 7.6.2 and

7.6.3 provided for Cartp(k)gég/(k)Cartp(k) and Cartp(k)®%,?/t(k)Cartp(k) respectively. We have
seen that W(k)[V, F] @y ) W(k)[V, F] is in bijection with a subset of BC,(k) under the map

o W(E)[V, F] Quwy Wk)[V,F] — BCp(k), a®b — a-Up-b.

The subset
o (W(E)[V, Fl@wu W(k)[V, F])

is a first approximation to BCy, (k). We will enlarge it inside o (W(k) @y W(k)[V, F]) @z, 2Q)
to get a dense subset of BCy(k).
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(7.7.1) Definition Let BC,(k)" be the subset of BC,(k), defined by

BCy (k) := Y Vi o/ (W(K)V, Fl@w W(k)[V, F]).

n>0

Let Fil? ;BC, (k) be the filtration on BC,(k)’ induced by the filtration Fil{;;BC, (k) on BCy (k).

(7.7.2) Lemma The endomorphisms [p] on Carty (k)@ Carty(k) and BCy(k) defined by
multiplication with p are both injections. Therefore all arrows in the commutative diagram

W)V, F]® WK [V, F]

W(k)

[p] j [p] l [p]

W(k)[V, F]® 0 WKV, F] ©,Q — Cart, (k)& Cart,(k) ©,Q > BC,(k) ®,Q

W(k)

Canty, (k)& 1y, Carty (k) e By (k)

are injections, where a, =a®, Q.

PROOF. The injectivity of BCp(k)&BCp(k) is easy, since

BCy(k) C Carty(k[[z]]") = Ak[[z, 9]]%),

and [p] : Carty(k[[z]]") — Cartp(k[[z]]") is injective. The injectivity of

Cartp(k)®%;zk)Cartp(k)ﬂCartp(ky@%;Ek)Cartp(k)

is immediate from Lemma 7.6.2. =&

(7.8) With Lemma 7.7.2, we can identify BC, (k)" with a suitable subset of
W(k)[V, F] @wmy W)V, F] ®z, Qp.

This subset BCp (k)" of BCp(k) is dense in BC,(k) with respect to the filtration Fil ,BC, (k).
From this we will obtain an explicit description of the completion BC, (k) of BC,(k)’, to be
worked out in the rest of this section.

(7.8.1) Lemma The following operators on the tensor product Carty,(k) ®z Carty,(k) passes
to Carty(k) @) Carty(k), Carty (k)@ Carty(k) @z Q, as well as Cartp(k)@?%(k)()artp(kz)

and Cartp(k)<§) ®¥,‘[’,2k) Carty(k), and define operators on these modules.

Fp : Carty(k) ®z Carty(k) — Carty(k) @z Carty(k)
U — u-VeF-v Vu,v € Cartp(k)

(a)p : Carty(k) ®z Cart,(k) — Carty(k) @z Cart,(k)
U — u-(a)®v Vae€k, Vu,v € Carty(k)

wy, : Carty(k) ®z Carty(k) — Carty(k) ®z Cart, (k)
UR v — u-wv Vw e W(k), Vu,v € Carty,(k)
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Similarly, the operator

Ve : Carty(k) ®@z Carty(k) ®, Q — Carty(k) ®z Carty(k) ®, Q
tRvel — uw-FeV-vep! Vu,v € Cart,(k)

passes to the modules Carty(k) Q) Carty(k) @, Q, Cartp(k)®“;/y(k)Cartp(k)@)ZQ, and
Cartp(k)®;?/zk)Cartp(k)®ZQ.

PRrROOF. The main issue here is to verify that these operators preserve the subgroup generated
by elements of the form uc® v —u ® cv, where u, v € Cart,(k), c € W(k), or c € W(k) ®zQ in
the last case. This is clear for the (a)g’s. The rest follows from the following easy calculations:

Fpluc®@v—u®cv) =ucV @ Fv—uV ® Fcv =uVe? @ Fvo —uV & ¢ Fu
Wy (UCR®V—UR V) = ucw @V — uw ® v = Uwe @ v — uw Q cv
Ve(uc®@v —u® cw) = p tucF @ Vo — p~luF @ Vev =p luFc '@ Vv —p luF ®c Vo

Therefore these operators pass to Cart, (k) @y Carty,(k), or Cart, (k) @y Carty (k) ®7Q in

the case of Vp. Each operator is continuous with respect to the topology defined by Filj, and
Filf,;, therefore they extend uniquely to Cartp(k)®1‘//v(k)0artp(k) and Cartp(k)@)%,?,t(k)(]artp(k),

or Cartp(k)®¥[/(k)(3artp(k) ®z Q and Cartﬂk)@%?)&k)(]artp(k) ®z Q in the case for V. 1

(7.8.2) Lemma Let oy = a®zQ : Carty(k) @) Carty(k) @2 Q — BC,(k) @7 Q be the map
induced by a. Then

ag o Fy = Fyoaq
ag o Vg = Vzoaq
agofa), = (a)eoay
for every a € k, where F,,, V,, and {(a), appearing at the right of the displayed equalities denote

the endomorphisms of BC,(k) @7 Q induced by the endomorphisms Fy, V and {(a); of BCp(k)
respectively.

PRrOOF. The source and the target of the maps
FB7 V37 <a>37 nyvara <x>w

are (Cart,(k)-Cart,(k))-bimodules, and the above maps are all endomorphisms of bimodules.
Hence it suffices to check the assertions when both sides of the equalities are applied to the
element 1 ® 1 € Cart,(k)®Cart,(k) ®z Q. which is immediate from Prop. 5.5. 1

(7.8.3) Lemma The operators Fp and wp on Wk)[V, F| @y WE)[V, F], w € W(k), given
by the formulae below, are well-defined.

Fg : W(E)[V, F] @y WK)[V, F] — WKV, F] @wx) W(k)[V, F|

U®v — wV ®@pV 1o Vu,v e W(k)[F,V]
wp : WK)[V, F] @wy WR)[V, F] — W)V, F] @y W)V, F]
U — uw v Vu,v e W(k)[F,V]

Similarly, the operator Vg on Wk)[V, F] @wy WE)[V, F| ® ZQ, given by

Vi : W(E)[V, F] @uey WK)[V, F]1 22 Q — W)V, F] @ww) Wk)[V, F]l ®zQ
uRvel — upV 1@ Vop!

for all u,v € W(k)[F, V], is well-defined.
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PrOOF. The same calculation as in 7.8.1 work. =

(7.8.4) Lemma Let o = a®zQ: W(k)[V, F] @wx) W(k)[V, F] ®2Q — BCp(k) ®z Q be the
map induced by o. Then

oy o Fy Fpoal
a,oVy = V;cooz;J2
0z0la), = (a)oa]

for every a € k, where F,,, V,, and {(a), appearing at the right of the displayed equalities denote
the endomorphisms of BC,(k) ®7Q induced by the endomorphisms Fy, V and {(a); of BCp(k)
respectively, while Fg, Vg, (a)p are defined in 7.8.3.

Proor. Exercise. B

(7.8.5) Definition Define B’ C W(k[V, F| @y W(k[V, F] ®z Q by
B =Y Vi (W(E[V, F] @y W[V, Fl,)
>0

the algebraic sum of the V! (W(k)[V, F] @) W(k)[V, F])’s. It is easy to see that B’ is stable
under the actions of Fg, Vg, wp on W(k)[V, F| @y W(k)[V, F]®zQ, and is also sub-bimodule
for the natural (W(k)[V, F]-W(k)[V, F]-bimodule structure on W(k)[V, F| @y W(k)[V, F].
Clearly the map o/ induces an isomorphism B’ — BC,(k)’.

(7.8.6) Lemma (i) The map o : W(k[V, F] @) W[V, F] — BC,(k) induces and iso-
morphism
o : B" = BC,(k),

under which the operators Fg,Vg,wg on B’

(ii) Under the isomorphism o’ in (i), the operators Fg, Vg, wp on B', w € W(k), corre-
sponds to the operators Fy, Vi wy, on BCy(k)'.

Proor. Exercise. 1

(7.8.7) Definition Denote by B the space of all formal linear combinations of the form

Y a VeVl  aj; € K =frac(W(k)) Vi,j€Z.
1,JEZL

Define Vy: B — B to be the operator

VoY apV'evie Y e Vile Vit
1,JEZL 1,JEL

on B. Let FBB — B be the operator

FB : Z ajj ViVl — Z D ajj yitlgyit
1,JEL i,JEZL
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(7.9) Consider the following commutative diagram

W[V, F] (), WOR) [V FC B W)V, IRy, W)V, FY(E) ©,Q
Carty (k) @y Carty (k) —*—> BC,(k) : S

of injections, where the vertical arrows are the obvious maps, and the dotted arrow ¢ is an
embedding of BCy(k) into B, to be constructed in the remaining part of this section, with the
property that the action of V. (resp. F',) on B extends the action of V; (resp. F; on BC,(k).

We will also obtain an explicit description of the image +(BC,(k) of 2 in B.
Recall that in 7.6.2 and 7.6.3 we constructed embeddings

Cart, (k) By Carty (k) < B

and .
Cartp(k)(@%,?/t(k)Cartp(k) — B.

These two embeddings are compatible with the action of the completion of Vg on the source
and the action of V, on the target B. We will see that the restriction of these two embeddings
to Cart,(k)®yy) Carty(k) are both equal to the composition 2 o a.

In order to construct the embedding 2, we will first compute the restriction to B’ of the
total filtration Filf;BC,(k) on BC,(k). Then we can reconstruct BC,(k) as the completion
of B’ with respect to the total filtration on B’.

(7.9.1) Lemma For any integers i,j € Z, define a function f; ; : N — N by
fij(n) = max(—i — n,0) + max(—j + n,0), neN

Then
MinnZO fiﬂ' (n) = max(—i - j, —j, 0)
PROOF. We evaluate both sides for (i, 5) in different regions of Z? and show that they are equal.

Consider first the case when j > 0 and i+ 3 > 0. Then f; ;(j) = 0. So Min,>¢ f; j(n) =0. On
the other hand, max(—i — j, —4,0) = 0 as well.

Consider the second case: j > 0 and i + j < 0. Then
fij(n) = max(—i —n,0) + max(—j+n,0) > —i—n—j+n=—i—j

for all n € N, and f;;(j) = —i — j. So Min,>¢ f; j(n) = —i — j. On the other hand,
max(—i — j,—7,0) = —i — j.

Consider the third case: j < 0 and ¢ > 0. Then f; j(n) = max(n — j,0) for all n € N, so
Miny,>o fi j(n) = 0. On the other hand, max(—i — j,—75,0) = 0.

Finally we consider the case when j < 0 and ¢ < 0. Then f;;(n) = —i —jif 0 < n <
—i, and f;j(n) = —j +n if n > —i. So Ming,>g fij(n) = —i — j. On the other hand,
max(—i — j,—7,0)) = —i — 7, and again both sides are equal. &
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(7.9.2) Corollary Recall that B’ is the algebraic sum

B =" VB WE)V, F) @y WE)V, F] € Wk)[V,F] @wuy Wk)[V, F] @2 Q.

n>0
Then

aij € W(k‘) Vi,j €Z

=AY VeV
B —~ V' @V ordy(a;j) > max(—j,—i—5,0) Vi,j€Z
2¥}
finite

PRrROOF. Immediate from Lemma 7.9.1. &

Remark The following diagram depicts a W(k)-basis of B,

B' € W(k)[V, F] @ Wk)[V,FlezQ= P K-V e V/,

1,JEL
shown for pairs (4,7) at different locations in Z2:
Vig Vi
+j=0
j=0 1—00
p ViR VI
i=0
p Vi VI
j——o0

(7.10) Proposition Consider the composition
3: B —>BCy(k) = BC,(k)

of injections. The following statements hold.

(i) The inverse image of the subset
Filiy, (BCp(k))

— Z V™ () U FI Amnj € k Vm,n,jGNWithm—i—nZ.N
m,n,j>0 ’ vm’” 2 O El C(m7n) S't' amnj - O v] > C(m,n)
m+n>N
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of BCp(k) under (3 is

ajj € W(k) Vi, jE€Z

a;; = 0 for almost all 4,5 € Z
ordy,(a;j) > max(—i — j,—j5,0) Vi,
2ord,(aij) +i+2j > N

Fili B =4 Y ay Ve Vi
1,JEZ

(ii) The image B(B') of B is dense in BC,(k) with respect to the topology of BC,(k) defined
by the filtration Fil ,BC, (k).

(iii) The map B induces a bijection B from the set
A ‘ aijEW(k) Vi,j €Z
(B) =33 ai Vi VI | ordy(ay) > max(—j, —i — 5,0) ¥i,j € Z
1,jEL hm\iH—\j\—»oo 20rdp(aij) +14+25 =00
to BCy (k).
PROOF. The point of (i) is that
BHV™a) U FY) = p VT o

The rest of (i) follows from the definitions.

The statement (ii) follows from the fact that the subgroup of BC,(k) generated by the
subset

n

Y@ VT Vm,n,j >0, Vack.

{V™a)U, F" |ack, mmn,i>0}
is dense in BC,(k), and this subset is contained in the image of f3.

According to statement (i), BC,(k) can be naturally identified with the completion of
B’ with respect to the filtration Filf B’, since BC,(k) is complete with respect to the total
filtration. The statement (iii) follows from the description in (i) of the fundamental system of
neighborhoods
{ B~ (FilBC,(k)) | N e N}

for the induced topology on B’. 1

(7.10.1) Remark Under the bijection in 7.10 (iii), the (Cart,(k)-Cart,(k))-bimodule struc-
ture on BC,(k) corresponds to the obvious actions of the ring
|aieWlk) VieZ
WE)[V, F)) = > aiV*| ordp(a;) +i>0¥i <0
i€Z limyj o ordp(a;) +1i = o0

on both the right and on the left of the set (B’)" above. We have

Ve S apvievi| o ve=Yaf Vi e v
i,jEL i,jEL
The action of the “extra copy” of Carty(k) corresponds to the continuous action of Cart,(k)
on (B)", such that V, Fy, (c); acts via the following formulas

Ve ¢+ Yijez @i V'@V = 3 iep a VT @ VITE
Fg + Yijez ag Vi@V = 3 cp pay VI @ vitt
(@5 + Dijez aiV'OV! = Yiega (P)VIOVI Veek
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§8. Computation up to isogeny

(8.1) Notation Let k be a perfect field of characteristic p > 0. Let Ng, be an isoclinic V-
isocrystal of dimension h over K = frac(W(k)) with V-slope y1, 0 < pp < 1. Let h = dimg (N, ).
If N@p is the V-isocrystal attached to the Cartier module N of a p-divisible formal group Y,
then Y is isoclinic of Frobenius slope p, height(Y) = h, dim(Y') = ph.

Let Nz, be a W (k)-lattice in N. Since Ng, is isoclinic of slope p, there exist constants
c1,cy > 0 such that

plrelter . N

i vn. sz C plonl=e - N,
plr=p)]+a N,

P
C plr-p)]-c ’sz

N 1N
B>
3

for all n € N.

(8.2) We formulate two combinatorial lemmas which will be used for an explicit description

of the tensor product BCy(k) @cart, (k) Ny, -

(8.2.1) Lemma Let f be the function from Z? to N defined by
£(i,) = max(—i — j,—j,0)  Vi,jE€Z.
Define a function g : Z — 7 by
g(i) :=Min{ f(i,j) +julj €Z}  VieL.
Then ¢(i) = max(—iu,0) for alli € Z.

PROOF. Let b be the denominator of . Then f(i,j5) + ju € %N for all j € N. Therefore the
minimum in the definition of g(i) exists.

We have £(i, ) + ju = (£, ) + i)+ (1 — 1) £(5,§) > max(ig,0) for all j € Z, since
fli,7) +j > max(—i,0) for all j € Z. The minimum is attained at j = 0 if ¢ > 0, and at
j=—iifi<0. m

(8.2.2) Lemma For each natural number N > 0, define a function g, : Z — Z by

gy (@) :=Min{m+ ju|m > max(—i —j,—j,0), 2m+i+25 > N } .

Then g, (i) = max ((NQ_Z], —ip,0) for alli € Z.

PROOF. The constraints on (m, j) are m > 0, m + j > max(—i,0), and 2(m +j) > N — .

Therefore m + j > max ([NQ_i],—i,O), and m + ju > max ([N;M, —ip,0). The minimum is

attained at (m, j) = (0, max ([Ngﬂ), —i,0)). n

(8.3) Consider the map

ay. 2 WR)V, F] @iy WE)V, F] @wiyv,r) No, — BCu(k) @wieyv,r) Na,

NQP

defined by

aNg, 1 a®@b®w — a-Upb@w Va,bc W(k)[V,F], Yw € Ng, .
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It is clear that o Ng induces an isomorphism from B’ @y ) v,7] Ng, to BCy (k) @wiyv,m No, -
P

We have a canonical isomorphism

can

: W(E)[V, F] @w W)V, F] Qwyv,r) No, — WE)[V, F] ©@wx) No,

No,

Therefore we have an isomorphism

~

v BCp(k)l W(k)[V,F] Ng, — W(k)[V, F] Qwik) Ng,

. 1
induced by can ow .
y Nop Ng,

(8.3.1) Let K[V, V1] := W(k)[V, F] @) K, so that we have a canonical isomorphism
W(E)[V, F] ®@w) No, — K[V,V '] @k Ng, -

It is immediate from the definition of W(k)[V, F] that K[V,V~!] can be naturally identified
with the set of all finite K-linear combinations of monomials V?, i € Z. If we choose a K-basis
of wi,...,wy of Ng,, then every element of K[V, V) ®K Ng, can be written as a finite
series of the form

Y aView, ay€KVi€ZVr=1,. h ay=0for|i>0
1Sren

in a unique way.

(8.3.2) A coordinate-free way to describe elements of K[V,V 1] @x Ng, is as follows. Define
[V,V~1Ng, to be the set of all finite series of the form

Z AV
iE€EZ

where 4; : K — Ng, is a o'-linear map from K to Ng,, i.e. A;(b) = b7 A;(1) for every b € K,
and A; = 0 for |i| > 0. Then there is a canonical isomorphism from K[V,V ] ®x Ng, to
[V,V1Ng,. Anelement Y. icz  ai V'@, of K[V,V®K Ng, as in 8.3.1 above corresponds

1<r<h
to the element (A;),., with
h
Ai(e) = Z & ag wy .
r=1
(8.3.3) We have a natural left action of K[V,V '] on [V,V '] Ng,, such that
OVI) - (Ai)icz = (A1) 5 beK, jeEZ

with the A!’s defined by

Ale) =V A;—;(1)  VbceK, VieZ.
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(8.3.4) There is an action of an “extra copy” of K[V, V'] on the left of [V, V'] Ng, which
commutes with the action of K[V, V1] defined in 8.3.3; it comes from the action of the “extra
copy” of W(k)[V,F] on B’. We will use a subscript “B” when referring to this action in
formulas. This action is given by

OV)sp (A)ez = (A) , beK ieZ

€L

where the flj’s are given by ‘
flj(c) = CUZ bvj'Ai—f—j(l) .

(8.3.5) Let Nz, be a W(k)-lattice of Ng,. Then the total filtration Filf,; on BC,(k)" induces
a filtration Filf, n, on BC,(k) @uy)v,r No,, defined by
7 D )

Filfo BCy (k)" @) v,r) sz>

m / —
Fﬂtot,NZp(BCp(k') QOW(k)[V,F] NQp) := Image < — BC, (k) @wi.m Na,

m € N.

(8.3.6) Let Fil;ot,NZpK[V, V- ®K Ng, be the filtration on K[V, V™1 Q) No, defined by

Filgt’szK[V, Vﬁl] QK N@p = <Fﬂ%t,NZpBCp(k)/ Qwik)[v,V-1] N@p) ,

where v/ : BCp (k) @wyv,r) No, — K[V, V'] @k Ng, is the canonical isomorphism from
BCyp(k) @wir)v,v-1Ng, to K[V, V~H®k Ng, explained above. It is easy to see that the topol-
ogy on K[V, V-1 ®g Ny, attached to the filtration Fil;ot’NZpK[V, V- ®x Ng, is independent
of the choice of the W(k)-lattice Nz, in Ng,.

(8.3.7) Lemma The tensor product BCp(k) ®@cart, (k) No, s naturally isomorphic to the com-
pletion of K[V,V~'| @k Ng, with respect to the filtration Fil;ot’NZpK[V, V- @k Ng,

PrOOF. This is an easy consequence of the fact that BCp(k) ®car, (k) No, is complete with
respect to the tensor product of the filtration Filf;BC,(k) on BCp(k) and the trivial filtration
on NQP' B

(8.4) Lemma Let Ng, be as in 8.1. Let Nz, be a W(k)-lattice for Ng,. Let wy,...,wy be a
K-basis of Ng,. Then there exist positive constants Cy, Co such that

Fil, (K[V, V™! @k Ng,)

ordy(a;r) > p - Max ({Ngﬂ,—i,()) — Oy

C LV
Sy X wView| TS

1€Z, finite
1<r<h

and

Filly, (K[V,V™ '] @k Ng,)

; ordy(ai) > p- Max([qu —i,0) + C4
o V< p\Uir 5 by )
= ,Z_ GrVIOwe g =1, h
1E€Z, finite
1<r<h
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PRrROOF. Immediate from Lemma 8.2.2. &

(8.5) Proposition Notation as in 8.1 and 8.3, so that Ng, be a V-isoclinic isocrystal of
dimension h over K, Nz, is a W(k)-lattice for Ng,, and wy, ..., wy is a K-basis of Ng,.

(i) The choice of basis wy, ..., wy leads to a bijection
v Bcp(k) ®Cartp(k’) NQp =
Qp

Z aiV'®w, | 30 €7 st ordy(a;) — max(—i,0)p > C
1<veh VieZ Vr=1,...,h

air € K Vi€, Vrzl,...,dim<N ):h

In the formula above the target of the isomorphism vy is a subset of Ng,[[V, V1)), with
growth conditions on the coefficients. Here Ng, [[V,V '] := K[[V,V!]]®k Ng,, and is
identified with the set of all formal series of the form

Y aV'ew,, ay€KVi€Z Vr=1,...h.
1ren

via the chosen basis w1, ..., wy. The bijection v extends the bijection
v : BCy(k) @wiyv,r No, — W)V, F] @y No,
in 8.3, and vy is a homomorphism of left Carty(k)-modules.

(ii) There is a canonical isomorphism from BCp(k) @car,x) No, to the set [[V, V1)) Ng,
of all sequences (A;);cy indeved by Z, where A; : K — N is a o'-linear map for each
1 € Z, and there exists C' € N, such that

Ai(W(k)) € pmx(i0ul=Cn, - i e 7.

The set [[V,V~1))Ng, is the completion of [V,V|Ng, with respect to the filtration
Filg,;. This canonical isomorphism is compatible with the commuting action of two
copies of Carty(k): The actions on the source, BCp(k) ®@car, (k) No,, comes from the
first copy of Cart,(k) in the bimodule structure of BCy(k) and the action of the extra
copy of Carty(k); the actions on the target, [[V,V 1)) Ng,, was described in 8.3.3 and
8.3.4.

PROOF. We saw in 8.3.7 that BC, (k) @) Ng, is naturally isomorphic to the completion of
K[V, V-1®x Ng, with respect to the topology defined by the filtration Fil{ot,NQpK[V, V ek
Ng,. That filtration was computed up to multiplication by pTC in Lemma 8.4, which deter-
mines the topology on K[V,V~1] @k Ng, attached to the filtration. It is not difficult to
convince oneself that the completion of K[V,V ™! @k Ng, with respect to this topology is
exactly the set of all formal series with growth conditions as in the target of + in the displayed
formula in (i). The rest of the statement (i) are immediate.

The statement (i) is a reformulation of (i), using the model [V,V~']Ng, of the tensor
product K[V,V~! @k Ng, asin 8.3.2. W
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(8.6) Theorem Let Ng, be as in 8.5. Let M be a V-reduced Cart,(k)-module attached to a
finite dimensional p-divisible group over k, all of whose Frobenius slopes are strictly less than
. Then there is a natural isomorphism

OMNg, + EXE Gt () (M, BCp(k) @cart, k) No,) — Homyyey (M, Ng,) -
Moreover ¢rr Ny, is an isomorphism of Carty(k)-modules, where

e Carty(k) operates on Extéartp(k)(M, BCyp(k) ®@cart, (k) No,) via the action of the “extra
copy” of Carty(k) on BCy(k),

e the Carty(k)-action on Homyyy) (M, Ng,) is given by

(w-h)(m) =Y a; V' -h(V 'm)
1€EZ
for all h € Homyyy (M, Ng,) = Homg (M ®Qwy K, Ng, ), for all m € M, and for all
U=y a; V' € Carty(k) = W(k)[[V, F)), where a; € W(k) for all i € Z, ordp(a;) >
max(—1,0) for all i € Z, and lim};_, ord,(a;) + i = oo.

Note that the series Y ;o a; V' - h(V™"m) converges because a; € W(k) for all i € N and the
Frobenius slopes of M are all strictly smaller than p, while the series ), o a; V' - h(V""m)
converges because lim; .o ordy(a;) + i = co. Hence the infinite sum Y., a; V' - h(V~"m)
converges for every m € M.

PROOF. STEP 1. One analyzes extensions of M by BCy(k) ®cart, (x) No, as follows. Suppose
we are given any such extension

™

0 —— BCy(k) ®@cart, ) No, E M —= 0

of left Carty(k)-modules. Choose a W(k)-linear splitting € : M — E such that moe = idpy;
such splittings exist because M is a free W(k)-module. Then one obtains a o~!-linear map

v:M— BCp(k) Scart, (k) N@p ,

defined by
v(im) =V -e(m)—e(Vm), Vme M.

If we change the splitting € to € = e+ g for an element g € Homyy,) (M, BCp (k) @cart, (k) Vg, )
then the resulting o~ !-linear map v = Vo€ — ¢ oV is related to v by

v'(m) =v(m)+V-g(m)—g(V-m), Vme M.

The above construction defines a map

VY Ext o, (1) (M, BCp(k) @cart, (1) No,) —

o~ Llinear maps v~ if 3g € Homyyg (M, BCy(k) ® Ng,)
M = Bcp(k) ®Cartp(k) NQp st. vVv=v+Vo g—goV
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STEP 2. Given any o~ !-linear map v : M — BC,(k) ®@Cart, (k) Ng,, We construct an ex-
tension E, of M by BCp(k) ®cart,x) Ng, as follows. The W(k)-module underlying E, is
M @ BCy(k) ®cart, (k) N, by definition. Define an action of V' on E, by

V. (m,b) = (Vm,Vb+v(m)) Vm € M, Vb€ BCy(k) @car, k) Na, -

More generally, for every element of W(k), written in the form >°,., a; V* with a; € W(k) for
all i € Z, ordy(a;) +i > 0 for all # <0, and limj;_, (ord,(a;) + i) = oo, define

<Z aivi> - (m,b) =

1€Z

Z a;V'im, Zai(Vib) + Z aryst1 V' -v(Vim) — Z arysi1 V' - 0(Vom)

1€EZ €L r,s>0 r,s<—1
for all m € M and all b € BCy(k) ®cart, (k) Ng,- This construction gives us an extension E,
of M by BCy(k) ®cart,(x) Ng, as Carty(k)-modules.

Suppose that v ~ v/ in the sense that
v —w =Vog—goV

for some g € Homyy) (M, BCp(k) ®cart, k) No,). Then the map (m,b) — (m,b — g(m))
defines an isomorphism E, — E,s of extensions of M by BC,(k) @Cart, (k) No, as left Cart,(k)-
modules. So we have shown that

qb?\J,N@p : EXtéartp(k) (M7 Bcp(k) ®Cartp(/€) N@p) —

o~ !-linear maps v~ if 3g € Homyyy) (M, BC,(k) ® Ng,)
M2 BCyp(k) ®@cart, k) No, st. vV=v+Vog—goV

is a bijection. It is clear from our constructions that ¢, Ng is an isomorphism of left Cart,(k)-
YQp

modules, for the actions coming from the “extra copy” of Cart,(k) on BC,(k).

STEP 3. We choose a K-basis (w, ..., w;) of Ng, and identify BCy(k) ®car, (k) Vg, With the

set BCyy, via the bijection v in Prop. 8.5. Given a o~ Llinear map v : M — BC,(k) @Carty (k)
Ng,, we write

h
v(m) = Z Z bj,«(nfb)f1 VI @ w, Vme M,
r=1 j€Z

where b, € Homyyy (M, K) for all j € Z and all » = 1,...,h. Of course the homomor-
phisms bj. depend on v. Define a homomorphism h € Homyyy, (M, Ng,), depending on
v E HomW(k)(Ma Bcp(k) ®Cartp(k) NQp)a by

h(m) == 3" bp(ViTtm)™ " w, ;
JEZ
1<r<h

We remark that the series defining h(m) converges:
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(a) There exists a constant C; > 0 such that ord,(bj.(m)) + pj > —Ci for all j € Z<g and
forallr =1,...,h and all m € M. Since all Frobenius slopes of M are strictly smaller

than pu, so the series _
> b (VITtm)
Jj<0

converges forr=1,..., h.

(b) There exists a constant Cy > 0 such that ordy(bj.(m)) > —C5 for all j > 0, all m € M,

and r = 1,...,h. Since all Frobenius slopes of M are strictly positive, the series
> by (VITtm)
7>0

converges forr=1,...,h.

It is routine to verify that if v = Vog—goV for some g € Homyy, (M, BCy(k) @cart, (k) No, ),
then
-1
bir(m) =aj_1,(m)° —ayr(Vm) VjieZ Vr=1,...,h,

where aj, € Homyy ) (M, BCy(k) @cart, (k) No,) are defined by

h
g(m)zzz ajr(m) VI @ w, Vme M,
JEZ r=1

and the homomorphism attached to V o g — g oV is defined by a telescoping series, therefore
equal to 0. We have constructed a well-defined homomorphism

o~ 1-linear maps v~ if 3g € Homyy (M, BCy(k) ® Ng,)
M = BCyp(k) @cart, k) Na, st. V=v4+Vog—goV

1/
M,Ng,

Homyy(zy (M, BCp (k) @cart, (k) Ng,) -

STEP 4. We show that ¢/, Ng is surjective. Given h € Homyy,) (M, Ng,), we define a
’ P
o~ linear map vy, : M — BC,(k) ®@cart, (k) Vg, by

vp(m) = =V ® h(m) Vme M.
It follows immediately from the definition of ¢}, Ng, that ¢f, No, (vg) = h.

STEP 5. The last step is to show that for any o~ !-linear map v : M — BC, (k) ®Cart, (k) VQps
if we set h = ¢y, Ng, (), then v ~ vy In other words, we must find a homomorphism
’ p

g € Homyy) (M, BCp(k) ®@cart, (k) Ng,) such that
v(m) —wvp(m) =V - g(m) — g(Vm) Vme M.
We write the given map v : M — BCy(k) ®car, k) No, as
h
v(m) = Z Z bjr(m)g_1 Vi@ w, me M.
r=1 jez
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Then we have .

vp(m) = Z Z bjr(Vj_lm)”j_2 V @ w, me M.
r=1 jeZ

Define an element g € Homyy ) (M, BCy (k) ®@Cart, (k) Ng,) by

h h
o) =3 T b Ve =Y Y b (v Vi,
r=1 j=1 r=1 j<0
1<i<j-1 j<i<0

for all m € M. We leave it to the readers to check that g(m) is well-defined, that is the sums
indeed are convergent and defines an element of BCy(k) ®cart, k) N, A formal calculation
shows that

Vg(m) — g(Vm) = v(m) — vp(m) Vme M.

So we have shown that (15’](4’ Ng, is an injection by constructing its inverse explicitly. This

completes the proof of Theorem 8.6, with ¢ar,ng, = 1, No, © r, N, W

Remark (i) The proof of 8.6 is a generalization of the appendix of [14], where the case
Y = G,, is treated, and the author used the ring W(k)[F,V] instead of the Cartier ring
Cartp (k).

(ii) Thm. 8.6 also determines the action of Endg(X)°PP @y Endi(Y) on the Cartier
module of DE(X, Y )piv, up to isogeny.

(8.6.1) Remark It may be of some interest to reformulate some part of the proof of Thm.
8.6 using the coordinate-free description [[V, V1)) Ng, of BCp(k) ®@cart, (k) Vg, in 8.5. Denote
by Hom®' (M, Ng,) the set of all o-linear maps from M to N. A ¢~ !-linear map v : M —
[[V, V1)) Ng, corresponds to a sequence b = (b;);cz, with b; € Hom”i_l(M, N) for all i €
Z, satisfying the growth condition that there exists a constant C' > 0 such that B;(M) C
prex(ZLOR=C N, for all i € Z.

A W(k)-linear map g : M — [[V,V~1))Ng, corresponds to a sequence a = (a;);cz, with
a; € Hom®' (M, Ng,) for each i € Z, satisfying the growth condition that there exists a
constant C' > 0 such that a;(M) C pmaX(*i’O)“*CNZP for all ¢ € Z. Then V-g corresponds

to the sequence V-g = (b;)icz with b; = a;-1Vi € Z, and goV corresponds to the sequence
goV = (i})iez, with b = b; o V € Hom?" ' (M, Ng,) for all i € Z.

Using the above coordinate-free description, the construction in Step 3 of the proof of
Thm. 8.6, which produces an element h € Homyy, (M, Ng,) from a o~ !linear map v, can

be described as follows. Given a sequence b = (b;)icz satisfying the growth condition, with
b; € Hom“lil(M, Ng,) Vi € Z, we define an element h of Homyy,) (M, Ng,) by

h(m) ==Y b(Vi"'m)  VmeM.
€L

The growth condition on b ensures that the infinite series defining h(m) converges. We can
think of h as the trace of b in Homyy) (M, Ng,). It is easy to see that, given a sequence g
with growth condition as in the previous paragraph, the trace of V-g — goV is equal to zero.
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Finally, we reformulate the construction in Step 5 of the proof of Thm. 8.6. Start with
a o~ l-linear map v, which corresponds to a sequence b = (b;);cz with growth condition,
b; € Hom?' ' (M, Ng,) for all i € Z. Let h be the trace of b in Homyyy) (M, Ng,). Denote
by b’ the sequence (b});ez such that b = —h, while b; = 0 if i # 0. We need a sequence
g = (a;)iez satisfying the growth condition, with a; € Hom?" (M, Ng,) for all i € Z, such that

V.g—goV=b-b.
This sequence is given by

a;(m) = Z b;(VI""tm)  fori > 1,
Jjzi+l

and -
a;(m) = — Z b;(VI~""tm) fori <0.
j<i

min

There exists a constant C' > 0 such that b;j(VI=i=1M) C pHX '(j_i_l)_cNZp fj—1>1>1,
and b;(VI==1M) C p_j“+”r§ax'(j_i_1)_cNZp if j < i <0, where 2™ (resp. uR*>) is the
smallest (resp. the biggest) V-slope of M. It follows that the above infinite series converge,
and define a sequence g satisfying the growth condition. We leave it to the reader to verify,
as a routine exercise, that the sequence g has all the required properties.

(8.6.2) Corollary The statement of Thm. 8.6 holds for M = M(X), N := M(Y), where
X, Y are finite-dimensional p-divisible formal groups such that each Frobenius slope of X is
strictly smaller than any Frobenius slope of Y.

PROOF. There exists an isogeny from Y to a direct product of finite dimensional isoclinic
p-divisible formal groups. NI

(8.6.3) Corollary Let X, Y be p-divisible formal groups over k, where k is a field of charac-
teristic p. Assume that X, X are isoclinic of Frobenius slopes i, p, respectively, and p, <
ty . Then the p-divisible formal group DE(X,Y )paiv 15 isoclinic of Frobenius slope i, —pi , its
height is equal to height(X)-height(Y'), and its dimension is (u, — pu, ) - height(X) - height(Y").

PROOF. According to Prop. 5.7.3, the Cartier module of DE(X,Y) is
EXtéartp(k) (M7 BCp(k) ®Cartp(k) N) )

where M, N are the Cartier modules of X and Y respectively. Let E be the Cartier module of
DE(X,Y )pdiv. Then the natural inclusion E — Extéartp(k)(M7 BCp(k) ®cart, (k) IV) induces an
isomorphism E ®7Q — Ext(ljartp(k)(M, BCyp(k) @cart, (k) V) ®z Q. Combined with the natural
isomorphism ¢arng, Extéartp(k)(M,BCp(k‘) ®Qcart, (k) N) ©z Q = Homyyy (M, N) ®z Q,
we obtain a natural isomorphism F ®z Q — Homyy ) (M, N ®z Q). Hence the height of
DE(X,Y )pdiv is equal to the product of the heights of X and Y. It is well-known that the
V-slope of the V-isocrystal Homyy () (M, N) ®z Q is the difference of the V-slopes of M and

N, Since the relative Frobenius of a smooth formal group corresponds to the operator V on
Cartier modules, we see that DE(X, Y )paqiv is isoclinic of Frobenius slope i, —pi. 0
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(8.6.4) Remark Cor. 8.6.3 provides an independent proof of DE(X,Y )pqiv is isoclinic of
slope puy — px was proved in Thm. 2.8, by “pure thought”. The proof here, based on Thm.
8.6, is more complicated. But we do not have a “pure thought” proof that the height of
DE(X,Y )pdiv is equal to the product of the heights of X and Y.

(8.7) In this subsection we consider the effect of a quasi-polarization on DE(X,Y)pdiv-

(8.7.1) Let X be a p-divisible formal group over a perfect field k of characteristic p such that
every Frobenius slope p of X satisfies 0 < p < % Let Y = X! be the Serre-dual of X. Let
) be a quasi-polarization on X x Y, so that A induces an isogeny 3 : X — X! such that
B X = (X" — X" is equal to a. Let g = height(X) = dim(X Xgpecr) X*).

The symmetric isogeny 3 : X — X! induces an involution ¢ on the smooth formal group
DE(X, X1), as follows. For any Artinian local ring R over k, an R-point of DE(X, X*) corre-
sponds to an extension

0 — X Xgpec(k) Spec(R) — £ — Xt X Spec(k) Spec(R) — 0

of p-divisible formal groups over R, together with a isomorphism « : E Xgpec(r) Spec(k) =
X Xgpec(k) X . The dual of a pair (E,«) as above is the extension

0—X X Spec(k) SpeC(R) = (Xt X Spec(k) SpeC(R))t — E' — X' X Spec(k) SpeC(R> — 0,
together with the isomorphism
(@' B Xgpec(r) Spec(k) = (X Xspeo(r) X)' = X Xgpec(r) X' -

By definition, the involution ¢ on DE(X, X*) sends an R-point [(E, «)] above to the R-point
[(Et, (e~ 1)1)]. Tt is clear that DE(X, X ) paiv is stable under .

Denote by DE(X, X!)®™ the maximal formal subgroup of DE(X, X!) fixed under the
involution ¢. It is easy to see that DE(X, X)SY™ is formally smooth, and it is the maximal
formal subgroup of DE(X, X*) such that the quasi-polarization A on X X Spec(k) X ¢ extends to
a quasi-polarization of the universal p-divisible formal group over DE(X, Xt)s¥m,

Let DE(X, X t)ls;_'gilv be the maximal p-divisible formal subgroup of DE(X, X*)¥™. Tt is clear
that DE(X, X t);{'é?v is equal to the maximal p-divisible formal subgroup of DE (X, X*)piv fixed
under ¢, and is also the maximal p-divisible formal subgroup of DE(X, X*) iy such that the
quasi-polarization A on X Xgpec(r) X ¢ extends to a quasi-polarization of the universal p-divisible
formal group over DE(X, X*) Vi .

We identify the Cartier module of X* with M" = Homyy, (M, W(k)), the linear dual of
M. Denote by Homi?m(MQp, M@fp) the K-vector space consisting of all symmetric elements

of Homg (Mg, , M@{p)
(8.7.2) Proposition Notation as in 8.7.1 above.

(i) The V-isocrystal M(DE(X, X*)'4i,) ®z Q ids isomorphic to Hom3™ (Mg, Mg ) under

the isomorphism ¢M7M6 in Thm. 8.6.
P
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(ii) The height of DE(X, Xt);bgilv is equal to @. In particular, if X is isoclinic of Frobe-
nius slope p, 0 < pu < %, then

. sym 1
dim(DE (X, Xt)pydiv) =S (L —2u)g(g+1).

PROOF. Statement (ii) follows from (i), because dimg (Hom})™ (Mg, M@{p)) = w’ and the

dimension of an isoclinic BT-group is equal to the slope times the height.

The honest way to prove (i) would be to compute, on the nose, the effect of the involution
¢ on the Cartier module of DE(X,Y ), qiv. That will involve chasing through the construction
of the isomorphism ¢,, M in Thm. 8.6 and verify the commutativity of certain diagrams.

P

Here we give an argument which is enough to prove (i).

We may and do assume that £ is algebraically closed. Let £ = Endcarg, (k) (M)®7zQ, so that
E is a central simple algebra over Q,, dimg, (E) = g°. Tt is well-known that F is isomorphic to
a matrix algebra with entries in a central division algebra over Q, with Brauer invariant pu —
or —u, depending on the normalization one uses. The group of automorphisms End(X)* =
(Endgare, (k) (M))* operates on DE(X, X*)pgiv, M(DE(X, X*)paiv), and Homyy () (M, MY).
Moreover the canonical isomorphism M(DE (X, X*)paiv) — Homyy 1y (M, M V) is compatible
with the natural action of (Endcar, (k) (M))*. The group (Endga, k) (M))™ is a compact open
subgroup of £, and the linear action of (Endcar,x)(M))* on Homyy (M, MY) ®7 Q ex-
tends to a linear action of E* on Homyy ) (M, M")®z Q. We know that the W (k)-submodule
M(DE(X, YY) 5,) of M(DE(X,Y )iy is stable under the action of (Endcar, (k) (M))*, there-
fore M(DE(X, Y);}_'é?v) ®z Q corresponds, under the canonical isomorphism, to a subspace of
Homg (M ®7 Q, MY ®z Q) which is stable under the natural action of E*.

We have a decomposition of the vector space Homg (M @7 Q, MV ®7 Q) as a direct sum
of its symmetric and skew-symmetric part:

Homy (M ®7 Q, MY @7 Q) = HomP™ (M ®7 Q, MY @7 Q) @ Hom§*™ (M ®7 Q, M" @7 Q).

Both direct summands are stable under the action of E*. It a standard fact that the action
of EX on MV ®7Q, regarded as a linear representation of an algebraic group, is isomorphic
to the standard representation of GL, after passing to the algebraic closure of K. Moreover
the action of F* on Hom}Y™ (M ®7Q, MV ®7Q) (resp. HomE™ (M @7 Q, MY ®7Q)) is iso-
morphic to the second symmetric product of the standard representation (resp. the second
exterior product of the standard representation) after passing to K alg: hoth representations

are absolutely irreducible. So there are only four possibilities for the E*-invariant subspace

M(DE(X,Y) 4, )©zQ: it can be (0), Hom ™ (M®zQ, MY ©zQ), Hom¥™ (M ®zQ, MY ©zQ),

or Homg (M ®7 Q, MV ®z Q) itself. We claim that

(A) M(DE(X,Y)h,) ©z Q € Hom3E™ (M @7 Q, MY @7 Q).

(B) M(DE(X,Y))g,) ®2 Q # Homg (M 7 Q, MY ®7 Q).

It is clear that the statement (i) follows from (A) and (B).

To prove (A), we may and do assume that X is minimal. Choose an embedding of
W(Fps) — End(X), denote by O the image of W (F,s), and consider the maximal closed
reduced formal subscheme of DE(X, Y)g v Such that the natural action of O on X Xgpec(i) X t
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extends to an action of O on the restriction to DE(X, Y)f “div Of the universal extension & of
X by X*'. Choose a totally real number field F such that O ®z7Z, = O. Let M be the
Hilbert Blumenthal modular variety M over k, attached to F. There exists a closed point
xo of M such that the Ayg[p™] together with the action by Op®zZ, = O is isomorphic to
X Xgpec(k) X with the O action. Then DE(X, V)9 . is the formal completion at z( of the

pdiv
central leaf Caq(z9) in M.

Suppose that M(DE(X, Y);}_'é?v)@)ZQ is contained in Hom%®" (M®7Q, MV®z Q). It is easy

to see that DE(X, Y)S_div C Hompg 0(M®zQ, MV ®;Q), where Homp o(M®@zQ, MY ®7Q) is
the subset of all O-equivariant elements in Hom g (M ®7Q, MY ®zQ). But the intersection of
Homsll(‘eW(M@)Z Q, MY ®z Q) with Homg o(M ®7zQ, MY ®z Q) is (0). Hence the central leaf
Cm(mo) in M is zero-dimensional. This is impossible, because the prime-to-p Hecke orbit of

xo in M is not finite, by the argument in [1, Prop. 1, p. 448]. We have proved claim (A).

Suppose that M(DE(X, Y);}_'é?v)@z@ is equal to Homg (M ®7Q, MY ®7Q). This implies
that every principal quasi-polarization on X x X! extends to the universal BT-group G over
DE(X, X" piv- In particular, the image of Autpg(x xt) ;. (9) in Auty(X x Xt) contains the
subset consisting of all elements of the form (3, %), 8 € Autg(X). We know that E % E°PP,
i.e. Endg(X) ®z Q 2 Endi(X?) ®z Q, because 0 < p < % Using the standard theory of
semisimple modules, it is easy to see that the Q-subalgebra of Endy (X X Spec(k) X %) generated

by the above automorphisms is equal to (Endg(X) ®z Q) x (Endy(X?) @z Q) & E x E°PP.

We may and do assume that & is algebraically closed, and that there exists a principally
polarized abelian variety Ag over k such that Ag[p™] = X Xgpecy X . Write DE(X, X*)paiv =
Spf(R). By Serre-Tate we get a formal abelian scheme A over Spf(R), together with an
isomorphism A[p>] 2 G. Since every principal quasi-polarization on Ag[p™] extends to Spf(R),
the formal abelian scheme A over Spf(R) is algebraic, i.e. there exists an abelian scheme A over
Spec(R) whose formal completion is isomorphic to A. Since Ay is defined over a finite field,
End(4p) ® Q, = End(Ao[p™]. The conclusion of the previous paragraph implies that there
exists an integer N such that every element of p" End(Ag) extends to an endomorphism of
A over Spec(R). Since A — Spec(R) is of finite presentation, there exists a finitely generated
k-subalgebra S C R and an abelian scheme Ag over Spec(S) and an isomorphism Ag Xgpec(s)
Spec(R) = A. By [15, Thm. 2.1], there exists a finite surjective base change map T — Spec(S)
such that Ag Xgpec(s) T is isogenous to a constant abelian scheme over 7. Hence the BT-
group G Xgpec(R) (Spec(R) X Spec(S) T) is isogenous to a constant BT-group over the scheme
Spec(R) X gpec(syT which is finite over Spec(R), a contradiction! We have finished the proof of
(B) and the statement (i) of 8.7.2.

(8.7.3) Corollary Let xg = [(Ao, \o)| be a closed point of Ay over a field of characteristic
p. Suppose that Ay has only two Frobenius slopes, p and 1 — pu, with 0 < p < % Then the
dimension of the central leaf C(xo) in Ay passing through xg is equal to % (I—-2u)g(g+1).

PROOF. Immediate from Prop. 8.7.2 and 3.3. 1

Remark The statement of 8.7.3 is a special case of [17, 3.17]. Oort’s original proof, mentioned
in [17, 3.17], uses the main result of [18] and deformation theory of abelian varieties.
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§9. The integral structure

(9.1) Notation Let X,Y be finite-dimensional p-divisible formal groups over a perfect field
k of characteristic p such that every Frobenius slope of X is strictly smaller than any Frobenius
slope of Y. Let K = B(k) be the fraction field of W(k). Let M = M(X), N = M(Y') be the
Cartier modules of X,Y respectively. Let r;1 = dim(X) = dimy(M/VM), ro = dim(Y) =
dimg(N/VN), s1 = dimg(VM/pM), so = dimg(VN/pN).

Let H = Hom,,, (M,N). The K-module H,, = H®,,,, K has a natural structure as a
V-isocrystal, such that

(V-h)(m) =V h(VIm), (F-h)(m)=Fh(Vm) ¥Yme M.

Notice that the W(k)-lattice H C H, is stable under F.

Let Hy be the maximal W(k)-submodule of H such that F(Hy) C Hy and V(H;) C H;.
Similarly, let Hs be the minimal W(k)-submodule of Hy containing H such that F'(Hz) C Hs,
V(Hs) C H,. Tt is easy to see that

Hy=(\V'H, Hy=)» V'H.

i>0 i>0
(9.1.1) Lemma Notation as above.

(i) The natural map

18 injective.
(ii) Let VM =V M/pM be the image of VM in M = M/pM, and let VN = V.N/pN be the
image of VN in N = N/pN. Then the natural map H — Homg(VM,N/V N) induces

an isomorphism o
H/(HNVH) = Homy(VM,N/VN).

In particular, dimg(H/(HNVH)) =rgs;.

PROOF. (i) Suppose that x € Hy NV H, so that x = Vy with y € H. We must show that
y € H;. Consider the W(k)-submodule
H' :=Hi+» Wk)-Fy

>0

of Hi. Clearly H;y C H because F(H) C H, and F(H') C H' by construction. Moreover
V(F'y) = Fi(x) € H C H for all i >0. So V(H') C H', and H; = H' > y.

(ii) The natural map o : H — Homy(V M, N/VN) is a composition
H — Homy(M,N) - Homy(VM,N/VN)

of two surjections, hence is surjective. It is clear that Ker(«) consists of all elements h €
Homyyxy (M, N) such that h(VM) C VN, which means that the element V~'h belongs to H.
In other words, Ker(a) = HNVH. 1
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(9.2) Lemma Let M be the Cartier module of a finite-dimensional p-divisible formal group
over a perfect field k of characteristic p. Let B be a V-reduced left Carty(k)-module.

(i) There is a natural bijection between the following two sets:
— the set of all isomorphism classes of pairs
(0O=B—FE—M-—0, sp)

where 0 — B — E — M — 0 is a short exact sequence of left Cart,(k)-modules,
and sp : M — E is a W(k)-linear splitting of the above exact sequence;

— the set of pairs (f,v), where f : M — B is a o-linear map, v : M — B is a
o~ -linear map such that

f(Vm)+ Fo(m) =0, Vf(m)+v(Fm)=0 Vme M.
(ii) There is a natural bijection between the following two sets:

— the set of all isomorphism classes of extensions (0 — B — E — M — 0) of left
Cart,(k)-modules;

— the set of pairs (f,v), where f : M — B is a o-linear map, v : M — B is a
o~ -linear map such that

f(Vm)+ Fv(m)=0 and Vf(m)+v(Fm)=0 Vme M,

modulo the following equivalence relation: (f',v") ~ (f,v) iff there exists a W(k)-
linear map g : M — B such that

f'(m)—f(m) = Fg(m)—g(Fm) and v'(m)—v(m)=Vg(m)—g(Vm) Vme M.
PROOF. The bijection in (i) is given as follow. For any given extension
0—-B—-FEF—-M-—0

of left Cart,(k)-modules together with a splitting sp : M — E of the short exact sequence of
the underlying W(k)-modules, the corresponding pair is (f,v), where

f(m) := F-sp(m) —sp(Fm), wv(m):=V-sp(m)—sp(Vm), VmeM.
It is easy to check that f : M — B is o-linear, v : M — B is ¢~ !-linear, and
f(Vm)+ Fo(m) =0 and Vf(m)+v(Fm)=0 Yme M.

Conversely, for any pair (f,v) which satisfies the above conditions, we use the maps f and
v to define the actions of F' and V on B @& M as follows.

F-(b,m)=(Fb+ f(m),Fm), V-(b,m)=(Vb+wv(m),Vm), Ybe B, Vme€ M.

It is easy to check that F'V =V F = [p] on B & M, so that the action of F' and V extends to
an action of W(k)[F,V] on B& M. We claim that the action of W(k)[F, V] on B& M extends
to an action of Cart,(k). Assuming the claim, then B & M is an extension of M by B as a
left Cart,(k)-module, endowed with the W(k)-linear splitting m — (0, m), m € M. It is easy
to check that these two constructions are inverse to each other, and the bijection (i) will be
established.
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To prove the claim, we recall that any element of Cart,(k) can be written as a convergent
sum

Z c; FI + Z diV', ¢j,di € W(k)Vi>0Vj>1, and ordy(c;) — 0.

j>1 i>0
A simple computation shows that
j—1

Fi(b,m) = (Fib+ Y FIf(FI " m), Fim) j>1
Jj1=0
and
i—1
Vib,m) = (Vb+ Y ViV m), Vim) i>1
i1=0
for all (b,m) € B @® M. Notice that there exists 6 > 0 and a constant C' such that VM C
plO=CIN for i > 0, and the map v : M — B is continuous for the V-adic topology. Hence
Vi(b,m) converges to 0 in B @ M as i — oo, where B @& M is given the product topology.
Therefore a sum of the form

> ¢ Fib,m)+ ) diVi(b,m)

j>1 i>0

converges in B ® M if ¢;,d; € W(k) Vi,5 > 1, and ordy(c;) — oo. This shows that the action
of W(k)[F,V] on B& M can be extended to an action of Cart,(k) by continuity.

To prove statement (i), we only have to examine the effect on the pair (f,v) from a
different choice of the splitting. The set of all splittings of a short exact sequence of W(k)-
modules 0 - B — E — M is a torsor under HomW(k)(M , B): The difference sp’ — sp is a
W(k)-linear map from M to B. If sp’ —sp = g, g € Homyy,y (M, B), and (v', ') is the pair
attached to the splitting sp’, then an easy computation shows that

f'(m) — f(m) = Fg(m) — g(Fm), v'(m) —v(m) = Vg(m) —g(Vm) Yme M.
We have proved (ii). =
(9.3) Lemma Let X be a finite dimensional p-divisible formal group over a perfect field k of
characteristic. Let N be a free W(k)-module of finite rank. Then there is a natural isomorphism
¢+ Extéa oy (M(X), Carty, (k) @y N) = Homyyg (M(X), N)

of W(k)-modules, where the W(k)-module structure on Extlcartp(k) (M(X), Carty(k) @wry N)
comes from the W(k)-module structure of N. Under the bijection in Lemma 9.2, for any
element h € Homyy,) (M(X), N), the element

pL(h) € Extlcartp(k)(M(X), Carty (k) Quy N)

corresponds to the pair (fu,vn), where the o-linear function f, : M — Carty(k) @y N and
the o~ L-linear function vy, : M — Cart,(k) Qwk) N are defined by

fo(m) :=F @h(m), vy(m)=-1®~hVm) VmeM.
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PRrROOF. In [14, p. 617], the authors treated the case N = W(k), and they used the ring
W(E)[F, V] instead of Cart,(k). Their proof works in the present situation without change,
except that the sums in the displayed formulae in pp. 619-620 of [14] should be understood
as infinite sums, which all converge. 1

(9.3.1) Remark On the other hand, in the statement of Lemma 9.3, if we replace the ring
Carty (k) by W(k)[[F, V]], the completion of Cart,(k) with respect to the total filtration Filf,

in the statement of Lemma 9.3, then the statement is false for X = G,,.
(9.4) Lemma Notation as in 9.1. Let

¢« H := Homyyy (M, N) — Extgartp(k)(M, BCy (k) @cart, (k) N)
be the map which sends each element h € Homyyy (M, N) the element

1/}(}7’) = [(fh’ vh)] € EXt%}artp(ky) (M7 BCp(k) ®Cartp(k) N)

attached to the pair (fn,vn) under the bijection in Lemma 9.2, where the o-linear map fy :
M — BCy(k) ®cart,(x) IV and the o~ t-linear map vy, : M — BC,(k) Qcart, (k) IV are given by

fn(m) = FUy ® h(m), gn(m)=—-Uy®@h(m) ¥Yme M.

Recall that EXtéartp(k)(Mv BCp(k) ®@cart, k) V) is a left Carty(k)-module via the action of the

“extra copy” of Carty(k) on BCy(k), and H @y, K has a natural structure as a V-isocrystal
such that F(H) C H.

(i) Let M, N, Ethcartp(k)(M7 BCyp(k) @cart, (k) No, — Hi be the map constructed in Thm.
8.6. Then PM,Ng, (v(h)) = h for every h € H. In particular, the map 1) is injective.

(ii) Suppose that h is an element of H such that hy := Vh € H. Then (h1) = V- ¥ (h).
(iii) We have Y(Fh) = Fy-1(h) for every h € H.
(iv) The map v is W(k)-linear. Here the W(k)-structure of the target

Ethcartp(k) (M, BCp @cart, (k) N)

of the map 1 comes from the canonical embedding W(k) — Cart,(k) and the action of
the “extra copy” of Cart,(k) on BCp(k).

PROOF. The statement (i) is an immediate consequence of the definition of maps ¢, N, and
1 in 8.6 and 9.4 respectively.

(ii) By definition, 1 (h1) corresponds to the pair
(FUy @ hi(m), —Uy @ h1(Vm)),
while V,, - ¢(h) corresponds to the pair

(Ve - FUy @ h(m),—V, - Uy @ h(Vm)) = (FU; @ h(m),—U; @ h(Vm)).
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We must produce an element g, € Homyy ) (M, BCp(k) @cart, k) IV) such that
Fgn(m) — gn(Fm) = FU; ® h(m) — FUy ® hi(m)

and
Vgn(m) — gn(Vm) = Uy ® hi(Vm) — Uy ® h(Vm)

for all m € M. Here in the requirement for g, to be W(k)-linear, the W(k)-module structure
on BCy(k) @cart, (k) N comes from left multiplication by elements of W(k) C Cart,(k) on
BC,(k). Recall that hy = Vh means that Vh(m) = hy(Vm) for all m € M, which implies
that h(F'm) = Fhy(m) for all m € M. A simple computation, using the commutation relations
VU, = UV, FUy = Ur F in BCy(k), shows that the function gp : M — BCp(k) @car, k) NV
defined by

gn(m) :=U; @ h(m) VmeM

satisfies the required conditions.

(iii) Let ho be the element F'h in H, so that ho(m) = Fh(Vm) for all m € M. The element
Y(Fh) corresponds to the pair

(FUy ® ha(m), —Up @ ha(Vm) ) = (FUy ® Fh(Vm), —Uy ® Fh(V?m) )
= (U F? @ h(Vm), —UpgF @ h(VZm)),
while the element F), - ¢ (h) corresponds to the pair
(Fp-FUy®@h(m),—F; - Uy @ h(Vm) ) = (FVU)F ® h(m),—VUyF @ h(Vm))
= (VU1 F? ® h(m), —VUF @ h(Vm)).
Let g : M — BCp ®cart, (k) IV be the function defined by
gm)=UoF @ h(Vm) VYme M.
It is easy to see that g is W(k)-linear, and a simple computation shows that
Fg(m) — g(Fm) = U F? @ h(Vm) — VUL F? ® h(m)

and
Vg(m) — g(Vm) = VUF ® h(Vm) — UgF @ h(V>m)
for all m € M. We have proved (iii).

Recall that a Witt vector u = (cg, c1, 2, . ..) in W(k) goes to the element Y ;5 V¥{c;)s F"
under the canonical embedding W(k) < Cart,(k). To prove statement (iv), it suffices to check
that ¥ ({c) - h) = ()5 - ¥(h) for every c € k. It is clear that (c), -9 (h) is the class represented
by the pair ((¢)g- fn, (¢)z-vp). Using the commutation relations for BC,(k), we see that

(€)z - fn(m) = (€)z - FUo @ h(m) = FUp @ (¢)h(m) = fcyn(m)

and
(¢)z - vn(m) = —(c)a - Up @ ha(Vm) = =Up @ (c)h(Vm) = v(eyp(m)

for all m € M. We have shown that (c),-¢(h) is equal to [(fieyn, vieyn)] = ¥ ((c)h). R
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N) is topo-

(9.5) Lemma Notation as in Lemma 9.4. Then Extéartp(k) (M, BCy(k) @cart, (k)
logically generated as a left Cart,(k)-module by the subset 1)(H), where H := Homyy (M, N)
In particular, the embedding v : Homyy) (M, N) — Extéartp(k)(M,BCp(k) ®Cart, (k) V) =

M(DE(X,Y)) induces a surjection
H/(HNVH) - M(DEX,Y))/VM(DE(X,Y)) .
PROOF. Let 0 — Cart,(k)™ = Cart,(k)(k) — M — 0 be a finite free finite free resolution of
the left Cart,(k)-module M of length one as in Prop. 5.7.3. We saw in 5.7.3 that
Ext o, 1) (M, BCp(k) @cart,(v) N) = (BCp(k)" @cart, vy N) / (T - (BCp(k)" @cart, (k) N))
where I' is the matrix representation of r
Recall that we have a injection
a : Carty(k) @y Carty(k) — BCy(k)

such that a(u ® v) = u- Uy - v for all u,v € Cart,(k). The above injection « induces a map
(k) Carty (k) @cart, (k) N — BCp(k) @cart, (k) V -

a : Carty (k) @iy N = Carty (k) @y
It is clear that a(Carty,(k) @) N) is stable under left multiplication by I'. Let

a EXtCart (k) (M Cartp(k) ®W(k) N) = EthCartp(k) <M7 BCP( )®Cartp( )N)

be the map induced by a.
Consider the following commutative diagram

H = Hom,,,, (M, N) = Hom,,, (M,N) = H
wle W
Ext! o (M, Carty(k)®,,,, N) & Ext(ljartp 0, (M. BCp(k) @, ) N)

1%

|

N/F (Cart ( ) ®W(k) N) —C—Y>BCp(k) B Cart (k:)N/F (Bcp(k)n®0artp(k)N)

Cart,(k)"® W)

We know from the structure of BC,(k) that
> Vi a(Carty(k) ®

n>0
is dense in Carty (k) with respect to the topology defined by the total filtration. Therefore the

> Vip(H)

n>0

W(k) Cartp(k‘))

is dense in Extcy, (M, BCp(k)) with respect to the V-adic topology on the left Cart,(k)-

. . 1
D Y
module Ext, ) (M,BCp(k)). This finishes the proof of the first assertion of Lemma 9.5

The second assertion of Lemma 9.5 follows. R
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(9.6) Theorem Notation as in 9.1 and 9.4. Let r1 = dim(X), ro = dim(Y"), s; = ht(X) —
dim(X), s = ht(Y) — dim(Y).
(i) We have
dim(DE(X,Y)) = ros1, dim(DE(X,Y )pdiv) = 251 — 1152, dim(DE(X,Y )unip = 1152 -

(ii) The image of the Cartier module M(DE(X,Y) of DE(X,Y) under the isomorphism

PM,Ng, : M(DE(X,Y)) ) K = EXtéartp(k)(MvBcp(k)®Cartp(k) N) Qi K
= Homyyy (M, N) @y K = HRwp K = Hy,

is equal to Ho, the Cart,(k)-span of H in H, . In other words, the map (ﬁM,NQp induces
an isomorphism

M(DE(X,Y)P ) = M(DE(X,Y)/DE(X,Y )unip) — Ha,
where M(DE(X,Y)P4Y) := M(DE(X,Y)/DE(X,Y )unip) s the mazimal p-divisible quo-
tient of DE(X,Y).
(iii) The map PM,Nq, induces an isomorphism
M(DE(X,Y )p-div) = Hy,

where Hy is the mazimal W(k)-submodule of H which is stable under the action of

~

Carty(k). In other words, under the isomorphism M(DE(X,Y )PV =5 Hy dn (i) above,
the natural isogeny DE(X,Y )paiv — DE(X,Y)PUY corresponds to the inclusion Hy C
Hs.
PRrROOF. The statement (i) has been proved in Prop. 2.3 (ii) and Thm. 8.6.
From the short exact sequence
0 — M(DE(X,Y )unip) — M(DE(X,Y)) — M(DE(X,Y)P V) — 0
we see that _
1o, M(DE(X,Y)) = darg, (M(DE(X, Y )P) = Hy;
the last equality follows from Lemma 9.5. We have proved statement (ii).
We know from Lemma 9.1.1 (ii) that dimg(H/(H NV H)) = r9 s1. So the source and the
target of the surjection
H/(HNVH)—» MDEX,Y))/VM(DE(X,Y)
in Lemma 9.5 have same dimension. Therefore the above surjection is an isomorphism.

Lemma 9.4 gives us a natural injection j: H; — M(DE(X,Y)) of Cart,(k)-modules. The
map

J:Hi/VH] — M(DE(X,Y))/VM(DE(X,Y))
induced by 7 on the tangent spaces is equal to the following composition
H/VH, — H/(HNVH) = M(DE(X,Y))/VM(DE(X,Y)

of canonical maps. The map H,/VH; — H/(H NV H) is an injection by Lemma 9.1.1 (i).
Hence 7: H1/VH; — M(DE(X,Y))/VM(DE(X,Y)) is an injection. We conclude by Lemma
4.3.2 that j(H;) is the Cartier module of the maximal p-divisible subgroup of DE(X,Y ), div-
We have proved statement (iii). W
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(9.6.1) Remark (i) The canonical map H; — Hj is an injection of left Cart,(k)-modules,
and the quotient Hy/H; is the covariant Dieudonné module of the finite group scheme
DE(X,Y )pdiv N DE(X,Y )unip-

1 e proof o m. 9.6 shows that the tangent space o , 1s canonically 1somor-
ii) Th f of Thm. 9.6 sh hat th fDE(X,Y) i ically i
phic to H/(H NV H), and the tangent space of DE(X,Y )P4V is canonically isomorphic

Hy/VHy = (2 ViH> /(2 VZH) Nad H/(HﬂiVH) :

(ili) The tangent space of DE(X,Y)/DE(X,Y )piv is canonically isomorphic to
H/(Hi+(HNVH)).
Hence

dimy (H/(Hy+(HNV H))) =dim(DE(X, Y ) /DE(X, Y ) pativ) = him(DE(X, Y unip) =152

(iv) Suppose that H; = Hy = H. Then r1sy = 0 by (iii), therefor s, = 0, because r; > 0. In
other words, the natural map DE(X,Y )paiv — DE(X, Y)P4V is an isomorphism if and
only if Y is a formal torus.

(9.7) Proposition Notation as in 8.7.1. Let M be the Cartier module of X, and identify

the Cartier module of X' with MY := Homyy (M, W(k)). Let H' = Homi%i)(M, MVY) be

the module of all symmetric elements in HomW(k)(M, MY); H' Ry K 15 a sub-V-isocrystal

of Homy,, (M, M") @, K. Let H{ be the mazimal W(k)-linear submodule of H' such that

V(H{)+ F(H{) C Hy. Then the map ¢M,M(§ in 8.6 induces an isomorphism from the Cartier
D

module of DE(X, X)), to Hj.

PRrROOF. Immediate from Prop. 8.7.2 and Thm. 9.6. R

(9.8) CONTINUATION OF EXAMPLE 6.3

Notation as in 6.3. The Cartier module M = M(X) = Cart,(k)/Cart,(k)-(F — V"), is a
free W(k)-module of rank n + 1, with basis

u, = the image of V" in Cart,(k)/Carty(k)-(F — V"), 0<r<n.

The Cartier module N = M(Y) = Cart,(k)/Cart,(k)-(F — V" 1), is a free W(k)-module of
rank n, with basis

w; = the image of V" in Cart,(k)/Cart,(k)-(F — V™1, 0<i<n-—1.
Forany 0 <i<n-—1,0<r <n,let ¢; be the element of H := HomW(k)(M7 N) such that
eir(Us) = Ops w; Vs=0,...,n.

The e;,’s form a W(k)-basis of the free W(k)-module H := Homyy, (M, N).
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The action of F'and V on H,, = H® K can be expressed as follows:

W(k)
Veir=e€it1r+1, Feipr=¢€itn-1r-1=pe€i-1,-1

where we have used the convention that €; ,4n+1 = p~le; and €i+n,r = D €ir to define elements
eir € H, for all i,r € Z.

The submodule Hy = 3.+ ViH is equal to the W(k)-span of
eir (0<i<r<n); p e 0<r<i<n-1).
The submodule Hy = ;5o V~"H is equal to the W(k)-span of
eir (0<r<i4+1<n,i>0); per 0<i<r—1<n-—1).

We have lengthyy ) (Hz2/H1) = n(n — 1), compatible with what we saw in 6.3.6.

(9.9) CONTINUATION OF EXAMPLE 6.4

Notation as in 6.4. The Cartier module M = M(X) = Cart,(k)/Cart,(k)-(F — V°), is a
free W(k)-module of rank 6, with basis

u, = the image of V" in Cart,(k)/Cart,(k)-(F —V®), r=0,...,5.

The Cartier module N = M(Y') = Cart,(k)/Cart,(k)-(F? — V), is a free W(k)-module of rank
3, with basis

w; = the image of F' in Cart,(k)/Cart,(k)-(F? = V), i=0,1,2.
For any 0 <i<5,0<r <2, let ¢; be the element of H := HomW(k)(M,N) such that
eir(us) = Ops w; Vs=0,...,5.

The e;,’s form a W(k)-basis of the free W(k)-module H := Homyy) (M, N).

The action of F'and V on H,, = H® K can be expressed as follows:

W(k)
Veir=eéitar+1, Fepr=e€it1,0-1=pei—1,-1

where we have used the convention that e;,16 = p~le; and ei+3,r = peir to define elements
eir € H, for all 4,7 € Z.
It is easy to see that Hy 1=} ;5 VH is equal to H+W(k) p~teg. Similarly the Cart,(k)-
module Hy := ()i > 0V ~*H is the W(k)-span of
{peos }U{eir|i#£Oorr#5 0<i<2 0<r<5}.

We have lengthyy ) (Hz/H1) = 2, compatible with what we saw in 6.4.6.

(9.9.1) A simple calculation shows that H;/(VH; + FH;) is a 6-dimensional vector space
over k, generated by the images of eg1, €2, €03, €o4, €14, and eys, which is compatible with
what we saw in 6.4.4. Similarly, Ha/(V Ha + F'Hy) is a 6-dimensional vector space over k,
generated by the images of eg1, eg2, €3, €04, €05, and e15, compatible with 6.4.7
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