MATH 350 PRACTICE PROBLEMS April, 2005

1. Prove that $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$ for all $n \in \mathbb{N}_{>0}$.

2. Prove that

$$\left(\begin{array}{cc}1&2\\0&1\end{array}\right)^n = \left(\begin{array}{cc}1&2n\\0&1\end{array}\right)$$

for all $n \in \mathbb{N}_{>0}$.

3. Determine whether the following statements are true or false.

(a) For prime numbers p, the Legendre symbol $\left(\frac{5}{p}\right)$ depends only on the congruence class of p modulo 5.

(b) For prime numbers p, the Legendre symbol $\left(\frac{11}{p}\right)$ depends only on the congruence class of p modulo 11.

(c) For non-zero natural numbers a, b which are relatively prime, the Jacobi symbol $\left(\frac{a}{b}\right)$ depends only on the congruence class of a modulo b. (d) For non-zero natural numbers a, b which are relatively prime, the Jacobi symbol $\left(\frac{a}{b}\right)$ depends only on the congruence class of b modulo 4a.

4. Find all integers n such that $-1000 \le n \le 1000$ and satisfying the following three congruence relations

$$n \equiv 2 \pmod{3}, \quad n \equiv 3 \pmod{5} \text{ and } n \equiv 4 \pmod{7}$$

5. For p = 173 and p = 401, determine the set of all elements $x \in \mathbb{Z}/p^2\mathbb{Z}$ such that

$$x^5 \equiv 1 \pmod{p^2}$$
.

6. Determine the set of all $x \in \mathbb{Z}/13^4\mathbb{Z}$ such that $x^3 \equiv -1 \pmod{13^4}$.

7. Let S be the set of all pairs (a, b) with $a, b \in \mathbb{Z}$, $0 \le a, b \le 20$ such that there exists an integer x such that $x \equiv a \pmod{36}$ and $x \equiv b \pmod{100}$. Determine the number of elements of S.

8. Let p, q be prime numbers, $p \neq q$. Find a natural number n with $0 \neq n < pq$ such that $p^{2q-1} + q^{2p-1} \equiv n \pmod{pq}$. (The number n should be given in terms of p and q.)

9. Let p be an odd prime number. Show that the Legendre symbol $\left(\frac{7}{p}\right)$ depends only on the congruence class of p modulo 28, and determine the value of $\left(\frac{7}{p}\right)$ for each congruence class of p modulo 28.

10. (a) Determine the simple continued fraction expansion of $\frac{\sqrt{7}}{2}$.

(b) Find natural numbers a, b, c, d such that $\frac{c}{d} < \frac{\sqrt{7}}{2} < \frac{a}{b}, b, d > 100$, and ad - bc = 1.

11. Does the quadratic congruence equation

$$x^2 + 2x + 1002 \equiv 0 \pmod{483}$$

have a solution in $\mathbb{Z}/483\mathbb{Z}$?

- 12. Expand $\frac{173}{409}$ as a simple continued fraction.
- 13. Find natural numbers a, b such that a 409 b 250 = 1.
- 14. Let p be a prime number. Determine the following numbers in terms of p.
 - (a) the number of quadratic non-residues modulo p,
 - (b) the number of primitive elements in $(\mathbb{Z}/p\mathbb{Z})^{\times}$,
 - (c) the number of non-primitive elements in $(\mathbb{Z}/p\mathbb{Z})^{\times}$,
 - (d) the number of elements in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ which are quadratic non-residues but not primitive.
- 15. Determine the number of elements of $(\mathbb{Z}/9797\mathbb{Z})^{\times}$ of order 100.
- 16. (a) What is the maximal possible order for elements of $(\mathbb{Z}/9797\mathbb{Z})^{\times}$?
- (b) Determine the number of elements of $(\mathbb{Z}/9797\mathbb{Z})^{\times}$ whose order are maximal possible.
- 17. Prove that 561 is an Euler pseudoprime to the base 2, i.e.

$$2^{280} \equiv \left(\frac{2}{561}\right) \pmod{561},$$

where $\left(\frac{2}{561}\right)$ is the Jacobi symbol.

18. Suppose that n is natural number, $n \equiv 5 \pmod{12}$ and that n is an Euler pseudoprime to the base 3. Prove that n is a strong pseudoprime to the base 3, i.e. n passes the Miller-Rabin test to the base 3.

19. Relate the length of the period of the decimal expansion of $\frac{1}{161}$ to the order of a suitable element in $(\mathbb{Z}/n\mathbb{Z})^{\times}$ for a suitable integer n, and determine the length of that period.

- 20. The number 1729 factors as $1729 = 7 \times 13 \times 19$.
 - (a) Determine the number of elements in $(\mathbb{Z}/1729)^{\times}$ of order 3.
 - (b) Determine the number of elements in $(\mathbb{Z}/1729)^{\times}$ which are squares, i.e. equal to the square of some element in $(\mathbb{Z}/1729)^{\times}$.
 - (c) Determine the number of elements in $(\mathbb{Z}/1729)^{\times}$ which are cubes, i.e. equal to the cube of some element in $(\mathbb{Z}/1729)^{\times}$.
 - (c) Determine the number of elements in $(\mathbb{Z}/1729)^{\times}$ which are fourth powers, i.e. congruent to x^4 modulo 1729 for some integer x.