MATH 350 PRACTICE PROBLEMS
 April, 2005

1. Prove that $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ for all $n \in \mathbb{N}_{>0}$.
2. Prove that

$$
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)^{n}=\left(\begin{array}{cc}
1 & 2 n \\
0 & 1
\end{array}\right)
$$

for all $n \in \mathbb{N}_{>0}$.
3. Determine whether the following statements are true or false.
(a) For prime numbers p, the Legendre symbol $\left(\frac{5}{p}\right)$ depends only on the congruence class of p modulo 5 .
(b) For prime numbers p, the Legendre symbol $\left(\frac{11}{p}\right)$ depends only on the congruence class of p modulo 11 .
(c) For non-zero natural numbers a, b which are relatively prime, the Jacobi symbol $\left(\frac{a}{b}\right)$ depends only on the congruence class of a modulo b. (d) For non-zero natural numbers a, b which are relatively prime, the Jacobi symbol $\left(\frac{a}{b}\right)$ depends only on the congruence class of b modulo $4 a$.
4. Find all integers n such that $-1000 \leq n \leq 1000$ and satisfying the following three congruence relations

$$
n \equiv 2 \quad(\bmod 3), \quad n \equiv 3 \quad(\bmod 5) \quad \text { and } n \equiv 4 \quad(\bmod 7) .
$$

5. For $p=173$ and $p=401$, determine the set of all elements $x \in \mathbb{Z} / p^{2} \mathbb{Z}$ such that

$$
x^{5} \equiv 1 \quad\left(\bmod p^{2}\right) .
$$

6. Determine the set of all $x \in \mathbb{Z} / 13^{4} \mathbb{Z}$ such that $x^{3} \equiv-1\left(\bmod 13^{4}\right)$.
7. Let S be the set of all pairs (a, b) with $a, b \in \mathbb{Z}, 0 \leq a, b \leq 20$ such that there exists an integer x such that $x \equiv a(\bmod 36)$ and $x \equiv b(\bmod 100)$. Determine the number of elements of S.
8. Let p, q be prime numbers, $p \neq q$. Find a natural number n with $0 \neq n<p q$ such that $p^{2 q-1}+q^{2 p-1} \equiv n(\bmod p q)$. (The number n should be given in terms of p and q.)
9. Let p be an odd prime number. Show that the Legendre symbol $\left(\frac{7}{p}\right)$ depends only on the congruence class of p modulo 28 , and determine the value of $\left(\frac{7}{p}\right)$ for each congruence class of p modulo 28 .
10. (a) Determine the simple continued fraction expansion of $\frac{\sqrt{7}}{2}$.
(b) Find natural numbers a, b, c, d such that $\frac{c}{d}<\frac{\sqrt{7}}{2}<\frac{a}{b}, b, d>100$, and $a d-b c=1$.
11. Does the quadratic congruence equation

$$
x^{2}+2 x+1002 \equiv 0 \quad(\bmod 483)
$$

have a solution in $\mathbb{Z} / 483 \mathbb{Z}$?
12. Expand $\frac{173}{409}$ as a simple continued fraction.
13. Find natural numbers a, b such that $a 409-b 250=1$.
14. Let p be a prime number. Determine the following numbers in terms of p.
(a) the number of quadratic non-residues modulo p,
(b) the number of primitive elements in $(\mathbb{Z} / p \mathbb{Z})^{\times}$,
(c) the number of non-primitive elements in $(\mathbb{Z} / p \mathbb{Z})^{\times}$,
(d) the number of elements in $(\mathbb{Z} / p \mathbb{Z})^{\times}$which are quadratic non-residues but not primitive.
15. Determine the number of elements of $(\mathbb{Z} / 9797 \mathbb{Z})^{\times}$of order 100 .
16. (a) What is the maximal possible order for elements of $(\mathbb{Z} / 9797 \mathbb{Z})^{\times}$?
(b) Determine the number of elements of $(\mathbb{Z} / 9797 \mathbb{Z})^{\times}$whose order are maximal possible.
17. Prove that 561 is an Euler pseudoprime to the base 2, i.e.

$$
2^{280} \equiv\left(\frac{2}{561}\right) \quad(\bmod 561)
$$

where $\left(\frac{2}{561}\right)$ is the Jacobi symbol.
18. Suppose that n is natural number, $n \equiv 5(\bmod 12)$ and that n is an Euler pseudoprime to the base 3. Prove that n is a strong pseudoprime to the base 3, i.e. n passes the Miller-Rabin test to the base 3 .
19. Relate the length of the period of the decimal expansion of $\frac{1}{161}$ to the order of a suitable element in $(\mathbb{Z} / n \mathbb{Z})^{\times}$for a suitable integer n, and determine the length of that period.
20. The number 1729 factors as $1729=7 \times 13 \times 19$.
(a) Determine the number of elements in $(\mathbb{Z} / 1729)^{\times}$of order 3 .
(b) Determine the number of elements in $(\mathbb{Z} / 1729)^{\times}$which are squares, i.e. equal to the square of some element in $(\mathbb{Z} / 1729)^{\times}$.
(c) Determine the number of elements in $(\mathbb{Z} / 1729)^{\times}$which are cubes, i.e. equal to the cube of some element in $(\mathbb{Z} / 1729)^{\times}$.
(c) Determine the number of elements in $(\mathbb{Z} / 1729)^{\times}$which are fourth powers, i.e. congruent to x^{4} modulo 1729 for some integer x.

