Math 350 Assignment 5.

The "show-off problems" are starred. You are encouraged to come to my office and show me your solution. I will keep a record of people who are the first to solve any given starred problem.

Part I. Problems from Rosen's book.

- 12.2, \#6 (p. 476)
- 12.3, \#4 (p. 488), *\#9 (p. 489), \#12 (p. 489), *\#14 (p. 489)
- 12.4, \#2 (b) (p. 502), \#8 (p. 503), *\#18 (p. 504), *\#19 (p. 504)

Part II.

*1. Let $x_{0}, x_{1}, \ldots, x_{n}, \ldots$ be variables. For every $n \geq 0$, denote by $\left.A_{n}=\left(a_{i j}\right)\right)$ the $(n+$ 1) $\times(n+1)$ matrix with diagonal entries $a_{i i}=x_{i}$ for $i=0,1, \ldots, n, a_{i, i+1}=-1$ for $i=0,1, \ldots, n-1, a_{i+1, i}=1$ for $i=0,1, \ldots, n-1$, and all other entries are 0 . (Notice that the only non-zero entries of A_{n} are those on the diagonal, and those immediately above or below the diagonal.) Let $P_{n}\left(x_{0}, \ldots, x_{n}\right)=\operatorname{det}\left(A_{n}\right) \in \mathbb{Z}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, a polynomial with coefficients in \mathbb{Z}. Prove that

$$
\left[a_{0} ; a_{1}, \ldots, a_{n}\right]=\frac{P_{n}\left(a_{0}, \ldots, a_{n}\right)}{P_{n-1}\left(a_{1}, \ldots, a_{n}\right)}
$$

for all integers $a_{0} \in \mathbb{Z}, a_{1}, \ldots, a_{n} \geq 1$.
(In the notation used in the lecture, we have $P_{n}\left(a_{0}, a_{1}, \ldots, a_{n}\right)=\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle=p_{n}$.)

