Homework 9 Due Nov 29, 2012

Math 116

Remember: No credit will be given for answers without mathematical or logical justification.

Chapter 4

1) In Homework 7 we proved that $\frac{d}{dx}x^n = nx^{n-1}$ when $n \in \mathbb{N}$, and in Homework 8 we used this prove that $\frac{d}{dx}e^x = e^x$ and $\frac{d}{dx}\ln x = \frac{1}{x}$ (aside from some possible issues concerning convergence of infinite sums). Using the chain rule along with the fact that $x^n = e^{n \ln x}$, prove that $\frac{d}{dx}x^n = nx^{n-1}$ for all $n \in \mathbb{R}$ (and x > 0).

Chapter 5

- 2) Evaluate the following integrals:
 - a) $\int_{-\frac{1}{2}}^{\frac{1}{2}} x \sqrt{1-x^2} \, dx$
 - b) Evaluate $\int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{1-x^2} \, dx$ by making the substitution $x = \sin u$. You might have to make use of the identity $2\cos^2 v = 1 + \cos(2v)$.
 - c) Evaluate $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx$ by making the same substitution as above.

Chapter 12

3) We have seen a connection between quaternions and 3-dimensional vector space theory (via the cross product). There are connections between quaternions and the 4dimensional theory as well. For instance if $x = \alpha_1 + \alpha_2 i + \alpha_3 j + \alpha_4 k$, $y = \beta_1 + \beta_2 i + \beta_3 j + \beta_4 k$ are quaternions and $\vec{x} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, $\vec{y} = (\beta_1, \beta_2, \beta_3, \beta_4)$ are the corresponding 4-vectors, show that

$$\vec{x} \cdot \vec{y} = \operatorname{Re}(x\overline{y}) = \frac{1}{2}(x\overline{y} + y\overline{x})$$

(where the "." symbol indicates the bilinear inner product, and Re(x) denotes the real part of the quaternion x). Note: if a, b are quaternions, then $\overline{ab} = \overline{b}\overline{a}$.

Chapter 13

- 4) #1 in §13.14
- 5) #7 in §13.14
- 6) Determine whether the following sets of vectors are linearly independent or not:
 - a) $\{(1, 3, 5), (-1, 2, 5), (1, 2, -5)\}$
 - b) $\{(-15, -1, 0, 1), (1, 1, -2, -1), (3, 0, 2, 1), (1, 4, -1, 1)\}$

Chapter 14

- 7) #1 in §14.7
- 8) #4 in §14.7
- 9) #5 in §14.7

10) We define the *n*-sphere of radius r (centered at the origin) to be the set of points $\vec{x} \in \mathbb{R}^{n+1}$ such that

$$\|\vec{x}\| = r. \tag{1}$$

The *n*-sphere of radius *r* is denoted $\mathbb{S}^n(r)$ (the *n*-sphere of radius 1 is often called the *unit n-sphere*).

- a) Make a sketch of the 0-sphere of radius 3. Make a sketch of the 1-sphere of radius4. Make a sketch of the unit 2-sphere.
- b) Show that $\vec{f}(t) = \frac{1}{\sqrt{2}} (\cos(t), \sin(t), \cos(t), \sin(t))$ lies on the unit 3-sphere inside \mathbb{R}^4 .
- c) Assume $\vec{f}(t)$ is a path in \mathbb{R}^{n+1} that lies in $\mathbb{S}^n(r)$. Prove that $\vec{f'}(t)$ is perpendicular to $\vec{f}(t)$.
- 11) Compute

$$\left\|\int_0^\tau \left(1,\,t\right)\,dt\right\|$$

and

$$\int_0^\tau \|(1,\,t)\|\ dt$$

where τ is any real number.

12) Let $\vec{f}(t) = (f_1(t), \ldots, f_n(t))$ be a vector-valued function. Prove that

$$\left\| \int_{a}^{b} \vec{f}(t) dt \right\| = \int_{a}^{b} \left\| \vec{f}(t) \right\| dt$$
(2)

provided that each component $f_i(t)$ is a constant multiple of some fixed function g(t) (that is, constants $a_1, \ldots, a_n \in \mathbb{R}$ exist so that $\vec{f}(t) = (a_1g(t), \ldots, a_ng(t))$), under the condition that $g(t) \ge 0$.

- 13) Determine the unit tangent vector and the principle normal vector for the function in problem (10)b.
- 14) Consider the helix curve $\vec{f}(t) = (\cos(t), \sin(t), t)$ in \mathbb{R}^3 . Compute \vec{T}, \vec{N} , and \vec{B} .