Homework 9

Remember: No credit will be given for answers without mathematical or logical justification.

Chapter 4

1) In Homework 7 we proved that $\frac{d}{d x} x^{n}=n x^{n-1}$ when $n \in \mathbb{N}$, and in Homework 8 we used this prove that $\frac{d}{d x} e^{x}=e^{x}$ and $\frac{d}{d x} \ln x=\frac{1}{x}$ (aside from some possible issues concerning convergence of infinite sums). Using the chain rule along with the fact that $x^{n}=e^{n \ln x}$, prove that $\frac{d}{d x} x^{n}=n x^{n-1}$ for all $n \in \mathbb{R}($ and $x>0)$.

Chapter 5

2) Evaluate the following integrals:
a) $\int_{-\frac{1}{2}}^{\frac{1}{2}} x \sqrt{1-x^{2}} d x$
b) Evaluate $\int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{1-x^{2}} d x$ by making the substitution $x=\sin u$. You might have to make use of the identity $2 \cos ^{2} v=1+\cos (2 v)$.
c) Evaluate $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{2}}} d x$ by making the same substitution as above.

Chapter 12

3) We have seen a connection between quaternions and 3-dimensional vector space theory (via the cross product). There are connections between quaternions and the 4 dimensional theory as well. For instance if $x=\alpha_{1}+\alpha_{2} i+\alpha_{3} j+\alpha_{4} k, y=\beta_{1}+$ $\beta_{2} i+\beta_{3} j+\beta_{4} k$ are quaternions and $\vec{x}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right), \vec{y}=\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$ are the corresponding 4 -vectors, show that

$$
\vec{x} \cdot \vec{y}=\operatorname{Re}(x \bar{y})=\frac{1}{2}(x \bar{y}+y \bar{x})
$$

(where the "." symbol indicates the bilinear inner product, and $\operatorname{Re}(x)$ denotes the real part of the quaternion x). Note: if a, b are quaternions, then $\overline{a b}=\bar{b} \bar{a}$.

Chapter 13

4) $\# 1$ in $\S 13.14$
5) $\# 7$ in $\S 13.14$
6) Determine whether the following sets of vectors are linearly independent or not:
a) $\{(1,3,5),(-1,2,5),(1,2,-5)\}$
b) $\{(-15,-1,0,1),(1,1,-2,-1),(3,0,2,1),(1,4,-1,1)\}$

Chapter 14

7) $\# 1$ in $\S 14.7$
8) $\# 4$ in $\S 14.7$
9) $\# 5$ in $\S 14.7$
10) We define the n-sphere of radius r (centered at the origin) to be the set of points $\vec{x} \in \mathbb{R}^{n+1}$ such that

$$
\begin{equation*}
\|\vec{x}\|=r . \tag{1}
\end{equation*}
$$

The n-sphere of radius r is denoted $\mathbb{S}^{n}(r)$ (the n-sphere of radius 1 is often called the unit n-sphere).
a) Make a sketch of the 0 -sphere of radius 3 . Make a sketch of the 1 -sphere of radius 4. Make a sketch of the unit 2 -sphere.
b) Show that $\vec{f}(t)=\frac{1}{\sqrt{2}}(\cos (t), \sin (t), \cos (t), \sin (t))$ lies on the unit 3 -sphere inside \mathbb{R}^{4}.
c) Assume $\vec{f}(t)$ is a path in \mathbb{R}^{n+1} that lies in $\mathbb{S}^{n}(r)$. Prove that $\vec{f}^{\prime}(t)$ is perpendicular to $\vec{f}(t)$.
11) Compute

$$
\left\|\int_{0}^{\tau}(1, t) d t\right\|
$$

and

$$
\int_{0}^{\tau}\|(1, t)\| d t
$$

where τ is any real number.
12) Let $\vec{f}(t)=\left(f_{1}(t), \ldots, f_{n}(t)\right)$ be a vector-valued function. Prove that

$$
\begin{equation*}
\left\|\int_{a}^{b} \vec{f}(t) d t\right\|=\int_{a}^{b}\|\vec{f}(t)\| d t \tag{2}
\end{equation*}
$$

provided that each component $f_{i}(t)$ is a constant multiple of some fixed function $g(t)$ (that is, constants $a_{1}, \ldots, a_{n} \in \mathbb{R}$ exist so that $\left.\vec{f}(t)=\left(a_{1} g(t), \ldots, a_{n} g(t)\right)\right)$, under the condition that $g(t) \geq 0$.
13) Determine the unit tangent vector and the principle normal vector for the function in problem (10)b.
14) Consider the helix curve $\vec{f}(t)=(\cos (t), \sin (t), t)$ in \mathbb{R}^{3}. Compute \vec{T}, \vec{N}, and \vec{B}.

