Homework 7

Remember: No credit will be given for answers without mathematical or logical justification.

Chapter 1

1) As in the previous homework set, let $f(x)$ be the function on the interval $[0,1]$ defined by

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Assume $s(x)$ is some step function defined on $[0,1]$. Assume $t(x)$ is some step function defined on $[0,1]$. As before, we know, by definition, that $t(x)$ is subordinate to some partition $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$, and that $t(x)$ has the form

$$
t(x)=t_{k} \text { on the } k^{t h} \text { interval }
$$

where each t_{k} is a constant. Finally, assume that $t(x) \leq f(x)$ on $[0,1]$.
a) Make a rough sketch of $f(x)$. Explain, on an intuitive level, why it stands to reason that ${\underset{0}{0}}_{1}^{f} f(x) d x \leq 0$.
b) Relative to the partition P, what, specifically, is I_{k}, and what is $\triangle I_{k}$? (Here I_{k} is the $k^{t h}$ interval and $\triangle I_{k}$ is the length of the interval I_{k}.)
c) Prove that $t_{k} \leq 0$.
d) Prove that $\int_{0}^{1} t(x) d x \leq 0$.
e) Prove that $\underline{\int}_{0}^{1} f(x) d x \leq 0$.

Chapter 4

2) The binomial theorem states that if z, w are any complex (or real) numbers and $n \in \mathbb{N}$, then

$$
(z+w)^{n}=\sum_{i=0}^{n}\binom{n}{i} z^{n-i} w^{i}
$$

where the symbol $\binom{a}{b}$ is defined to be the number

$$
\begin{equation*}
\binom{a}{b} \triangleq \frac{a!}{b!(a-b)!} \tag{1}
\end{equation*}
$$

(by convention, we always take $0!=1$). We will accept the binomial theorem as true; you are not asked to prove it.
a) Using the binomial theorem, determine $(z+w)^{5}$ as a sum of monomial terms.
b) If $f(x)=x^{n}$ and $n \in \mathbb{N}, n \geq 2$, prove that

$$
f(x+h)=x^{n}+n \cdot h \cdot x^{n-1}+h^{2} \sum_{i=0}^{n-2}\binom{n}{i+2} x^{n-i-2} h^{i}
$$

c) If $x \in \mathbb{R}$ and $n \in \mathbb{N}$ and $n \geq 2$, prove that

$$
\lim _{h \rightarrow 0} \sum_{i=0}^{n-2}\binom{n}{i+2} x^{n-i-2} h^{i}
$$

exists (and in particular is not "infinite"), and is usually non-zero.
d) Assuming $n \in \mathbb{N}$, prove, directly from the definition of the derivative, that

$$
f^{\prime}(x)=n x^{n-1}
$$

Chapter 12

3) In class we proved the triangle inequality, namely the statement that, if $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ then

$$
\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\| .
$$

Using this, prove the following three versions of the triangle inequality:
a) $\|\vec{v}\|-\|\vec{w}\| \leq\|\vec{v}-\vec{w}\|$.
b) $\|\vec{w}\|-\|\vec{v}\| \leq\|\vec{v}-\vec{w}\|$.
c) $|\|\vec{v}\|-\|\vec{w}\|| \leq\|\vec{v}-\vec{w}\|$.
4) In this problem we take an axiomatic approach to the notion of the norm of a vector.

Definition. Let V be any vector space (whose scalars can be either \mathbb{R} or \mathbb{C}). A function $\|\cdot\|: V \rightarrow \mathbb{R}$ is called a norm provided the following properties hold:
i) (positivity) $\|\vec{v}\| \geq 0$, with equality if and only if $\vec{v}=\mathcal{O}$
ii) (homogeneity) $\|c \vec{v}\|=|c|\|\vec{v}\|$ where c is any scalar and $\vec{v} \in \mathbb{C}^{n}$ (or \mathbb{R}^{n})
iii) (triangle inequality) $\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\|$ where $\vec{v}, \vec{w} \in \mathbb{C}^{n}$ (or \mathbb{R}^{n})
a) Define the function $\|\cdot\|_{\infty}: \mathbb{C}^{n} \rightarrow \mathbb{R}$ by

$$
\|\vec{v}\|_{\infty}=\max _{i \in\{1, \ldots, n\}}\left|v_{i}\right|, \quad \text { where } \vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

This is called the max-norm (or sometimes the sup-norm). Give the following vectors in \mathbb{C}^{3}, calculate both $\|\vec{v}\|_{\infty}$ and the usual norm $\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}$.

1) $\vec{v}=(1-i, 0, i)$
2) $\vec{v}=(1+i, 0,-i)$
3) $\vec{v}=(1,0,0)$
4) $\vec{v}=(i, i, i)$
b) Prove that $\|\cdot\|_{\infty}$ indeed satisfies (i), (ii), and (iii), and so is a norm.
5) Unfortunately, there are many norms in the sense of problem (3), most of which have nothing to do with dot products. Here we will define what are called the " l^{p}-norms." We have defined vectors \vec{v} in \mathbb{C}^{n} (or \mathbb{R}^{n}) to be lists of complex (or real) numbers:

$$
\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

Given any $p \in \mathbb{R}$ and $p>0$, define the l^{p}-norm on $\mathbb{C}^{n}\left(\right.$ or $\left.\mathbb{R}^{n}\right)$ to be

$$
\begin{equation*}
\|\vec{v}\|_{p}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{\frac{1}{p}} \tag{2}
\end{equation*}
$$

a) Prove that axiom (i) holds for $\|\cdot\|_{p}$
b) Prove that axiom (ii) holds for $\|\cdot\|_{p}$
(Property (iii), the triangle inequality, only holds when $1 \leq p<\infty$. The proof is a little more difficult and will be left for the extra credit.)
6) The formula for the area of a parallelogram is $A=b h$ where b is base length and h is the altitude. Using this, a little trigonometry, and what you know about dot products, prove that the area of the parallelogram spanned by any two vectors \vec{v} and \vec{w} is $\sqrt{\|\vec{v}\|^{2}\|\vec{w}\|^{2}-(\vec{v} \cdot \vec{w})^{2}}$.

Chapter 13

7) Let $\mathcal{K}=M\left(\vec{P} ; \vec{v}_{1}, \ldots, \vec{v}_{k}\right)$ be a k-plane and let $\mathcal{L}=M(\vec{Q} ; \vec{w})$ be a line. In this and the next two problems, we will provide the conditions for \mathcal{L} to lie within the plane \mathcal{K}. For this problem, state what it means for \mathcal{L} to lie within \mathcal{K}. Put another way, what, precisely, does it mean for a point $\vec{v} \in \mathbb{R}^{n}$ to be a point of \mathcal{L} and also be a point of \mathcal{K} ?
8) In the context of problem (7), prove that if
i) $\vec{Q}-\vec{P} \in \operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$
ii) $\vec{w} \in \operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$
are both met, then $\mathcal{L} \subseteq \mathcal{K}$.
9) In the context of problem (7), prove that if $\mathcal{L} \subseteq \mathcal{K}$, then conditions (i) and (ii) of problem (8) are both met.
10) Do $\# 12$ in $\S 13.8$. (Hint: you can use the theorem proved in problems (7)-(9).)
